
Введение

Эмиссии парниковых газов по модулю «Энергетика» за 1990-2016

Данная работа представляет Главу по энергетике из Инвентаря по оценке эмиссий парниковых газов для периода 1990-2016 из издания: National Inventory Report: 1990-2016. Greenhouse Gas Sources and Sinks in the Republic of Moldova. Submission to the United Nations Framework Convention on Climate Change / aut.: Marius Taranu, Elena Bicova, Irina Vasilev [et al.]; coord.: Valentina Tapis [et al.]; project team: Vasile Scorpan, Aliona Solomon; Min. of Agriculture, Regional Development and Environment (MARDE), United Nations Environment Programme (UNEP). – Chişinău: Ministry of Agriculture, Regional Development and Environment (MARDE): United Nations Environment Programme, 2018. (Tipogr. "Bons Offices"). – 676 p.: tab.

Aut. sunt indicați pe vs. f. de tit. – Bibliogr.: p. 447-461 (285 tit.). – Referințe bibliogr. in subsol. – Apare cu sprijinul financiar al Global Environment Facility (GEF). – 10 ex.

ISBN 978-9975-87-447-2. 504.05/.06+551.583(478)(047)

В подготовке главы по энергетике участвовали: Elena Bicova (разделы 1A, 1A1-1A3, Memo items), Irina Vasiliev (1A1,1A3,1A5), Tatiana Kirillova (1A4), Larisa Moraru (1A2), Serghei Burtev (1B2).

Целью представления на русском языке является расширение читательской аудитории в связи с актуальностью темы в современных условиях.

Глава имеет номер 3, нумерация таблиц и рисунков сохранена с цифрой «3».

Глава дополнена несколькими тематическими иллюстрациями, и некоторыми таблицами по регионам, которые не включены в окончательную версию издания на молдавском и английском языке.

Дополнительно подготовлена краткая историческая справка, приведенная в конце.

Глава включает описания оценок эмиссий парниковых газов для 8 секторов и итоговые выбросы по модулю «Энергетика» в целом.

3. 1 "ЭНЕРГЕТИКА"

3.1. Описание модуля 1А

Инвентаризация парниковых газов осуществляется по рекомендациям Руководства МГЭИК – 2006.

Модуль 1 «Энергетика» включает выбросы парниковых газов при *сжигании топлива*, *летучих* эмиссий от систем нефте- и газоснабжения. Дополнительно рассчитываются эмиссии для 2 позиций, которые не входят в общую сумму ("Memo items"), и указываются отдельными строками.

Рассчитываются эмиссии трех парниковых газов прямого действия (CO_2, CH_4, N_2O) с длительным сроком жизни в атмосфере, и выбросы четырех газов косвенного действия (NOx, CO, NMVOC, SOx) с коротким сроком жизни и быстрым преобразованием в другие химические соелинения.

Газы *прямого* действия рассчитываются по отдельности, а затем оценивается их сумма - в гигаграмм CO_2 -эквивалента (CO_2 -е) (1 гигаграмм=1 тысяча тонн). Для пересчета в CO_2 -е

количеств каждого газа прямого действия используются коэффициенты глобального потепления, равные: для CO_2 - 1; для CH_4 - 25; для N_2O -298. Таким образом, газы прямого действия представляются двумя величинами - общим валовым количеством – Γ г CO_2 , Γ г CH_4 , Γ г N_2O и количествами этих же газов, пересчитанными в CO_2 -е.

Для газов *косвенного* действия такой пересчет не осуществляется, и каждый газ представлен количеством валовых выбросов- Гг NOx, Гг CO и т.д.

В модуле «Энергетика» учитываются выбросы от следующих секторов и категорий источников, входящих в них:

1A «Сжигание топлива»

- Сектор <u>1A1</u> «Энергетика» (категории 1A1а «Энергетические отрасли» или «Общественное производство электрической и тепловой энергии», 1A1b «Нефтепереработка», 1A1c «Производство твердого топлива и другие энергетические отрасли»);
- Сектор <u>1А2</u> «Производственные отрасли и строительство» (12 отраслей промышленности-12 категорий);
- Сектор <u>1А3</u> «Транспорт» (категории 1А3а Внутренняя авиация, 1А3b Автомобильный транспорт, 1А3с Железнодорожный транспорт, 1А3d Водный транспорт, 1А3e Трубопроводный транспорт и прочий транспорт);
- Сектор <u>1A4</u> «Другие сектора» (категории 1A4a Коммерческий / институциональный сектор, 1A4b Жилой (Бытовой), 1A4c Сельское / лесное / рыбное хозяйство, в том числе: 1A4ci Стационарное сжигание топлива и 1A4c Мобильное сжигание топлива);
- Сектор <u>1А5</u> «Неопределенные категории» (категории 1А5а Стационарное сжигание топлива и 1А5 в Мобильное сжигание топлива).

1В «Летучие выбросы»

• Сектор <u>1В2</u> «Сырая нефть и природный газ».

"Memo items"

- Категория «Международная авиация»;
- Категория «Выбросы CO₂ от сжигания биомассы».

Все сектора и категории источников эмиссий далее подробно описаны, отмечены методологические аспекты оценки эмиссий, приведены результаты расчетов выбросов, указана степень неопределенности, описаны процедуры контроля и обеспечения качества, приведена информация о сделанных пересчетах в текущем цикле по сравнению с предыдущим, а также планируемые улучшения в дальнейшем.

3.1.1. Динамика выбросов парниковых газов

Общие выбросы

В период с 1990 по 2016 год выбросы парниковых газов по 1А «Энергетика» Молдовы на 72,9% (Таблица 3-1, рисунок 3-1).

Таблица 3-1: Динамика выбросов парниковых газов в секторе 1A «Энергетика» в 1990-2016гг.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO_2 -e, $\Gamma\Gamma$	36610,51	32969,62	26140,53	18173,00	15147,28	12157,37	12129,11	10936,44	9450,49
СО2-е, % от 1990	100,0	90,1	71,4	49,6	41,4	33,2	33,1	29,9	25,8
	1999	2000	2001	2002	2003	2004	2005	2006	2007
CO ₂ -e, ΓΓ	7988,35	7288,86	7892,72	7597,66	8296,78	9024,84	9248,78	8358,60	8652,35
СО2-е, % от 1990	21,8	19,9	21,6	20,8	22,7	24,7	25,3	22,8	23,6
	2008	2009	2010	2011	2012	2013	2014	2015	2016
СО ₂ -е, Γг	9132,16	9911,70	10194,98	10498,54	10036,19	9025,72	9656,90	10063,79	9927,23
СО ₂ -е, % от 1990	24,9	27,1	27,8	28,7	27,4	24,7	26,4	27,5	27,1

Рисунок 3-1: Динамика эмиссий парниковых газов по модулю 1 «Энергетика» в Республике Молдова в период 1990-2016 гг.

Показанные выше эмиссии отражают выбросы, имеющие место на территории двух регионов – Правобережного и Левобережного. Вклад каждого региона в суммрные эмиссии различен и описан в следующем подразделе.

Эмиссии по регионам

В Левобережье в 1990 - 2016 год эмиссии уменьшились на 64,72% (Таблица 3-2).

Таблица 3-2: Динамика суммарных выбросов ПГ прямого действия в Левобережном регионе

	1990	1991	1992	1993	1994	1995	1996	1997	1998
СО₂-е, Гг	12055,88	10788,51	9158,97	7903,26	8032,53	5489,66	5186,48	4413,90	3756,77
СО ₂ -е, % от 1990	100,0	89,5	76,0	65,6	66,6	45,5	43,0	36,6	31,2
	1999	2000	2001	2002	2003	2004	2005	2006	2007
СО ₂ -е, Γг	3497,36	3332,95	3641,32	2925,48	3084,75	3397,23	3313,33	2591,24	3016,14
СО2-е, % от 1990	29,0	27,6	30,2	24,3	25,6	28,2	27,5	21,5	25,0
	2008	2009	2010	2011	2012	2013	2014	2015	2016
СО2-е, Гг	3183,74	4216,54	4444,60	4479,88	4534,02	3380,33	4247,67	4440,36	4253,11
СО2-е. % от 1990	26.4	35.0	36.9	37.2	37.6	28.0	35.2	36.8	35.3

В Правобережье в 1990 - 2016 год эмиссии уменьшились на 76,9% (Таблица 3-1, рисунок 3-1).

Таблица 3-3: Динамика суммарных выбросов ПГ прямого действия в Правобережном регионе

	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO ₂ -e, ΓΓ	24554,64	22181,10	16981,56	10269,74	7114,25	6667,71	6942,64	6522,54	5693,72
CO ₂ -e, % or 1990	100,0	90,3	69,2	41,8	29,0	27,2	28,3	26,6	23,2
	1999	2000	2001	2002	2003	2004	2005	2006	2007
СО2-е, Гг	4490,99	3955,91	4251,40	4672,19	5212,03	5627,61	5935,45	5767,36	5636,22
СО2-е, % от 1990	18,3	16,1	17,3	19,0	21,2	22,9	24,2	23,5	23,0
	2008	2009	2010	2011	2012	2013	2014	2015	2016
CO ₂ -е, Гг	5948,42	5695,16	5750,39	6018,65	5502,17	5645,39	5409,23	5623,43	5674,12
CO ₂ -e, % or 1990	24,2	23,2	23,4	24,5	22,4	23,0	22,0	22,9	23,1

К 2016 г. эмиссии в *Левобережье* сократились: CO_2 на 34,6%, N_2O на 25,5%, в CO_2 –эвиваленте на 35,3% от уровня базового 1990 года, а CH_4 на 16,2% (сравнение для CH_4 выполнено со значениями 1994 года, как исключение, ввиду крайне малых величин в 1990 году), (Таблица 3-4).

Таблица 3-4: Динамика выбросов ПГ прямого действия в *Левобережье*, Гг СО2-е

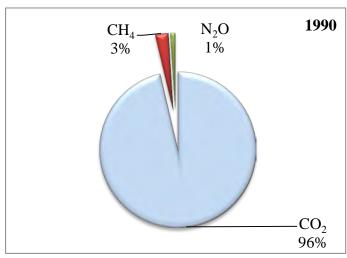
		Ι	т			%			% к уровню 1990 г	ода	
	CO_2	CH ₄	N ₂ O	CO ₂ -e	CO_2	CH ₄	N ₂ O	CO_2	CH_4	N ₂ O	CO ₂ -e
1990	12011,94	5,99	37,95	12055,88	99,6	0,0	0,3	100		100	100
1991	10749,22	4,97	34,32	10788,51	99,6	0,0	0,3	89,5		90,4	89,5
1992	9128,10	4,43	26,45	9158,97	99,7	0,0	0,3	76,0		69,7	76,0
1993	7866,17	5,32	31,77	7903,26	99,5	0,1	0,4	65,5		83,7	65,6
1994	7923,76	81,62	27,15	8032,53	98,6	1,0	0,3	66,0	100,0*	71,5	66,6
1995	5412,94	60,14	16,57	5489,66	98,6	1,1	0,3	45,1	73,7	43,7	45,5
1996	5101,71	69,53	15,23	5186,48	98,4	1,3	0,3	42,5	85,2	40,1	43,0
1997	4327,21	77,34	9,35	4413,90	98,0	1,8	0,2	36,0	94,8	24,6	36,6
1998	3679,08	70,38	7,31	3756,77	97,9	1,9	0,2	30,6	86,2	19,3	31,2
1999	3422,17	69,43	5,77	3497,36	97,9	2,0	0,2	28,5	85,1	15,2	29,0

