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Abstract

Paper presents a suite of the model that finds similarity in
dynamics between time series and groups them by this property;
and an artificial data generator that builds those time series that
have issues, close to the real ones. These two parts open a rich
field for the further analysis of both real-life data and new algo-
rithms that are able to find and distinguish these real-life issues
for the more comprehensive analysis.
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1 Introduction

In this paper, I would like to introduce a model that helps to split
time series into several groups and helps with an analysis of the un-
derlying relationship that puts these series into similar groups. This
is about a Dynamic Time Warping algorithm that is widely used to
find distances between series. Distance is a measure of similarity to
some extent, thus series that are akin by dynamics would have a low
distance between them. This algorithm captures situations where there
are some distortions between series: lags, stretching, contractions and
other.

Among major use-cases for the algorithm, I’d like to mention sound
recognition and sound motion analysis, where you’d compare audio by
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several dynamic properties [5]. Another example is an analysis of car-
diograms, where there are some “healthy” patterns and “problematic”
ones. They can be compared and splited into healthy and unhealthy
for further ability to recognize the latter ones fast [1]. One more exam-
ple is financial pattern recognition that is highly used to analyze stock
prices [4].

A common characteristic of the abovementioned use-cases is high-
frequency data and a decent amount of observations. But what if
these time series are rather short? The major example of such a situ-
ation is macroeconomics and corresponding forecasting. Recently, the
Data Science algorithms start to infiltrate into the field and become
a popular tool despite the fact that series are short [7]. This invasion
was accompanied by modern ways to enlarge current macroeconomic
datasets with support of web-scraping techniques, Google Trends and
other. But also, another way was to adapt traditional Data Science al-
gorithms to fit the case of shorter series without much loss of efficiency.

The paper will be focused on the development of a model that
creates some artificial data with several parameters, that represent real
data and then the other part of the model that divides this dataset
into several groups. There will be a comparison of DTW with simpler
benchmarks (Euclidean distance, correlation-based distance) to prove
a better performance of the former one in terms of capturing the real
dynamics.

2 Data

The research is highly dependent on the data quality because we would
like to find the similarity of the series and subjectively evaluate whether
results correspond to the initial hypotheses. Also, the research is not
bound by some particular topic and has no requirements for the data
except to be realistic. There are several options of what kind of dataset
to choose in order to get the most appropriate result: 1) open dataset
with short time series; 2) artificially created set of series. I have decided
to follow the second approach for several reasons: 1) It allows a full
control over issues that should be analyzed; 2) We are not forced to
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control for endogeneity; 3) We can formulate the hypothesis with a
relative ease. In the case of real data, these problems become a subject
of higher amount of biases and errors, based on subjective judging of
the data dynamics.

The dataset is created according to the TimeSynth project by [8].
This is a tool for simpler creating the data series that might be easily
replicated in the Excel or whatever other application that allows work-
ing with the data series. In the case of the paper, I’ve created a set of
forty series with ninety observations each.

These series have got several properties. First of all – it is a basic
function. It could be a sine, a cosine, AR(1), AR(12), ARMA(1,1) or
ARMA(12,1) process. Then the white noise, generated as a normally
distributed variable with mean 0, is added. Noise can have standard
deviation 0.1 (small), 1 (medium) and 5 (large). Also, there is an
option to do not add the noise. The last property is an outlier that
can take multiple forms: small outlier (1), large outlier (5) and a set of
two small and one large outlier. All of them can be both positive and
negative.

This routine helps to create twenty-five series. Fifteen more are
created in a similar manner, but they have got no outliers and have a
structural break, which means a new basic function starting from the
thirty-first observation. A full set of variables is given in Appendix A.

3 Model

As for a model, the pipeline is as follows: to find distances between time
series, to build a distance matrix and represent series as a point on the
two-dimensional plane with corresponding distances between them, to
cluster these series into groups with the corresponding algorithm.

3.1 Distance algorithm

3.1.1 Euclidean distance

As a first and the easiest algorithm, we’ll use simple Euclidean distance
between series. The algorithm finds distances as follows. If we have
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time-series S1 and S2, S1(t) = pt and S2(t) = qt, then:

dist(S1, S2) =

√
∑

n

t=1
(pt − qt)2

n
. (1)

In other words, it’s an average of squared deviations of one series
from another. Obviously, this approach does not count for any distor-
tions such as lagged series (those, who has similar functional form, but
one of them with a lag). The approach is not of great use for real-life
time series analysis as long as it cannot count popular properties of
series, but it is a good benchmark to compare with.