		Ι	ъ			%			% к уровню 1990 г	ода	
	CO_2	CH ₄	N ₂ O	CO ₂ -e	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	CO ₂ -e
2000	3261,16	66,17	5,62	3332,95	97,8	2,0	0,2	27,1	81,1	14,8	27,6
2001	3561,54	73,96	5,82	3641,32	97,8	2,0	0,2	29,6	90,6	15,3	30,2
2002	2862,51	56,39	6,57	2925,48	97,8	1,9	0,2	23,8	69,1	17,3	24,3
2003	3017,47	60,89	6,38	3084,75	97,8	2,0	0,2	25,1	74,6	16,8	25,6
2004	3322,67	68,09	6,46	3397,23	97,8	2,0	0,2	27,7	83,4	17,0	28,2
2005	3239,78	66,85	6,70	3313,33	97,8	2,0	0,2	27,0	81,9	17,7	27,5
2006	2533,98	50,73	6,53	2591,24	97,8	2,0	0,3	21,1	62,2	17,2	21,5
2007	2948,58	60,67	6,88	3016,14	97,8	2,0	0,2	24,5	74,3	18,1	25,0
2008	3111,95	64,94	6,85	3183,74	97,7	2,0	0,2	25,9	79,6	18,1	26,4
2009	4125,43	83,05	8,06	4216,54	97,8	2,0	0,2	34,3	101,8	21,2	35,0
2010	4346,55	89,67	8,38	4444,60	97,8	2,0	0,2	36,2	109,9	22,1	36,9
2011	4377,87	94,13	7,89	4479,88	97,7	2,1	0,2	36,4	115,3	20,8	37,2
2012	4432,33	94,02	7,67	4534,02	97,8	2,1	0,2	36,9	115,2	20,2	37,6
2013	3307,95	65,07	7,31	3380,33	97,9	1,9	0,2	27,5	79,7	19,3	28,0
2014	4155,30	84,36	8,00	4247,67	97,8	2,0	0,2	34,6	103,4	21,1	35,2
2015	4343,84	88,15	8,36	4440,36	97,8	2,0	0,2	36,2	108,0	22,0	36,8
2016	4157,91	86,65	8,55	4253,11	97,8	2,0	0,2	34,6	106,2	22,5	35,3

^{*)} Сравнение выполнено с данными 1994 г. из-за крайне низких значений в период 1990-1993 гг.

В 2016 г. выбросы парниковых газов в *Правобережье* составили: CO_2 - 20,9%, CH_4 -67,5%, N_2O - 45,8%, суммарно в CO_2 -е - 23,1% от уровня базового года, (Таблица 3-5).

Таблица 3-5: Динамика выбросов ПГ прямого действия в *Правобережье*, Гг CO₂-е и %.


тиолици								o cr con				
	CO_2	CH ₄	N ₂ O	CO ₂ -e	CO ₂	CH ₄	N ₂ O		CO ₂	CH ₄	N ₂ O	CO ₂ -e
1990	23268,85	972,30	313,49	24554,64	94,8	4,0	1,3		100	100	100	100
1991	20810,87	1100,37	269,86	22181,10	93,8	5,0	1,2		89,4	113,2	86,1	90,3
1992	15912,63	891,72	177,21	16981,56	93,7	5,3	1,0		68,4	91,7	56,5	69,2
1993	9483,43	680,56	105,75	10269,74	92,3	6,6	1,0		40,8	70,0	33,7	41,8
1994	6460,88	593,15	60,21	7114,25	90,8	8,3	0,8		27,8	61,0	19,2	29,0
1995	5960,02	649,84	57,85	6667,71	89,4	9,7	0,9		25,6	66,8	18,5	27,2
1996	6157,43	723,60	61,61	6942,64	88,7	10,4	0,9		26,5	74,4	19,7	28,3
1997	5884,84	573,39	64,31	6522,54	90,2	8,8	1,0		25,3	59,0	20,5	26,6
1998	5110,68	525,58	57,47	5693,72	89,8	9,2	1,0		22,0	54,1	18,3	23,2
1999	3906,32	529,75	54,91	4490,99	87,0	11,8	1,2		16,8	54,5	17,5	18,3
2000	3322,86	573,12	59,93	3955,91	84,0	14,5	1,5		14,3	58,9	19,1	16,1
2001	3619,21	557,11	75,08	4251,40	85,1	13,1	1,8		15,6	57,3	24,0	17,3
2002	3952,91	635,35	83,93	4672,19	84,6	13,6	1,8		17,0	65,3	26,8	19,0
2003	4452,38	672,51	87,14	5212,03	85,4	12,9	1,7		19,1	69,2	27,8	21,2
2004	4819,20	715,74	92,67	5627,61	85,6	12,7	1,6		20,7	73,6	29,6	22,9
2005	5078,36	760,67	96,41	5935,45	85,6	12,8	1,6		21,8	78,2	30,8	24,2
2006	4982,95	689,53	94,88	5767,36	86,4	12,0	1,6		21,4	70,9	30,3	23,5
2007	4826,85	710,97	98,40	5636,22	85,6	12,6	1,7		20,7	73,1	31,4	23,0
2008	5141,53	704,57	102,32	5948,42	86,4	11,8	1,7		22,1	72,5	32,6	24,2
2009	5027,45	564,94	102,77	5695,16	88,3	9,9	1,8		21,6	58,1	32,8	23,2
2010	5096,64	543,70	110,05	5750,39	88,6	9,5	1,9		21,9	55,9	35,1	23,4
2011	5276,80	624,30	117,55	6018,65	87,7	10,4	2,0		22,7	64,2	37,5	24,5
2012	4763,48	617,45	121,24	5502,17	86,6	11,2	2,2		20,5	63,5	38,7	22,4
2013	4906,06	617,11	122,22	5645,39	86,9	10,9	2,2		21,1	63,5	39,0	23,0
2014	4652,17	625,74	131,32	5409,23	86,0	11,6	2,4		20,0	64,4	41,9	22,0
2015	4887,75	600,68	134,99	5623,43	86,9	10,7	2,4		21,0	61,8	43,1	22,9
2016	4874,70	655,99	143,43	5674,12	85,9	11,6	2,5		20,9	67,5	45,8	23,1

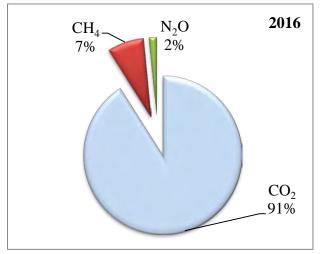

Суммарные эмиссии в Молдове снизились (1990/2016): CO_2 до 25,6%, CH_4 до 75,9%, N_2O до 43,2% от уровня 1990 года; эмиссии в CO_2 -эквиваленте составляют 27,1% в сравнении с их количеством в 1990 году (Таблица 3-6).

Таблица 3-6: Суммарные эмиссии в РМ по модулю «Энергетика» за 1990 -2016 г, Гг СО₂-е и %

	CO ₂	CH ₄	N ₂ O	CO ₂ -e	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	CO ₂ -e
1990	35280,79	978,28	351,44	36610,51	96,4	2,7	1,0	100	100	100	100
1991	31560,10	1105,34	304,18	32969,62	95,7	3,4	0,9	89,5	113,0	86,6	90,1
1992	25040,73	896,14	203,66	26140,53	95,8	3,4	0,8	71,0	91,6	58,0	71,4
1993	17349,61	685,87	137,52	18173,00	95,5	3,8	0,8	49,2	70,1	39,1	49,6
1994	14385,15	674,77	87,36	15147,28	95,0	4,5	0,6	40,8	69,0	24,9	41,4
1995	11372,96	709,99	74,42	12157,37	93,5	5,8	0,6	32,2	72,6	21,2	33,2
1996	11259,14	793,13	76,84	12129,11	92,8	6,5	0,6	31,9	81,1	21,9	33,1
1997	10212,05	650,73	73,66	10936,44	93,4	6,0	0,7	28,9	66,5	21,0	29,9
1998	8789,76	595,96	64,77	9450,49	93,0	6,3	0,7	24,9	60,9	18,4	25,8
1999	7328,49	599,18	60,68	7988,35	91,7	7,5	0,8	20,8	61,2	17,3	21,8
2000	6584,02	639,29	65,55	7288,86	90,3	8,8	0,9	18,7	65,3	18,7	19,9
2001	7180,75	631,08	80,90	7892,72	91,0	8,0	1,0	20,4	64,5	23,0	21,6
2002	6815,42	691,74	90,50	7597,66	89,7	9,1	1,2	19,3	70,7	25,8	20,8
2003	7469,86	733,40	93,52	8296,78	90,0	8,8	1,1	21,2	75,0	26,6	22,7
2004	8141,88	783,84	99,13	9024,84	90,2	8,7	1,1	23,1	80,1	28,2	24,7
2005	8318,14	827,52	103,11	9248,78	89,9	8,9	1,1	23,6	84,6	29,3	25,3
2006	7516,93	740,26	101,42	8358,60	89,9	8,9	1,2	21,3	75,7	28,9	22,8
2007	7775,43	771,65	105,28	8652,35	89,9	8,9	1,2	22,0	78,9	30,0	23,6
2008	8253,48	769,51	109,17	9132,16	90,4	8,4	1,2	23,4	78,7	31,1	24,9
2009	9152,88	647,99	110,83	9911,70	92,3	6,5	1,1	25,9	66,2	31,5	27,1
2010	9443,19	633,37	118,43	10194,98	92,6	6,2	1,2	26,8	64,7	33,7	27,8

	CO_2	CH_4	N ₂ O	CO ₂ -e	CO_2	CH ₄	N ₂ O	CO_2	CH_4	N ₂ O	CO ₂ -e
2011	9654,67	718,43	125,44	10498,54	92,0	6,8	1,2	27,4	73,4	35,7	28,7
2012	9195,81	711,47	128,91	10036,19	91,6	7,1	1,3	26,1	72,7	36,7	27,4
2013	8214,01	682,18	129,54	9025,72	91,0	7,6	1,4	23,3	69,7	36,9	24,7
2014	8807,47	710,10	139,32	9656,90	91,2	7,4	1,4	25,0	72,6	39,6	26,4
2015	9231,59	688,84	143,36	10063,79	91,7	6,8	1,4	26,2	70,4	40,8	27,5
2016	9032,61	742,64	151,98	9927,23	91,0	7,5	1,5	25,6	75,9	43,2	27,1

Рисунок 3-2: Вклад газов прямого действия в суммарные эмиссии по модулю «Энергетика» в 1900 и 2016, %

Эмиссии каждого парникового газа

Левобережный регион

По сравнению с базовым годом (1990) выбросы ПГ в Левобережье к 2016 г. составили: -CO₂ - 34,6%; CH₄ - 22,5%; N₂O - 22,5%, NO_x - 31,8%, CO - 158,1%, HMЛОС - 223,4% и SO_x - 5,7%. (Таблица 3-7). Увеличение эмиссий СО и НМЛОС поясняется их сравнением с крайне низкими значениями в базовом году.