3.1.2 Correlation

The next step is a correlation-based measure that allows representing
high correlation as a short distance and vice versa. A distance between
two series is given as a

dist(S1, S2) = 1− |corr(S1, S2)| . (2)

The design is given in such a form because a high absolute correla-
tion (whenever it is positive or negative) means a high level of similarity
[3]. There are a plethora of other forms for correlation-based distance,
but we will stop on the simplest one as a great benchmark and also
because an investigation of these sub-methods is out of the scope for
the current paper.

3.1.3 Dynamic Time Warping

Then we’ll go with a simple Dynamic Time Warping (DTW) algorithm
[2]. In the original form, the DTW builds a matrix with distances from
each point of one series to each of another. The left bottom cell is a
distance between the first points, while the right upper is between last
points. Then, the path between these cells is built in a way to mini-
mize the sum of distances. It helps to produce no intersections between
correspondences and connect all points between each other. Such a de-
sign gives an opportunity to deal with lagged reaction (correspondence
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might be with a time shift), stretching (one point might correspond to
several) and contraction (inverse to the previous one).

The most famous expansion of the algorithm, FastDTW [10], is
called to speed it up. The original algorithm complexity is o(n2), thus
the time to perform it grows quadratically with increased number of
observations, because there is a necessity to build an n by n matrix
of distances. FastDTW shows that there is no necessity to calculate
the whole matrix, but only a part of it. This comes from the fact that
path lies in the central area mostly. Thus, few ”masks” are used to
”shadow” the area that has relatively low chances to contain a part
of the path, thus should not be calculated at all. FastDTW utilizes
few more additions, however abovementioned one is the most impor-
tant for the further work because it gives the idea with limitations of
the distance matrix. Moreover, despite the overwhelming usage of the
FastDTW approach, it is not necessary in our case because this work
is concentrated on a relatively small series that does not hold even a
thousand observations.

3.2 Distance Matrix

After finding distances with all abovementioned methods, we can put
them into corresponding matrices where a cell in a row p and column
q means a distance between series p and q. This matrix is symmetric
because the distance between p and q is equal to the distance between
q and p. A theorem [6] suggests that we can build a unique (up to the
rotation) two-dimensional set of points, distances between which are
equal to those in the distance matrix. It is important in order not to
obtain several different groupings for a set.

3.3 Clustering

During the previous stage, we obtained a two-dimensional plane with a
set of points and now we can use a clustering technique to group similar
series into a single cluster. An algorithm of choice was a simple K-
Means clustering [9]. The reason is the simplicity and interpretability
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that helps with hypothesis checking, corresponding to the basic visual
analysis results etc.

4 Results

As for the result, the main one is a plane of points, that correspond to
series, grouped via K-Means algorithm. We’ll do this for all cases and
analyze corresponding results.

Let us start with the simple Euclidean distance case. In Figure 1,
we can see two main clusters (black and blue), so as several pairs of
relatively close series like in the ltblue and green clusters. The black
cluster consists mainly of AR-type series with different noises, while
blue is a cluster of Sine/Cosine. Green cluster is AR(12) with large
noise and outlier, while ltblue is a combination of cosine and AR(12)
with large noise. The major plus is that algorithm is able to find
the basic difference between series (divides on AR-type and sine-type
functions), despite its straightforward nature. On the other hand, it
gives no better insight into the data, which is unfavourable for the
future applying.

The next will be a sub-exercise with standardized data rather than
the raw one. As we can see in Figure 2, this case has less strongly
marked clusters. The strongest one is blue, which contains ARMA(1,1)
processes with different noises. The ltblue cluster seems to be not bad
too, but it contains sine-based functions (even without cosine). Other
clusters are not that tight and do not give much of the additional in-
formation. This exercise repeats the previous conclusion that there are
relatively no conclusions, it seems like it works worse than the previ-
ous one, but on the other hand, standardized data removes ”levels” of
series that plays a role as long different series have a different constant
term.