Таблица 3-7: Эмиссии всех парниковых газов в *Левобережном* регионе за 1990-2016, Гг CO₂-е

	CO ₂	CH ₄	N ₂ O	NOx	CO	NMVOC	SO ₂	CO ₂	CH ₄	N ₂ O	NOx	CO	NMVOC	SO ₂
1990	12011,94	0,24	0,13	23,69	3,00	0,28	74,31	100	100	100	100	100	100	100
1991	10749,22	0,20	0,12	21,26	2,78	0,25	65,56	89,5	90,4	90,4	89,8	92,8	88,7	88,2
1992	9128,10	0,18	0,09	17,65	2,71	0,24	50,52	76,0	69,7	69,7	74,5	90,5	83,4	68,0
1993	7866,17	0,21	0,11	17,63	6,02	0,76	46,74	65,5	83,7	83,7	74,4	200,9	267,4	62,9
1994	7923,76	3,26	0,09	16,54	6,16	0,92	39,98	66,0	71,5	71,5	69,8	205,5	325,5	53,8
1995	5412,94	2,41	0,06	11,75	13,68	1,01	19,41	45,1	43,7	43,7	49,6	456,5	357,6	26,1
1996	5101,71	2,78	0,05	10,90	10,55	0,87	17,69	42,5	40,1	40,1	46,0	352,0	309,5	23,8
1997	4327,21	3,09	0,03	8,73	13,29	1,07	6,45	36,0	24,6	24,6	36,9	443,4	380,3	8,7
1998	3679,08	2,82	0,02	7,18	9,94	0,88	4,70	30,6	19,3	19,3	30,3	331,6	312,8	6,3
1999	3422,17	2,78	0,02	6,43	6,31	0,64	4,43	28,5	15,2	15,2	27,2	210,4	225,8	6,0
2000	3261,16	2,65	0,02	6,11	5,13	0,59	4,22	27,1	14,8	14,8	25,8	171,3	209,1	5,7
2001	3561,54	2,96	0,02	6,63	5,45	0,65	4,05	29,6	15,3	15,3	28,0	181,8	230,4	5,4
2002	2862,51	2,26	0,02	5,72	5,13	0,65	3,89	23,8	17,3	17,3	24,2	171,2	228,4	5,2
2003	3017,47	2,44	0,02	5,77	5,63	0,69	3,73	25,1	16,8	16,8	24,4	187,8	245,1	5,0
2004	3322,67	2,72	0,02	6,25	5,38	0,79	3,53	27,7	17,0	17,0	26,4	179,5	279,1	4,8
2005	3239,78	2,67	0,02	6,17	5,26	0,78	3,35	27,0	17,7	17,7	26,1	175,5	275,4	4,5
2006	2533,98	2,03	0,02	5,07	4,51	0,71	3,18	21,1	17,2	17,2	21,4	150,4	251,9	4,3
2007	2948,58	2,43	0,02	5,71	4,70	0,71	3,02	24,5	18,1	18,1	24,1	156,9	250,6	4,1
2008	3111,95	2,60	0,02	5,95	4,86	0,74	2,90	25,9	18,1	18,1	25,1	162,0	262,3	3,9
2009	4125,43	3,32	0,03	7,65	5,80	0,73	5,51	34,3	21,2	21,2	32,3	193,5	260,1	7,4
2010	4346,55	3,59	0,03	8,18	6,10	0,77	4,96	36,2	22,1	22,1	34,5	203,4	272,6	6,7
2011	4377,87	3,77	0,03	8,06	6,13	0,91	4,06	36,4	20,8	20,8	34,0	204,5	323,0	5,5
2012	4432,33	3,76	0,03	8,07	5,53	0,84	3,99	36,9	20,2	20,2	34,1	184,7	296,2	5,4
2013	3307,95	2,60	0,02	6,43	4,85	0,67	4,42	27,5	19,3	19,3	27,1	161,8	237,3	6,0
2014	4155,30	3,37	0,03	7,59	5,34	0,73	4,48	34,6	21,1	21,1	32,0	178,2	260,0	6,0
2015	4343,84	3,53	0,03	8,02	5,55	0,69	4,45	36,2	22,0	22,0	33,9	185,1	245,9	6,0
2016	4157,91	3,47	0,03	7,54	4,74	0,63	4,23	34,6	22,5	22,5	31,8	158,1	223,4	5,7

3.3.3. Оценка неопределенности

Основные факторы неопределенности связаны с методологией оценки, коэффициентами выбросов, используемыми для расчета выбросов ПГ от категории источников 1А2 «Производственные отрасли и строительство» и достоверности имеющихся данных о деятельности.

Неопределенности, связанные с коэффициентами выбросов, оцениваются примерно в 5% для выбросов CO_2 , и, соответственно, до \pm 50% для выбросов CH_4 и N_2O . Неопределенности, связанные с данными о потреблении топлива в промышленных отраслях и строительстве, составляют около \pm 5% для выбросов CO_2 и CH_4 и около \pm 3% для выбросов N_2O . Таким образом, совокупные неопределенности данных о деятельности и коэффициентов выбросов для категории источников 1A2 «Производственные отрасли и строительство» составляют около \pm 7,1% для выбросов CO_2 , и, соответветственно, около \pm 50,2% и \pm 50,1% для выбросов CH_4 и N_2O .

Для обеспечения согласованности полученных результатов во времени, для всего периода исследования использовалась одна и та же методология, в соответствии с эффективной практикой, применяемой для инвентаризации выбросов ПГ.

3.3.4. Обеспечение качества и контроль качества

Для категории источников 1A2 «Производственные отрасли и строительство» были выполнены стандартные процедуры проверки и контроля качества оценки эмиссий по методу уровня 1. Данные по деятельности и методы, используемые для оценки выбросов парниковых газов, документируются и архивируются как на бумаге, так и в электронном формате. Для выявления ошибок, связанных с вводом данных и процессами оценки выбросов парниковых газов, были выполнены процедуры проверки и контроля качества используемых данных и применяемых коэффициентов выбросов, которые включили:

- проверка процедур сбора данных и обработки масивов данных, проверка разукрупнения данных о деятельности, собранных для каждой подкатегории, включенной в категорию 1A2 «Производственные отрасли и строительство», и соответствие требованиям, изложенным в описании каждой подкатегории в Руководстве МГЭИК 2006 года. В текущем цикле инвентаризации выбросы ПГ рассчитаны для 12 отдельных промышленных подкатегорий;
- данные по деятельности доступны для каждой подкатегории в отдельных файлах в энергетических единицах; выбросы ПГ изначально рассчитывались для каждой подкатегории, но статистические данные о потреблении топлива в каждой подкатегории выявили неравномерные тенденции, связанные с потреблением видов топлива в течение анализируемого периода;
- проверка правильности применения коэффициентов выбросов для каждой подкатегории;
- проверка правильности указанных первичных справочных источников;
- точность расчетов для подкатегорий, включенных в категорию 1А2, проверяется контрольными суммами;
- внедрение процедур минимизации ошибок при ручном вводе данных о деятельности, электронные таблицы имеют указания по исходным источникам данных по деятельности;
- в расчетных файлах коэффициенты выбросов указываются в табличном формате для каждой подкатегории, импорт соответствующих значений в формулы расчета обеспечивается автоматическими ссылками;
- последовательность расчетов также обеспечивается путем проверки правильности применения коэффициентов пересчета натуральных единиц в энергетические единицы для всех подкатегорий и всего временного диапазона, охватываемого инвентарем;
- проверка соответствия использованного метода расчета для всего временного ряда;

- проверка проведенных расчетов выбросов парниковых газов для всех исследуемых лет и для всех видов топлива, указанных в энергетических балансах Республики Молдова и соответствующих источниках;
- проверка степени обеспечения полного географического охвата национальной инвентаризации парниковых газов в Республике Молдова;
- проверка межгодовых тенденций развития выбросов ПГ путем построения репрезентативных графиков и объясняющих необычные колебания;
- в случае перерасчетов объясняются причины таковых, включая рассмотрение выполненных рекомендаций полученных в результате аудита, проведенного национальными и международными экспертами в предыдущем цикле инвентаризации;
- проверка ведения и заполнения архива национальной инвентаризации парниковых газов.

В соответствии с эффективной практикой, для оценки выбросов ПГ по сектору 1А2 использовались данные по деятельности и национальные коэффициенты выбросов из официальных источников.

3.3.5. Перерасчеты

В текущем цикле инвентаризации был принят ряд мер по улучшению качества национальной инвентаризации $\Pi\Gamma$, в результате чего выполнены перерасчеты выбросов $\Pi\Gamma$ от источников категории 1A2 «Производственные отрасли и строительство».

Основными причинами этих пересчетов являются:

- учет выбросов для каждой отдельной отрасли промышленности (выполнен впервые);
- используется величина ежегодной теплотворной способности для природного газа;
- коэффициенты выбросов для косвенных парниковых газов использовались по Руководству ЕМЕР-2016;
- выбросы ПГ рассчитывались для каждого региона отдельно на всех этапах расчета;
- для ряда отраслей промышленности за период 1991-1992 годов, были восстановлены значения методом интерполяции. Значения восстанавливаются для топлив, в которых имеющиеся ряды данных позволили применение указанного метода;
- для двух отраслей 1993 года значения также были восстановлены с использованием метода интерполяции. Этот факт дал положительный рост для 1992-1993 годов. Для 1992 года «историческое значение» была заменено восстановленным значением;
- впервые было проведено распределение данных по реальной деятельности Левобережного региона по отраслям (по косвенным данным);
- для 2014 и 2015 годов изменения связаны с переводом значений ряда «propriu» для ТЭЦ и тепловых электростанций в категорию источников 1А1;
- выбросы ПГ, исходящие от потребления масла и смазочных материалов, ранее учтенные в категории источников 1A2, в текущем цикле инвентаризации были перенесены в категорию источников 2D1;
- впервые в этой категории были учтены новые виды топлива, выявленные в топливноэнергетических балансах Республики Молдова, связанных с представлением потребленнного топлива в энергетических единицах (например, в топливноэнергетических балансах за 1998-2001 гг. потребление древесины представлено как «0» в натуральных единицах, в то время как в ТДж есть значения потребления этого вида топлива);
- в частности, в топливно-энергетическом балансе 2011 года потребление кокса, печного топлива и бензина указывается как ноль в натуральных единицах, тогда как в ТДж есть значения потребления этих видов топлив; в ТЭБ за 2013 год потребление кокса указано нулевым в натуральных единицах, а в ТДж есть значения по потреблению этого вида топлива; в ТЭБ за 2014 год, потребление бензина указано как «0» в натуральных единицах, тогда как в ТДж есть значения для потребления этого вида топлива;
- надо отметить, что ранее потребление некоторых видов топлива считалось незначительным (без учета в национальном инвентаре), но с использованием данных о

- деятельности в энергетических единицах стали доступны новые значения;
- для перевода выбросов ПГ непосредственно в CO_2 -эквивалент, в текущем инвентаре использованы значения коэффициентов глобального потепления за последние 100 лет (GWP₁₀₀), доступные в Отчете 4 МГЭИК (AR4) (CH₄ 25 и N₂O 298);

В период 1990-2016 гг. выбросы по сектору 1А2 сократились на 77,31%, таблица 3-106.

Таблица 3-106: Сравнительные результаты инвентаризации выбросов ПГ от категории источников 1A2 «Производственные отрасли и строительство», включенной в BUR1 и BUR2 Республики Молдова в CONUSC, тыс. тонн CO₂ эквивалента

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	2 213,82	1 757,46	1 016,91	565,09	830,39	465,01	378,57	599,10	560,06
BUR2	2 212,41	1 490,72	1 068,35	684,97	792,08	440,68	370,31	589,65	568,01
Разница, %	-0,06	-15,18	5,06	21,22	-4,61	-5,23	-2,18	-1,58	1,42
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	492,34	537,9965	619,7443	432,417	457,2714	471,873	604,8584	669,4305	832,1733
BUR2	489,11	531,79	612,54	425,12	453,21	465,89	599,22	662,26	824,79
Разница, %	-0,66	-1,15	-1,16	-1,69	-0,89	-1,27	-0,93	-1,07	-0,89
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	916,7788	509,1528	541,0995	601,4892	565,1582	601,6466	587,5527	668,2922	
BUR2	909,86	516,35	443,82	598,22	457,44	599,40	468,80	534,64	502,00
Разница, %	-0,76	1,41	-17,98	-0,54	-19,06	-0,37	-20,21	-20,00	!

3.3.6. Планируемые улучшения

Потенциальные улучшения в категории источников 1A2 «Производственные отрасли и строительство» по потреблению топлива в энергетических целях могут быть выполнены при наличии новых данных о потреблении топлива на территории Левобережного региона (заполнение существующих пробелов за несколько лет). В частности, возможен другой подход реализации восстановления значений данных по деятельности в регионе.

3.4. Транспорт (категория источников 1А3)

3.4.1. Описание категорий источников и тенденций выбросов парниковых газов

В рамках сектора 1А3"Транспорт" рассматриваются эмиссии парниковых газов от следующих источников:

1А3а Национальная (внутренняя) авиация, 1А3b Автотранспорт, 1А3с Железнодорожный транспорт, 1А3d Водный транспорт, 1А3e Прочий (трубопроводный) транспорт.

1. Общие выбросы парниковых газов по сектору 1АЗ "Транспорт"

В период 1990-2016 общие выбросы парниковых газов по 1A3 снизились с 4479,45 кт CO_2 -е до 2382,92 кт CO_2 –е, таблица 3-107 и рисунок 3-54.

Таблица 3-107: Динамика выбросов парниковых газов по сектору 1A3 "Транспорт", кт CO₂ - е

	1990	1991	1992	1993	1994	1995	1996	1997	1998
1А3, кт CO ₂ - е	4479,4542	3405,6396	2399,6485	1762,9007	1527,4063	1539,2813	1490,6804	1509,7178	1307,0517
По отношению к 1990,%	100,00	76,03	53,57	39,36	34,10	34,36	33,28	33,70	29,18
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1А3, кт CO ₂ - е	876,1417	942,9727	1019,9028	1295,6232	1512,4719	1708,8588	1767,1186	1695,7978	1803,7175
По отношению к 1990,%	19,56	21,05	22,77	28,92	33,76	38,15	39,45	37,86	40,27
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1А3, кт CO ₂ - е	1895,5003	1813,6345	2054,1180	2164,9327	1901,8722	2021,7651	2090,0531	2203,3296	2382,9261
По отношению к 1990,%	42,32	40,49	45,86	48,33	42,46	45,13	46,66	49,19	53,20

Рисунок 3-54 Динамика выбросов парниковых газов в транспортном секторе по категориям, кт CO₂-е

2. Выбросы по сектору 1АЗ "Транспорт" по регионам

Выбросы парниковых газов в текущем цикле рассчитывались для обоих регионов.

Для Правобережья использованы фактические данные о деятельности. Для Левобережья значения восстановлены по косвенным данным для двух категорий (1A3b и 1A3c) с использованием удельных выбросов на душу населения. За 1990-1992 годы данные представлены в целом по Молдове, с 1993 года - отдельно по регионам.

Общие количества эмиссий каждого газа по сектору транспорта отражены в таблице 3-108.

Таблица 3-108: Выбросы парниковых газов от 1А3 "Транспорт" по регионам за 1990-2016 в валовом выражении, кт

			1A3,	Правобе	режье, к	Т				1A3,	Левобер	ежье, кт		
	CO_2	Total	N ₂ O	NO _x	co	нмлос	$SO_x(SO_2)$	CO ₂	CH ₄	N ₂ O	NO _x	co	нмлос	$SO_x(SO_2)$
1990	4344,76	1,32	0,34	18,35	71,42	8,84	5,19							
1991	3299,65	1,00	0,27	15,93	64,73	8,03	3,89							
1992	2320,93	0,70	0,21	10,56	31,73	4,08	2,77							
1993	1469,80	0,41	0,15	8,25	20,79	2,77	1,92	229,76	0,07	0,03	2,57	4,05	0,57	0,28
1994	1278,37	0,36	0,09	4,98	18,70	2,40	1,47	207,31	0,06	0,02	1,73	3,69	0,49	0,25
1995	1290,35	0,37	0,09	5,13	19,57	2,49	1,46	208,04	0,06	0,02	1,66	3,82	0,50	0,24
1996	1262,23	0,36	0,08	4,96	18,72	2,39	1,38	189,43	0,06	0,01	1,47	3,54	0,46	0,22
1997	1273,57	0,40	0,08	4,94	21,16	2,64	1,42	196,20	0,07	0,01	1,42	3,97	0,51	0,21
1998	1108,39	0,34	0,07	4,17	18,01	2,24	1,25	165,23	0,06	0,01	1,13	3,34	0,42	0,17
1999	753,24	0,21	0,04	2,80	10,65	1,34	0,89	102,22	0,03	0,01	0,72	1,92	0,25	0,12
2000	816,89	0,21	0,05	3,13	10,50	1,32	1,06	103,70	0,03	0,01	0,75	1,88	0,24	0,12
2001	885,26	0,23	0,05	3,38	11,28	1,41	1,18	110,24	0,03	0,01	0,81	2,03	0,26	0,13
2002	1112,00	0,29	0,08	4,72	14,68	1,87	1,44	149,28	0,04	0,01	1,14	2,59	0,34	0,18
2003	1299,81	0,34	0,07	5,21	17,83	2,22	1,71	177,39	0,05	0,01	1,11	2,99	0,38	0,21
2004	1501,54	0,37	0,09	6,08	19,27	2,42	2,00	167,07	0,05	0,01	1,17	2,92	0,38	0,20

Категория	Вид топлива	CO ₂	CH ₄	N ₂ O	NO _x	со	нмлос	SO _x (SO ₂)	Источники для: CO ₂ , CH ₄ , N ₂ O	Источники для : NO _x , CO и НМЛОС
	СНГ	63100	62,0	0,2	15,2	84,7	13,6	130,3	CH4 default emission factors	commercial trucks, heavy- duty vehicles including buses and motor cyclesTable 3.5: Tier 1 emission factors for CO and NMVOCs, Table 3.6: Tier 1 emission factors for NOX
1A3c	Дизельное топливо	74100	4.15	28.6	52,4	10,7	4,65	141,0	IPCC 2006 Volume 2 Chapter 3: Mobile Combustion, Table 3.4.1 default emission factors for the most common fuels used for rail transport	EMEP/EEA air pollutant emission inventory guidebook 2016, 1.A.3.c Railways, Table 3-1 Tier 1 emission factors for railways
1A3d	Дизельное топливо	74100	7	2	79.3	7.4	2.7	20	IPCC 2006 Volume 2 Chapter 3: Mobile Combustion, Table 3.5.2 CO2 Emission factors, Table 3.5.3 default water-borne navigation CH4 and N2O emission factors	EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.d.i, 1.A.3.d.ii, 1.A.4.c.iii International maritime navigation, international inland navigation, national navigation (shipping), national fishing, military (shipping), and recreational boats Table 3-1 Tier 1 emission factors for ships using bunker fuel oil
1A3e	Природный газ	56100	1	0.1	74	29	23	0.67	IPCC 2006 Volume 2 Chapter 2 Stationary Combustion, Table 2.2 default emission factors for stationary combustion in the energy industries	EMEP/EEA air pollutant emission inventory guidebook 2016, 1.A.4.a.i, 1.A.4.b.i, 1.A.4.c.i, 1.A.5.a Small combustion, Table 3-8 Tier 1 emission factors for NFR source category 1.A.4.a/c, 1.A.5.a, using gaseous fuels

Данные по деятельности

Основным источником информации о расходе топлива в транспортном секторе *Правобережья* являются ТЭБ РМ. Для водного, воздушного и железнодорожного транспорта дополнительно используются данные о деятельности, представленные официальными письмами Министерства транспорта и дорожной инфраструктуры, Государственным предприятием "Железные дороги Молдовы" и Администрацией Гражданской Авиации.

Для *Левобережья* информация по количеству потребленного природного газа получена от АО «Молдовагаз». Также использованы статистические сборники «Жилищно-коммунальное хозяйство ПМР» (за период 2011–2016 гг., таб.10).

Топливо, используемое на дорогах общегосударственного значения, было учтено при оценке выбросов парниковых газов в категории 1A3b, а топливо, потребленное транспортными единицами на сельскохозяйственных полях, учтено в категории источников 1A4c.

Особенности текущего цикла

Данные по деятельности представлены в натуральных единицах и в тераджоулях. Для перевода натуральных единиц в единицы энергии (ТДж), были использованы национальные коэффициенты низшей теплотворной способности.

Для 2014, 2015, 2016 года впервые были выполнены расчеты с использованием метода уровня 3 с помощью специальной программы COPERT, краткое описание результатов приведено ниже в специальном пункте.

Таблица 3-116: Расход топлива в транспортном секторе Левобережья, ТДж

		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
1A3b	Бензин	1825	1731	1809	1684	1920	1621	922	900	970	1225	1440	1397
1A4c*	Дизельное топливо (К1)	801	942	910	785	685	590	453	490	508	706	961	842
1A3b	Природный газ												
		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
1A3b	Бензин	1421	1291	1305	1325	1315	1237	1295	1041	991	968	949	957
1A4c*	Дизельное топливо (К1)	877	984	1171	1220	1082	1488	1565	1561	1793	2402	2405	2533
1A3b	Природный газ					139	233	61	75	177	164	173	172

Замечание: 10% дизельного топлива, затраченного сельскохозяйственной техникой, рассматривается как использованное на автодорогах и учитывается в категории 1A3 b, оставшиеся 90% рассматриваются как использованные на полях, вне автодорог, и учитываются в категории 1A4c.

Имеется ряд видов топлива в ТЭБ РМ, относящихся к транспортному сектору (антрацит, каменный уголь, бурый уголь, мазут), которые не используются на мобильных источниках, а потребляются для вспомогательных целей (обогрев вокзалов и транспортной инфраструктуры). Согласно рекомендациям Руководства МГЭИК и международных экспертов, эти виды топлива перенесены в категорию 1А4а, т.к. топливо используется в коммерческих целях, но для стационарного, а не для мобильного сжигания (таблица 3-117). В ТЭБ за 2013–2016 такие топлива в транспортном секторе отсуствуют, благодаря лучшему распределению топлива, и для указанных лет исчезла необходимость в таком перераспределении.

Таблица 3-117: Топливо, перенесенное из категории 1А3 в категорию 1А4а, ТДж.

	1990	1993	1994	1995	1996	1997	1998	2005	2007	2008	2010	2011	2012
Мазут		300	88	59	29	29	59				4	5	8
Антрацит					59	59		1	1	2	2		
Битуминозный уголь	146.5	103	29	29									8
Бурый уголь				59	29	59							

Источник: Топливно-энергетические балансы Республики Молдова, 1990, 1993-2016.

Лубриканты и масла в текущем цикле инвентаризации, согласно рекомендациям руководства МГЭИК 2006, были перенесены в модуль «Промышленные процессы и использование продукта», и исключены из учета по модулю «Энергетика».

1АЗа Внутренняя авиация

Национальная внутренняя авиация, представленная вертолетами и легкими авиасудами, в выполняет небольшое количество вылетов в год.

Общая тенденция - это рост количества полетов - с 8 (2001) до 3609 (2014) вылетов, 1543 рейсов было выполнено в 2015 году, 809 рейсов - в 2016 году.

Соответственно, наблюдается и увеличение расхода топлива, хотя оно остается малым. Первичные данные об использовании топлива в национальном воздушном транспорте были предоставлены Администрацией Гражданской Авиации (АГА) (впоследствии переименованной в Управление гражданской авиации РМ), таблица 3-118. Они были пересчитаны в ТДж на основе национального значения теплотворной способности для авиабензина.

Таблица 3-118: Потребление топлива по 1А3а "Внутренняя авиация" в РМ за 2001-2016 гг

	2001	2002	2003	2004	2005	2006	2007	2008
Авиационный бензин ,кт	0,0321	0,0278	0,2146	0,135	0,037	0,065	0,041	0,049
Бензин, ТДж (NCV = 43.66 ТДж/кт)	1,4022	1,2133	9,3684	5,9030	1,6105	2,8173	1,7957	2,1643
	2009	2010	2011	2012	2013	2014	2015	2016
Авиационный бензин ,кт	0,0249	0,0383	0,0395	0,0676	0,0643	0,0390	0,1019	0,0753
Бензин, ТДж (NCV = 43.66 ТДж/кт)	1,0854	1,6704	1,7246	2,9514	2,8073	1,7027	4,4468	3,2876

Источник: Administrația de Stat a Aviației Civile a RM prin scrisoarea nr. 1328 din 13.09.2011, răspuns la scrisoarea nr. 03-07/175 din 02.02.2011; Autoritatea Aeronautică Civilă a RM prin scrisoarea nr. 474 din 13.03.2014, răspuns la scrisoarea nr. 320/2014-01-01 din 03.01.2014 din partea oficiului "Schimbarea Climei" al Ministerului Mediului; scrisoarea nr. 366 din 02.03.2015, răspuns la scrisoarea nr. 407/2015-01-09 din 29.01.2015 din partea oficiului "Schimbarea Climei" al Ministerului Mediului; scrisoarea nr. 1156 din 27.05.2016, răspuns la scrisoarea nr. 512/2016-05-01 din 10.05.2016 din partea oficiului "Schimbarea Climei" al Ministerului Mediului; scrisoarea nr. 4040 din 28.12.2017 răspuns la scrisoarea nr. 601/2017-12-03 din 14.12.2017 din partea oficiului "Schimbarea Climei" al Ministerului Mediului

1АЗЬ Автомобильный транспорт

Парк автомобилей в стране

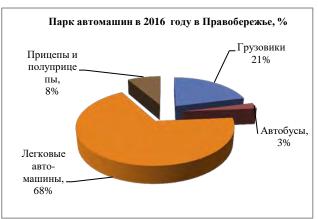
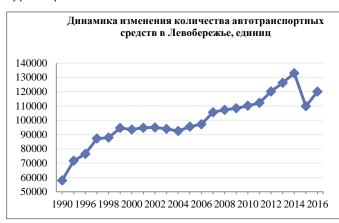

Парк молдавского автотранспорта постоянно растет. Наибольшую долю в структуре автотранспортного парка занимают легковые пассажирские автомобили (таблица 3-119 и рисунки 3-59 и 3-60).