Figure 3 shows a correlation-based distance case, which is already
more interesting as long as it has several pretty nice groups. The
first one is black, which consists of ARMA(1,1) models and several
combinations of ARMA with AR (structural break). The red one seems
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Figure 1. Euclidean distance

Figure 2. Scaled Euclidean distance
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Figure 3. Correlation-based distance

to be slightly divided into two sub-parts and it consists of Sine/Cosine
plus one ARMA(12,1) with large noise. The green cluster is a bunch of
sine series with small-to-medium noises. The blue one (that seems to
be united with the ltblue) is full of series with structural breaks, where
one part is AR-based and the other is Sine-based. It is quite interesting
as long as previous methods were unable to find this correspondence.
The ltblue cluster continues the tradition of blue and consists of many
broken series as long as several AR(1) with relatively little noise. The
case with scaled data leads to the same result as long as standardization
does not affect correlation.

Finally, we’re coming to the Dynamic Time Warping algorithm,
which case is depicted in Figure 4. Here we can observe several ex-
tremely tight clusters (ltblue, part of the red and part of the violet).
Green and black clusters seem to be outliers. All these series are fully
or partially (due to the structural break) are AR(12) with large noise.
As for the red cluster, the tightest part contains sines with small noise,
another are cosines or combinations of sine and cosine. It is interest-
ing because in this case sines and cosines became closer to each other,
which was not observed earlier. And it is a correct move because ba-
sically sine and cosine dynamics are the same. The ltblue cluster is
basically very tight and consists of most of the AR-type series with
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Figure 4. Dynamic Time Warping distance

no-to-medium noise. It also seems better than in the previous cases
because DTW captures the AR-type dynamics despite the noise (if
it’s not too large and leading in the total dynamics). Moreover, even
AR-type with structural break takes its place here. Blue cluster is
mostly about very noisy series, so as a violet one, that contains mostly
sine-based functions with or without a structural break.

5 Conclusion

The model, developed and described in the paper, supports a deep
investigation of the relationship between time series, especially those
that imitate structural breaks, outliers, a small number of observations
etc. These particular issues are rather popular in the macroeconomics,
where the exercise finds its good use as one of the possibilities to in-
vestigate economic relationship based on the data.

Results show us that the more sophisticated algorithm, the more
information we can obtain out of it. For example, simple Euclidean
case so as the correlation-based method could not understand that
sine and cosine are basically the same dynamics, while the DTW was
much more able to do this despite the noise. However, the large noise
plays its role and distract the algorithm results. As for the outlier,
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there was no decent sign that algorithm was able to find it and it could
not make any difference, but the result regarding the structural break
is more interesting. In the case of DTW, there is more tendency of
those series to be with other simple series, especially when the break is
homogeneous (sine to cosine or AR(1) to ARMA(12,1)). That seems
very promising for a further and deeper investigation.

As for further development, there are two major ways. The first
one is to focus on the development of DTW extensions and a richer set
of clustering models or even more advanced standardization in order
to obtain a better result and squeeze more information from the data.
The second one is to move forward in the development of the actual
tool for this comparison and artificial data generation process, make it
even more automatic, consider other possible basic function and issues
that arise in the real data and should be modelled in the artificial case
properly.
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Appendix A

Without structural break With structural break

AR(1) Small noise Small up ARMA(12,1) COSINE Medium noise

SINE Large noise SLS up AR(12) AR(1) No noise

COSINE Small noise Small up COSINE AR(12) Large noise

AR(1) Medium noise Small down ARMA(1,1) SINE Large noise

ARMA(1,1) Medium noise SLS up AR(1) ARMA(1,1) Medium noise

SINE Large noise Large up AR(1) SINE No noise

ARMA(1,1) Small noise SLS up COSINE AR(12) Large noise

SINE No noise SLS down AR(12) AR(1) No noise

COSINE Large noise Large up AR(1) ARMA(1,1) No noise

SINE Small noise SLS down ARMA(1,1) SINE No noise

COSINE Large noise Small up AR(12) SINE Large noise

AR(12) Large noise Small down COSINE ARMA(1,1) No noise

ARMA(12,1) Large noise Small up SINE COSINE Medium noise

ARMA(1,1) Medium noise No outlier COSINE ARMA(1,1) Large noise

AR(12) Large noise SLS up COSINE ARMA(1,1) Large noise

AR(1) Small noise SLS up

ARMA(1,1) No noise SLS down

AR(1) No noise No outlier

ARMA(1,1) No noise Small down

SINE No noise Small up

COSINE Medium noise Large up

ARMA(12,1) No noise No outlier

ARMA(1,1) Medium noise Small up

ARMA(12,1) Small noise Small down

SINE Small noise Large down
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