Таблица 3-119: Структура автопарка в Правобережье на 01.01.2017, единиц


	Автотранспортные средства, единиц											
Легковые	Грузовики	Прицепы	Тягачи	Мотоциклы	Автобусы	Полуприцепы	Прочие	Всего				
546 794	177 575	50 665	39 518	37 906	20 968	16 173	3 143	892 742				

источник: Registrul de stat al transporturilor (<<u>http://www.registru.md/ro/registru-rst</u>>)

Рисунок 3-59. Динамика изменения количества автотранспортных средств в Правобережье, единиц

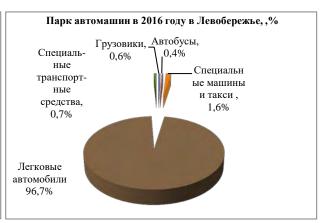


Рисунок 3-60. Количество автотранспортных средств в Левобережье, единиц

3.4.3. Данные о деятельности

Данные о деятельности, связанные с потреблением топлива на транспорте в *Правобережье*, представлены в ТЭБ РМ в разделе «Потреблено в качестве топлива или энергии», колонки «наземный транспорт», «для сельского хозяйства» и «продано населению». Данные имеются в натуральном выражении и в ТДж.

- внедрение процедур *минимизации ошибок* при ручном вводе данных о деятельности; включение в расчетные файлы таблиц коэффициентов выбросов для каждой категории, автоматические связи между страницами расчетных файлов;
- проверка правильности применения коэффициентов пересчета из натуральных единиц в единицы энергии для всех категорий сектора и всего диапазона лет, охватываемого кадастром;
- проверка согласованности ряда: один ли и тот же метод расчета используется для всего диапазона лет?;
- проверка того, были ли произведены расчеты выбросов парниковых газов за все годы и для всех видов топлива, упомянутых в ТЭБ РМ и других статистических источниках;
- проверка полноты географического охвата национальной инвентаризации парниковых газов:
- проверка межгодовых *тенденций* развития выбросов путем построения репрезентативных графиков, объяснение необычных колебаний;
- пояснения причин выполнения перерасчетов, включая рекомендации, полученные в результате аудита, проведенного национальными и международными экспертами в предыдущем цикле инвентаризации;
- проверка наличия, ведения и заполнения архива инвентаризации парниковых газов.

3.4.5. Перерасчеты

В текущем цикле инвентаризации был предпринят ряд мер для улучшения качества национального кадастра парниковых газов, что привело к необходимости пересчета выбросов ПГ из категории источников 1А3 «Транспорт».

Причинами перерасчетов в текущем цикле для всех категорий послужили изменения:

- Представление рядов данных о деятельности в ТДж;
- Значения в ТДж использованы непосредственно из ТЭБ НБС; но для нескольких лет таких значений нет, и они рассчитаны из натуральных величин в ТДж с помощью национальных коэффициентов теплотворных величин (для обоих регионов);
- Для природного газа применены ежегодные величины НТС взамен ранее использованного постоянного значения;
- Для оценки газов косвенного действия использованы коэффициенты эмиссий по Руководству ЕМЕР-2016;
- Для 1991-1992 значения восстановлены методом интерполяции для ряда видов топлива и категорий (для этих лет ТЭБ отсутствует);
- Масла исключены из расчетов и учтены в Модуле 2 «Промышленность».

Дополнительные нововведения по каждой категории отдельно рассматриваются далее.

1АЗа Внутренняя авиация

- Использовано значение HTC, равное 43,66 ТДж/тыс. тонн для авиабензина взамен ранее применявшегося значения 43,13. Разница между HTC составляет 1,2%, на такую же величину возроосли выбросоы по данной категории во всем временном ряду;
- Включены в ряд данных две дополнительных точки –значения для 1990 и 1993 (по ТЭБ); ряд значений, составленный на основе информации от АГА, для периода 2001-2016 расширился; недостающие значения в ряду в дальнейшем можно определить одним из методов восстановления данных;
- После применения коэффициентов выбросов из Руководства ЕМЕР- 2016 количества эмиссий газов косвенного действия значительно изменились —на 95-100%.
- в текущем цикле для SO_x использован коэффициент выбросов с единицей измерения «кг / тонну топлива»; в предыдущем цикле осуществлялся расчет SO_2 с коэффициентом выбросов с единицей измерения «кг/ТДж»; в результате выбросы увеличились на 95%.

Однако в целом выбросы по этой категории очень малы, и изменения, которые имели место, мало повляияли на общий тренд.

1АЗЬ Автомобильный транспорт

- Данные по деятельности для 1990, 2002, 2009 рассчитываются с использованием национальных НТС ввиду отсутствия для этих лет данных в ТДж в ТЭБ;
- Для Левобережья количества потребленного бензина и дизельного топлива были восстановлены по косвенному методу с использованием показателей удельного потребления каждого вида топлива на дущу населения;
- Для газов прямого действия использованы коэффициенты эмиссий по МГЭИК-2006 с единицами измерения в «кг/ТДж». Для газов косвенного действия использованы коэффициенты эмиссий по EMEP-2016 в «кг/тонну топлива». В связи с этим, ряды данных приведены и в натуральных единицах измерения и в ТДж;
- Для SO_x в Руководстве по EMEP-2016 нет коэффициентов выбросов для 1A3b. В связи с этим, выполнен расчет SO_2 . Он осуществлен по методу 1 с предварительным определением самих коэффициентов выбросов с помощью софта «Электронные таблицы МГЭИК 1996», который использовался в предыдущих инвентаризациях. Значения указаны в колонках с названиями « SO_x (SO_2)»;
- Для газов NO_x, CO, HMЛОС сделано сравнение величин коэффициентов выбросов по Руководствам МГЭИК-1996 и EMEP-2016. Общие выбросы для этих трех газов значительно ниже при применении коэффициентов выбросов согласно EMEP-2016. Количества эмиссий различаются в 2-3 раза для всех топлив, кроме природного газа, а для HMЛОС в 2 раза.

1АЗс Железнодорожный транспорт

- Уголь и мазут из категории 1А3 были перевенесены в категорию 1А4а в соответствии с рекомендациями Руководства МГЭИК-2006.
- Восстановление данных о деятельности для Левобережья осуществлялось на основе косвенных данных (по численности населения и удельному расходу топлива на душу населения в категории);
- Использование коэффициентов выбросов Руководства ЕМЕР-2016 для NO_x , CO, HMЛОС приводит к значительным изменениям в выбросах этих газов: увеличение NOx и снижение CO, HMЛОС;

1A3d Водный транспорт

Данные о потреблении дизельного топлива по категории 1A3d подготовлены в натуральных единицах по письмам Министерства транспорта. Пересчет в ТДж сделан на основе национальной HTC для дизельного топлива.

1АЗе Трубопроводный транспорт

Ряд данных в ТДж по потреблению природного газа использован напрямую из ТЭБ, за исключением нескольких лет (1990-1992, 2002 и 2009 гг.), для которых значения имелись только в натуральном выражении. Для пересчета в ТДж был применены ежегодные национальные НТС для природного газа. Выбросы парниковых газов от категории 1А3 «Транспорт» в период с 1990 по 2016 год значительно снизились, сократившись на 46,8%, (Таблица 3-132).

Сравнение количества эмиссий в двух последних циклах инвентаризации по сектору 1A3 «Транспорт»

Таблица 3-132: Величины выбросов по сектору 1A3 «Транспорт» в текущем и предыдущем

циклах инвентаризации, кт СО2-е

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	4481,7645	4567,6074	2214,0887	1777,1549	1527,4509	1522,9456	1490,9287	1509,9711	1307,3000
BUR 2	4479,4542	3405,6396	2399,6485	1762,9007	1527,4063	1539,2813	1490,6804	1509,7178	1307,0517
Разница, %	-0,05	-25,44	8,38	-0,80	0,00	1,07	-0,02	-0,02	-0,02
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1	875,2873	948,8464	1013,8491	1296,3979	1512,7271	1709,2744	1767,9729	1696,4435	1804,1901
BUR 2	876,1417	942,9727	1019,9028	1295,6232	1512,4719	1708,8588	1767,1186	1695,7978	1803,7175
Разница, %	0,10	-0,62	0,60	-0,06	-0,02	-0,02	-0,05	-0,04	-0,03
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR 1	1896,0664	1853,8302	2053,6866	2164,2599	1905,5612	2015,0035	2090,2898	2202,9754	
BUR 2	1895,5003	1813,6345	2054,1180	2164,9327	1901,8722	2021,7651	2090,0531	2203,3296	2382,9261
Разница, %	-0,03	-2,17	0,02	0,03	-0,19	0,34	-0,01	0,02	

Аналогичные таблицы для сравнения количества эмиссий в двух последних циклах инвентаризации в отдельных категориях сектора 1A3 «Транспорт» приведены ниже (таблицы 26-30).

Таблица 3-133: Сравнительные результаты инвентаризации выбросов ПГ по категории **1А3**а

«Внутренняя авиация», кт CO₂-е.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	6,1450			0,8389					
BUR 2	6,1044	4,2730	2,4417	0,6103					
Разница, %	-0,66			-27,25					
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1			0,0968	0,0838	0,6470	0,4077	0,1112	0,1946	0,1240
BUR 2			0,0980	0,0848	0,6549	0,4127	0,1126	0,1970	0,1255
Разница, %			1,23	1,23	1,23	1,23	1,23	1,23	1,23
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR 1	0,1495	0,0750	0,1154	0,1191	0,2038	0,1939	0,1176	0,3071	
BUR 2	0,1513	0,0759	0,1168	0,1206	0,2063	0,1963	0,1190	0,3109	0,2298
Разница, %	1,23	1,23	1,23	1,23	1,23	1,23	1,23	1,23	

Таблица 3-134: Сравнительные результаты инвентаризации выбросов по категории 1А3b

«Автотранспорт», кт CO₂-е

1	1 ,	2							
	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	3914,7862	4060,0997	1856,7585	1453,7302	1318,4350	1331,9217	1268,5430	1371,2221	1193,3229
BUR 2	3913,7449	2940,9757	2020,9486	1439,7046	1318,3903	1348,2574	1268,2947	1370,9687	1193,0746
Разница, %	-0,03	-27,56	8,84	-0,96	0,00	1,23	-0,02	-0,02	-0,02
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1	787,9251	876,3093	958,8336	1172,5992	1440,3805	1605,4001	1642,2631	1577,0875	1687,9880
BUR 2	788,7795	876,0511	964,8860	1172,2436	1440,1173	1604,9795	1641,4074	1576,4394	1687,5140
Разница, %	0,11	-0,03	0,63	-0,03	-0,02	-0,03	-0,05	-0,04	-0,03
	2008	2009	2010	2011	2012	2013	2014	2015	%
BUR 1	1788,1359	1747,1567	1993,8803	2111,1788	1845,1261	1965,7193	2070,3511	2161,6771	
BUR 2	1787,5681	1746,7485	1994,3103	2111,8501	1844,7477	1972,4785	2070,1128	2161,8956	2317,2707
Разница, %	-0,03	-0,02	0,02	0,03	-0,02	0,34	-0,01	0,01	

Таблица 3-135: Сравнительные результаты инвентаризации выбросов парниковых газов по

категории **1A3c** «Железнодорожный транспорт», кт CO₂-е

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	450,4560	431,2096	300,0811	303,7035	121,5073	106,8347	103,5893	89,1194	66,0556
BUR 2	450,4560	385,1164	319,7768	303,7035	121,5073	106,8347	103,5893	89,1194	66,0556
Разница, %	0,00	-10,69	6,56	0,00	0,00	0,00	0,00	0,00	0,00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1	34,4099	37,1731	39,9323	90,9557	48,3004	65,8538	90,0646	112,3174	112,7303
BUR 2	34,4099	37,1731	39,9323	90,9440	48,3004	65,8538	90,0646	112,3174	112,7303
Разница, %	0,00	0,00	0,00	-0,01	0,00	0,00	0,00	0,00	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR 1	103,3907	96,8345	57,3245	52,7231	56,6452	36,1808	3,0198	24,1957	
BUR 2	103,3907	56,4846	57,3245	52,7231	56,6452	36,1808	3,0198	24,1957	50,7765
Разница, %	0,00	-41,67	0,00	0,00	0,00	0,00	0,00	0,00	

Таблица 3-136: Сравнительные результаты инвентаризации выбросов ПГ по категории 1A3d

"Водный транспорт", кт СО2-е

Бодиви тре	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	RI CC ₂ C							
	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	19,1101	0,2421	0,2070	0,2389	0,1879	0,1815	0,1975	0,2134	0,1338
BUR 2	19,1101	0,2421	0,2070	0,2389	0,1879	0,1815	0,1975	0,2134	0,1338
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1	0,2230	0,0987	0,1784	0,4141	0,3758	0,3822	0,3249	0,2739	0,3153
BUR 2	0,2230	0,0987	0,1784	0,4141	0,3758	0,3822	0,3249	0,2739	0,3153
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR 1	0,3472	0,2739	0,2325	0,2389	0,2729	0,2747	0,3480	0,1176	
BUR 2	0,3472	0,2739	0,2325	0,2389	0,2729	0,2747	0,3480	0,2495	0,2174
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	112,1	

Таблица 3-137: Сравнительные результаты инвентаризации выбросов парниковых газов по

категории **1A3ei** «Прочие поставки», кт CO₂-е.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR 1	91,2673	76,0561	57,0420	18,6434	87,3207	84,0076	118,5989	49,4162	47,7877
BUR 2	90,0389	75,0324	56,2743	18,6434	87,3207	84,0076	118,5989	49,4162	47,7877
Разница, %	-1,35	-1,35	-1,35	0,00	0,00	0,00	0,00	0,00	0,00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR 1	52,7294	35,2652	14,8080	32,3452	23,0235	37,2306	35,2091	6,5701	3,0324
BUR 2	52,7294	29,6497	14,8080	31,9367	23,0235	37,2306	35,2091	6,5701	3,0324
Разница, %	0,00	-15,92	0,00	-1,26	0,00	0,00	0,00	0,00	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR 1	4,0431	9,4902	2,1339		3,3131	12,6348	16,4534	16,6780	
BUR 2	4,0431	10,0517	2,1339			12,6348	16,4534	16,6780	14,4318
Разница, %	0.00	5,92	0.00	0,00	-100,00	0.00	0,00	0.00	

3.4.6. Планируемые улучшения

Общие улучшения в этом секторе были бы возможны при наличии данных о реальном потреблении топлива в Левобережье (отсутствующие для всех категорий в этом секторе). Оцененные количества для двух наиболее значимых катгорий сектора 1A3с и 1A3b, полученные путем восстановления данных в текущем цикле, являются попыткой улучшить географический *охват и полноту*. Такие подходы соответсвуют рекомендациям МГЭИК-2006, EMEP-2016 и могут быть распространены на другие категории в 1A3.

Для Правобережья возможны улучшения в категории 1A3a, если будут заполнены пробелы во временных рядах. Однако это не приведет к изменению общих выбросов из-за низких показателей потребления топлива в этой категории.

Для железнодорожного транспорта и внутренней авиации можно было бы использовать методы расчета более высокого Уровня (Уровень 2 и Уровень 2b соответственно), но эти источники не являются ключевыми категориями, их деятельность не является приоритетной в краткосрочной перспективе.

Улучшения в категории «Автотранспорт» возможны при постоянном использовании программы COPERT. Сложность заключается в отсутствии первичных данных с необходимой детализацией.

В процессе работ в текущем цикле по программе COPERT осуществлены расчеты для трех лет 2014-2016, для которых были получены необходимые первичные данные от Агенства публичных услуг («Registru.md»). Далее приведено краткое описание полученных результатов.

3.4.7. Описание результатов расчетов эмиссий с использованием программы COPERT 4.9

Программа COPERT позволяет выполнить расчеты эмиссий по **методу 3 для сектора 1A3b** «Автотранспорт».

Ее исходными данными являются:

- количества автомобилей каждой категории с разделением по объемам двигателей (легковых пассажирских автомашин M1 и мотоциклов L1-L7) и весу (для легких N1 и тяжелых грузовиков N2-N3, автобусов M2-M3);
- среднегодовой пробег автопарка;
- распределение автомашин по стандартам евро (Евро1-6 и «до Евро»);
- максимальная и минимальная температура по месяцам для каждого года;
- режим движения по городским дорогам, в сельской местности и по трассе;
- скоростной режим движения в городе, в сельской местности и автотрассе;
- потребление топлива (бензина, дизельного, сжиженного газа и сжатого природного газа);
- ряд дополнительных параметров качество топлива, уклон дороги, степень загруженности транспортного средства, испарения и другие;

Методология расчетов в программе COPERT включает 2 этапа.

На *первом этапе* рассчитываются коэффициенты выбросов для каждой категории транспортных средств. Уравнения различаются для каждой категории автомобилей и видов

топлива. Основной переменной в уравнениях является скорость движения, которая различается для режима езды в городской среде, сельской местности и по автотрассе.

На втором этапе рассчитываются выбросы от горячего и холодного двигателя при разных режимах езды (в городской среде, сельской местности и по автотрассе). На этом этапе также рассчитываются выбросы, связанные с дополнительными факторами.

Проверка адекватности результатов осуществляется по балансу топлива, фактическое потребление которого задается в перечне данных.

Уравнения по расчету коэффициентов эмиссий для каждой категории транспортных средств при учете описанных различных факторов приведены в Руководстве ЕМЕР-2016, 1A3b (Метод 3). В этой же главе Руководства приведены все необходимые дополнительные параметры, применяемые в программе СОРЕRT.

Расчеты выполнены для трех лет -2014, 2015 и 2016 г.

Сравнение итоговых суммарных эмиссий по методу 1 (МГЭИК-2006) и по COPERT (метод 3) приведен в таблице А.

Таблица А. Сравнение результатов расчетов эмиссий по методу 1 и методу 3 для автотранспорта

	1 1						
		CO_2	CH_4	N_2O	NO_x	CO	НМЛОС
		Гг	Гг	Гг	Гг	ΓΓ	Гг
2016	Метод уровня 1 (ІРСС-2006)	2007,6	0,4218	0,1008	7,7130	16,7766	2,1627
	Метод уровня 3 (COPERT)	2024,5	0,4496	0,0519	13,1071	18,5013	3,2520
2015	Метод уровня 1 (ІРСС-2006)	1866,4	0,3545	0,0931	7,1485	16,3542	2,1120
	Метод уровня 3 (COPERT)	1874,4	0,2447	0,0565	12,5343	16,5374	3,4361
2014	Метод уровня 1 (ІРСС-2006)	1775,8	0,3350	0,0886	6,7050	15,8885	2,0509
	Метод уровня 3 (COPERT)	1791,1	0,2139	0,0448	11,4497	16,9546	3,1618

Таблица В. Фрагмент итоговой расчетной таблицы эмиссий по программе COPERT для 2016 года для двух разновидностей объемов двигателей пассажирских легковых автомобилей (М1) на бензине

2016	Subsector	Technology	CO	NMVOC	CH ₄	NO _x	N ₂ O	CO ₂
Passenger Cars	Gasoline <1,41	PRE ECE						
Passenger Cars	Gasoline <1,41	ECE 15/00-01						
Passenger Cars	Gasoline <1,41	ECE 15/02						
Passenger Cars	Gasoline <1,41	ECE 15/03						
Passenger Cars	Gasoline <1,41	ECE 15/04						
Passenger Cars	Gasoline <1,41	Improved Conventional						
Passenger Cars	Gasoline <1,41	Open Loop	3984,091	614,096	32,080	395,053	2,306	56561,451
Passenger Cars	Gasoline <1,41	PC Euro 1 - 91/441/EEC	357,410	43,543	1,781	31,219	0,876	13090,384
Passenger Cars	Gasoline <1,41	PC Euro 2 - 94/12/EEC	97,094	10,280	1,213	8,608	0,235	6267,119
Passenger Cars	Gasoline <1,41	PC Euro 3 - 98/69/EC Stage2000	166,779	9,476	1,760	7,163	0,175	12951,975
Passenger Cars	Gasoline <1,41	PC Euro 4 - 98/69/EC Stage2005	128,833	14,011	2,838	12,109	0,313	33235,051
Passenger Cars	Gasoline <1,41	PC Euro 5 - EC 715/2007	25,495	2,746	0,562	1,936	0,061	6576,984
Passenger Cars	Gasoline <1,41	PC Euro 6 - EC 715/2007	11,346	1,213	0,250	0,862	0,027	2926,831
Passenger Cars	Gasoline 1,4 - 2,01	PRE ECE						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/00-01						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/02						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/03						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/04						
Passenger Cars	Gasoline 1,4 - 2,01	Improved Conventional						
Passenger Cars	Gasoline 1,4 - 2,01	Open Loop	2409,168	464,022	36,961	383,623	2,657	78630,834
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 1 - 91/441/EEC	743,757	114,854	3,980	69,804	1,958	35407,034
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 2 - 94/12/EEC	267,834	37,885	3,665	26,016	0,709	22415,070
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 3 - 98/69/EC Stage2000	375,837	28,894	4,350	17,720	0,433	38573,074
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 4 - 98/69/EC Stage2005	168,569	24,327	4,041	17,253	0,446	55239,985
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 5 - EC 715/2007	36,474	5,202	0,874	3,017	0,095	11952,511
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 6 - EC 715/2007	12,326	1,743	0,295	1,019	0,032	4039,234

Таблица С. Фрагмент итоговой расчетной таблицы эмиссий по программе COPERT для 2015 года для двух разновидностей объемов двигателей пассажирских легковых автомобилей (M1) на бензине

2015	Subsector	Technology	CO	NMVOC	CH ₄	NO _x	N ₂ O	CO_2
Passenger Cars	Gasoline <1,41	PRE ECE						
Passenger Cars	Gasoline <1,41	ECE 15/00-01						
Passenger Cars	Gasoline <1,41	ECE 15/02						
Passenger Cars	Gasoline <1,4 1	ECE 15/03						
Passenger Cars	Gasoline <1,4 1	ECE 15/04						

2015	Subsector	Technology	CO	NMVOC	CH ₄	NO_x	N ₂ O	CO_2
Passenger Cars	Gasoline <1,4 1	Improved Conventional						
Passenger Cars	Gasoline <1,41	Open Loop	3832,85	599,213	30,755	378,955	15,158	54228,895
Passenger Cars	Gasoline <1,4 1	PC Euro 1 - 91/441/EEC	407,985	45,382	1,718	30,101	1,204	12674,398
Passenger Cars	Gasoline <1,4 1	PC Euro 2 - 94/12/EEC	101,053	10,588	1,169	8,294	0,332	6148,985
Passenger Cars	Gasoline <1,4 1	PC Euro 3 - 98/69/EC Stage2000	167,170	9,354	1,701	6,927	0,208	12859,541
Passenger Cars	Gasoline <1,4 1	PC Euro 4 - 98/69/EC Stage2005	112,762	12,298	2,446	10,446	0,313	29477,240
Passenger Cars	Gasoline <1,4 1	PC Euro 5 - EC 715/2007	21,625	2,388	0,484	1,669	0,050	5830,865
Passenger Cars	Gasoline <1,4 1	PC Euro 6 - EC 715/2007	4,973	0,554	0,114	0,394	0,008	1375,455
Passenger Cars	Gasoline 1,4 - 2,01	PRE ECE						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/00-01						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/02						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/03						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/04						
Passenger Cars	Gasoline 1,4 - 2,01	Improved Conventional						
Passenger Cars	Gasoline 1,4 - 2,01	Open Loop	3832,8534	469,279	36,292	376,891	15,076	77168,098
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 1 - 91/441/EEC	782,018	112,883	3,887	80,367	3,215	34669,826
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 2 - 94/12/EEC	270,299	37,608	3,572	29,106	1,164	22183,140
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 3 - 98/69/EC Stage2000	371,401	28,249	4,232	19,283	0,578	38369,556
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 4 - 98/69/EC Stage2005	155,144	22,390	3,686	17,110	0,513	51638,293
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 5 - EC 715/2007	29,905	4,292	0,717	2,546	0,076	10049,027
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 6 - EC 715/2007	4,356	0,622	0,105	0,358	0,007	1475,108

Таблица Д. Фрагмент итоговой расчетной таблицы эмиссий по программе COPERT для 2014 года для двух разновидностей объемов двигателей пассажирских легковых автомобилей (M1) на бензине

2014	Subsector	Technology	CO	NMVOC	CH ₄	NO _x	N ₂ O	CO ₂
Passenger Cars	Gasoline <1,41	PRE ECE						
Passenger Cars	Gasoline <1,4 1	ECE 15/00-01						
Passenger Cars	Gasoline <1,41	ECE 15/02						
Passenger Cars	Gasoline <1,4 1	ECE 15/03						
Passenger Cars	Gasoline <1,41	ECE 15/04						
Passenger Cars	Gasoline <1,4 1	Improved Conventional						
Passenger Cars	Gasoline <1,41	Open Loop	4208,732	634,457	32,541	399,876	2,327	57658,888
Passenger Cars	Gasoline <1,41	PC Euro 1 - 91/441/EEC	384,123	46,475	1,809	31,608	0,869	13394,792
Passenger Cars	Gasoline <1,41	PC Euro 2 - 94/12/EEC	105,931	11,002	1,245	8,716	0,234	6482,918
Passenger Cars	Gasoline <1,4 1	PC Euro 3 - 98/69/EC Stage2000	180,038	10,180	1,798	7,167	0,177	13325,212
Passenger Cars	Gasoline <1,41	PC Euro 4 - 98/69/EC Stage2005	107,106	11,579	2,250	9,384	0,244	26532,799
Passenger Cars	Gasoline <1,4 1	PC Euro 5 - EC 715/2007	22,799	2,445	0,479	1,615	0,051	5647,791
Passenger Cars	Gasoline <1,4 1	PC Euro 6 - EC 715/2007	4,480	0,477	0,094	0,317	0,010	1109,892
Passenger Cars	Gasoline 1,4 - 2,01	PRE ECE						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/00-01						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/02						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/03						
Passenger Cars	Gasoline 1,4 - 2,01	ECE 15/04						
Passenger Cars	Gasoline 1,4 - 2,01	Improved Conventional						
Passenger Cars	Gasoline 1,4 - 2,01	Open Loop	2581,559	481,904	38,160	395,216	2,729	81545,978
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 1 - 91/441/EEC	814,325	125,499	4,111	71,877	1,975	36816,981
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 2 - 94/12/EEC	298,028	41,422	3,823	26,770	0,718	23508,801
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 3 - 98/69/EC Stage2000	418,001	32,041	4,564	18,199	0,448	40573,782
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 4 - 98/69/EC Stage2005	160,625	23,113	3,662	15,280	0,397	50237,052
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 5 - EC 715/2007	29,463	4,198	0,672	2,267	0,072	9214,670
Passenger Cars	Gasoline 1,4 - 2,01	PC Euro 6 - EC 715/2007	3,674	0,519	0,084	0,283	0,009	1148,943

Заключение. Использование программы возможно и для других лет при наличии первичных данных по распределению автопарка с необходимой детализацией. Программа имеет удобный и дружественный интерфейс, а полученные результаты показывают целесообразность ее использования на постоянной основе. По итогам работы с программой подготовлен специальный отчет, и в 2018 году опубликовано несколько статей с описанием результатов и полученного опыта.

3.5. Другие сектора (категория источников выбросов 1А4)

3.5.1. Описание категорий источников и тенденции выбросов парниковых газов

В категории 1А4 "Другие сектора" были оценены выбросы парниковых газов от следующих видов источников: 1А4а "Коммерческий / институциональный сектор"; 1А4b "Жилой (бытовой) сектор", 1А4сі "Сельское хозяйство/Лесное хозяйство/ Рыболовство" (стационарные источники) и 1А4сіі "Сельское хозяйство/Лесное хозяйство/ Рыболовство" (мобильные источники), схема на рисунке 3-68.

1A4	"Другие сектора"	
1А4а Коммерческий/институциональный	1А4с Сельское хозяйство/Ле	сное хозяйство/ Рыболовство
1А4ь Бытовой (жилой) сектор	1А4сі Стационарное сжигание	1А4с іі Мобильное

Рисунок 3-68. Схема категорий в 1А4 "Другие сектора"

Суммарные эмиссии

Выбросы парниковых газов от категории 1A4 за 1990-2016 снизились с 7689,71 до 1812, 79 кт CO_2 –е или на 76,4% (Таблица 3-138).

Таблица 3-138: Динамика выбросов парниковых газов от категории 1A4 "Другие сектора" в 1990-2016 гг.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
1A4, кт CO ₂ -е	7689.7135	8128.9575	6164.6672	2325.4332	2160.4012	2207.2356	2349.6445	2545.5057	2105.6673
%, в сравнении с 1990	100.0	105.7	80.2	30.2	28.1	28.7	30.6	33.1	27.4
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1A4, кт CO ₂ -е	1837.5824	1523.7452	1459.8599	1781.9747	2132.0162	2296.9025	2259.2406	2251.7988	1702.8467
%, в сравнении с 1990	23.9	19.8	19.0	23.2	27.7	29.9	29.4	29.3	22.1
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1A4, кт CO ₂ -е	1714.4226	1866.2043	2030.0705	2358.9684	2328.2713	2007.9234	2051.8469	1923.5784	1812.7922
%, в сравнении с 1990	22.3	24.3	26.4	30.7	30.3	26.1	26.7	25.0	23.6

Уровень выбросов парниковых газов в категории 1A4 в 2016 по сравнению с 1990 годом году составил величины: $CO_2-22.8\%$, $CH_4-40.3\%$, $N_2O-66.4\%$, $NO_x-20.7\%$, CO-32.8%, HMЛОС-44.9%, $SO_x-5.3\%$ (Таблица 3-139).

Таблица 3-139: Динамика выбросов парниковых газов прямого и косвенного действия от категории 1A4 "Другие сектора" в 1990-2016.

	1А4, кт									% от 1990						
	CO ₂	CH ₄	N ₂ O	NOx	CO	НМЛОС	SO _x	CO ₂	CH ₄	N ₂ O	NO _x	CO	НМЛОС	SO _x		
1990	7372,2624	11,5841	0,0935	21,4533	188,2435	20,5339	44,9266	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
1991	7794,6662	12,2320	0,0956	20,5753	181,4709	19,5923	44,9417	105.7	105.6	102.3	95.9	96.4	95.4	100.0		
1992	5967,8768	7,1372	0,0616	14,3609	99,2287	10,8213	26,3830	81.0	61.6	65.9	66.9	52.7	52.7	58.7		
1993	2271,9102	1,8431	0,0250	9,2951	31,0782	3,8422	9,1547	30.8	15.9	26.7	43.3	16.5	18.7	20.4		
1994	2090,7472	2,4795	0,0257	8,5983	40,7319	4,8148	9,8738	28.4	21.4	27.5	40.1	21.6	23.4	22.0		
1995	2166,6313	1,3497	0,0230	9,1404	30,5063	3,2880	5,9766	29.4	11.7	24.6	42.6	16.2	16.0	13.3		
1996	2281,5067	2,3921	0,0280	7,8935	44,9136	4,8417	8,1114	30.9	20.7	29.9	36.8	23.9	23.6	18.1		
1997	2493,4333	1,7851	0,0250	7,8746	35,5006	3,8095	5,7662	33.8	15.4	26.7	36.7	18.9	18.6	12.8		

1998	2069,7199	1,1935	0,0205	6,1550	23,7795	2,6921	4,0184	28.1	10.3	21.9	28.7	12.6	13.1	8.9
1999	1801,5918	1,2218	0,0183	4,6961	20,9461	2,5442	3,2790	24.4	10.5	19.6	21.9	11.1	12.4	7.3
2000	1488,2025	1,2169	0,0172	3,8215	19,5985	2,4681	2,8261	20.2	10.5	18.4	17.8	10.4	12.0	6.3
2001	1428,3712	1,0636	0,0164	3,7395	16,9934	2,2000	2,4655	19.4	9.2	17.6	17.4	9.0	10.7	5.5
2002	1741,9621	1,3702	0,0193	4,4721	20,7406	2,8043	3,4683	23.6	11.8	20.7	20.8	11.0	13.7	7.7
2003	2079,5633	1,8052	0,0246	4,7268	26,3790	3,5070	5,1110	28.2	15.6	26.3	22.0	14.0	17.1	11.4
2004	2253,6075	1,4817	0,0210	4,6918	21,4752	2,9879	4,2007	30.6	12.8	22.4	21.9	11.4	14.6	9.4
2005	2213,9626	1,5658	0,0206	4,3277	22,5157	3,0624	4,0412	30.0	13.5	22.0	20.2	12.0	14.9	9.0
2006	2199,7343	1,8093	0,0229	4,2889	25,6932	3,4799	4,2136	29.8	15.6	24.5	20.0	13.6	16.9	9.4
2007	1664,7540	1,3111	0,0178	3,3914	18,2795	2,5144	2,9324	22.6	11.3	19.1	15.8	9.7	12.2	6.5
2008	1675,4850	1,3355	0,0186	3,3674	18,1831	2,5680	2,6248	22.7	11.5	19.9	15.7	9.7	12.5	5.8
2009	1824,3586	1,4415	0,0195	3,4941	18,8063	2,6817	2,8745	24.7	12.4	20.9	16.3	10.0	13.1	6.4
2010	1985,0640	1,5742	0,0190	3,7572	21,7528	2,9332	3,2007	26.9	13.6	20.3	17.5	11.6	14.3	7.1
2011	2310,0323	1,7027	0,0214	4,1347	23,1600	3,2929	3,0189	31.3	14.7	22.9	19.3	12.3	16.0	6.7
2012	2273,0863	1,9343	0,0229	4,0301	26,2302	3,6664	3,3897	30.8	16.7	24.5	18.8	13.9	17.9	7.5
2013	1951,0935	1,9936	0,0235	3,7779	27,7566	3,7430	3,5798	26.5	17.2	25.1	17.6	14.7	18.2	8.0
2014	1933,4972	4,0986	0,0533	4,4914	54,3206	7,9960	2,7674	26.2	35.4	57.0	20.9	28.9	38.9	6.2
2015	1797,6960	4,3577	0,0568	4,5637	58,1907	8,5260	2,7814	24.4	37.6	60.8	21.3	30.9	41.5	6.2
2016	1677,5744	4,6692	0,0620	4,4456	61,7768	9,2109	2,3703	22.8	40.3	66.4	20.7	32.8	44.9	5.3

Эмиссии по регионам

Выбросы всех парниковых газов по Правобережному и Левобрежному регионам по сектору 1А4 рассчитаны отдельно, таблица 3-140.

По сравнению с 1990 годом, уровень выбросов парниковых газов в *Правобережье* в 2016 году составил: $CO_2-18.7\%$, $CH_4-39.9\%$, $N_2O-65.6\%$, $NO_x-19.4\%$, CO-32.6%, HMЛОС-44.6%, $SO_x-5.3\%$.

Таблица 3-140: Динамика выбросов всех парниковых газов по 1A4 "Другие сектора" *по регионам* за 1990-2016 гг, тысяч тонн

			1А4, П	равобере	жье, кт			1А4, Левобережье, кт						
	CO ₂	CH ₄	N ₂ O	NOx		NMVOC	SOx	CO ₂	CH ₄	N ₂ O	NO _x	CO	NMVOC	SO _x
1990	7372.2624	11.5841	0.0935	21.4533	188.2435	20.5339	44.9266		·					А
1991	7794.6662	12.2320	0.0956	20.5753	181.4709	19.5923	44.9417							
1992	5967.8768	7.1372	0.0616	14.3609	99.2287	10.8213	26.3830							
1993	2271.9102	1.8431	0.0250	9.2951	31.0782	3.8422	9.1547							
1994	2090.7472	2.4795	0.0257	8.5983	40.7319	4.8148	9.8738							
1995	1639.7398	1.2973	0.0214	7.7741	22.5486	2.9962	5.7557	526.8915	0.0524	0.0017	1.3663	7.9576	0.2917	0.2209
1996	1882.5020	2.3525	0.0267	6.8275	39.8115	4.6396	7.9444	399.0047	0.0396	0.0013	1.0660	5.1021	0.2021	0.1670
1997	1707.5287	1.7095	0.0228	6.2186	28.0389	3.5182	5.5379	785.9046	0.0756	0.0022	1.6561	7.4617	0.2913	0.2283
1998	1376.8193	1.1276	0.0187	4.8021	18.7835	2.4839	3.8478	692.9006	0.0659	0.0018	1.3529	4.9959	0.2082	0.1706
1999	1163.5742	1.1615	0.0167	3.4531	18.0826	2.3900	3.1350	638.0176	0.0603	0.0016	1.2430	2.8635	0.1542	0.1440
2000	1010.2005	1.1720	0.0160	2.9123	17.8809	2.3624	2.7258	478.0021	0.0450	0.0012	0.9092	1.7176	0.1057	0.1003
2001	983.9677	1.0217	0.0153	2.8643	15.3406	2.0942	2.3670	444.4035	0.0420	0.0011	0.8752	1.6528	0.1057	0.0986
2002	1219.2188	1.3218	0.0181	3.5761	19.4388	2.6675	3.3904	522.7433	0.0484	0.0012	0.8960	1.3018	0.1368	0.0779
2003	1551.8024	1.7568	0.0235	3.9290	25.0808	3.3765	5.0533	527.7609	0.0484	0.0011	0.7977	1.2982	0.1305	0.0578
2004	1488.7901	1.4124	0.0195	3.5968	20.4277	2.7608	4.1476	764.8175	0.0693	0.0015	1.0950	1.0475	0.2271	0.0531
2005	1541.7115	1.5051	0.0193	3.4201	21.6667	2.8825	4.0026	672.2510	0.0607	0.0013	0.9077	0.8490	0.1800	0.0386
2006	1592.8833	1.7545	0.0218	3.4901	24.9150	3.3269	4.1809	606.8510	0.0547	0.0012	0.7987	0.7782	0.1530	0.0326
2007	1341.1456	1.2818	0.0172	2.9918	17.7927	2.4757	2.9105	323.6084	0.0293	0.0006	0.3996	0.4868	0.0387	0.0218
2008	1343.3749	1.3053	0.0180	2.9640	17.7419	2.5271	2.6029	332.1102	0.0302	0.0007	0.4034	0.4412	0.0410	0.0219
2009	1483.9715	1.3828	0.0184	3.0537	17.9166	2.5833	2.8458	340.3872	0.0586	0.0011	0.4405	0.8897	0.0984	0.0286
2010	1555.6437	1.5056	0.0176	3.0947	20.5904	2.7958	3.1478	429.4203	0.0686	0.0013	0.6625	1.1624	0.1374	0.0529
2011	1532.4102	1.6048	0.0194	2.9923	21.8852	3.0232	2.9557	777.6221	0.0978	0.0019	1.1424	1.2749	0.2697	0.0632
2012	1504.4724	1.8498	0.0212	2.8759	25.0967	3.4232	3.3227	768.6139	0.0845	0.0018	1.1543	1.1335	0.2432	0.0670
2013	1378.0156	1.9280	0.0220	2.8407	26.5539	3.5744	3.5057	573.0779	0.0655	0.0014	0.9371	1.2027	0.1686	0.0741
2014	1350.1424	4.0241	0.0518	3.5473	53.1055	7.8101	2.6955	583.3548	0.0745	0.0015	0.9441	1.2151	0.1859	0.0719
2015	1372.2190	4.2887	0.0555	3.8405	57.0063	8.3876	2.7150	425.4770	0.0690	0.0014	0.7232	1.1844	0.1384	0.0664
2016	1380.1246	4.6239	0.0613	4.1574	61.3892	9.1508	2.3667	297.4499	0.0453	0.0008	0.2883	0.3876	0.0601	0.0037

Выбросы парниковых газов в *Левобережье* в 2016 году составили для CO_2 – 56.5% по сравнению с 1995 годом "CH₄ – 86.49%, N_2O – 46.62%, NO_x – 21.1%, CO – 4.87%, HMJOC – 20.6%, SO_x – 1.66% (Таблица 3-141).

Таблица 3-141: Соотношение уровней эмиссий по категории 1А4 "Другие сектора" по

регионам по сравнению с 1990 (для Правобережья) и с 1995 (для Левобережья), %.

рсси	1А4, Левобережье, % от 1990								1А4, Правобережье, % от 1995						
	CO2	CH4	N2O	NOx	СО	NMVOC	SOx	CO2	CH4	N2O	NOx	СО	NMVOC	SOx	
1990	100,00	100,00	100,00	100,00	100,00	100,00	100,00								
1991	105,73	105,59	102,30	95,91	96,40	95,41	100,03								
1992	80,95	61,61	65,93	66,94	52,71	52,70	58,72								
1993	30,82	15,91	26,74	43,33	16,51	18,71	20,38								
1994	28,36	21,40	27,53	40,08	21,64	23,45	21,98								
1995	22,24	11,20	22,85	36,24	11,98	14,59	12,81	100,00	100,00	100,00	100,00	100,00	100,00	100,00	
1996	25,53	20,31	28,57	31,83	21,15	22,59	17,68	75,73	75,64	75,58	78,02	64,12	69,26	75,58	
1997	23,16	14,76	24,42	28,99	14,90	17,13	12,33	149,16	144,38	128,79	121,21	93,77	99,84	103,33	
1998	18,68	9,73	20,02	22,38	9,98	12,10	8,56	131,51	125,78	107,32	99,02	62,78	71,36	77,20	
1999	15,78	10,03	17,83	16,10	9,61	11,64	6,98	121,09	115,14	96,09	90,97	35,98	52,86	65,16	
2000	13,70	10,12	17,12	13,58	9,50	11,50	6,07	90,72	85,90	70,45	66,54	21,58	36,24	45,38	
2001	13,35	8,82	16,40	13,35	8,15	10,20	5,27	84,34	80,11	66,55	64,06	20,77	36,25	44,61	
2002	16,54	11,41	19,41	16,67	10,33	12,99	7,55	99,21	92,40	70,51	65,58	16,36	46,88	35,27	
2003	21,05	15,17	25,10	18,31	13,32	16,44	11,25	100,17	92,32	67,02	58,39	16,31	44,75	26,14	
2004	20,19	12,19	20,82	16,77	10,85	13,45	9,23	145,16	132,29	90,73	80,15	13,16	77,84	24,04	
2005	20,91	12,99	20,62	15,94	11,51	14,04	8,91	127,59	115,91	78,18	66,43	10,67	61,68	17,45	
2006	21,61	15,15	23,28	16,27	13,24	16,20	9,31	115,18	104,53	70,17	58,46	9,78	52,45	14,78	
2007	18,19	11,07	18,40	13,95	9,45	12,06	6,48	61,42	55,98	38,46	29,25	6,12	13,28	9,89	
2008	18,22	11,27	19,23	13,82	9,42	12,31	5,79	63,03	57,57	39,21	29,52	5,54	14,05	9,91	
2009	20,13	11,94	19,73	14,23	9,52	12,58	6,33	64,60	111,90	63,27	32,24	11,18	33,75	12,96	
2010	21,10	13,00	18,88	14,43	10,94	13,62	7,01	81,50	131,01	78,74	48,49	14,61	47,10	23,94	
2011	20,79	13,85	20,81	13,95	11,63	14,72	6,58	147,59	186,80	115,30	83,61	16,02	92,44	28,61	
2012	20,41	15,97	22,63	13,41	13,33	16,67	7,40	145,88	161,36	105,27	84,48	14,24	83,36	30,33	
2013	18,69	16,64	23,59	13,24	14,11	17,41	7,80	108,77	125,08	84,84	68,59	15,11	57,78	33,54	
2014	18,31	34,74	55,40	16,53	28,21	38,04	6,00	110,72	142,19	91,92	69,10	15,27	63,73	32,54	
2015	18,61	37,02	59,38	17,90	30,28	40,85	6,04	80,75	131,75	81,23	52,93	14,88	47,45	30,05	
2016	18,72	39,92	65,55	19,38	32,61	44,56	5,27	56,45	86,49	46,62	21,10	4,87	20,60	1,66	

Структура вклада газов прямого действия в общие эмиссии

Вклад газов прямого действия в суммарные выбросы по 1А4 составил величины, приведенные в таблице 3-142.

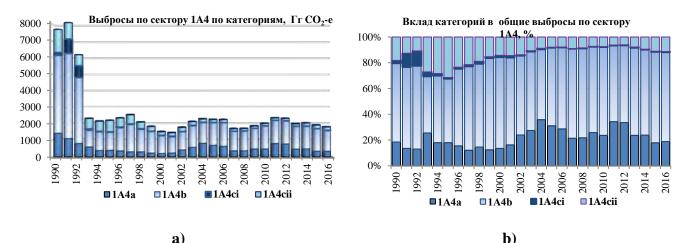
Таблица 3-142: Количества выбросов парниковых газов прямого действия от категории 1А4

"Другие сектора" в РМ в 1990-2016 и их долевые соотношения, кт CO_2 -е

		1А4, кт	CO ₂ -e		% ot 0	бщего коли	чества		% от 1	1990
	CO ₂	CH ₄	N ₂ O	Всего	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O
1990	7372.2624	289.6015	27.8496	7689.7135	95.87	3.77	0.36	100.00	100.00	100.00
1991	7794.6662	305.7997	28.4916	8128.9575	95.89	3.76	0.35	105.73	105.59	102.30
1992	5967.8768	178.4291	18.3613	6164.6672	96.81	2.89	0.30	80.95	61.61	65.93
1993	2271.9102	46.0765	7.4465	2325.4332	97.70	1.98	0.32	30.82	15.91	26.74
1994	2090.7472	61.9867	7.6673	2160.4012	96.78	2.87	0.35	28.36	21.40	27.53
1995	2166.6313	33.7413	6.8630	2207.2356	98.16	1.53	0.31	29.39	11.65	24.64
1996	2281.5067	59.8034	8.3344	2349.6445	97.10	2.55	0.35	30.95	20.65	29.93
1997	2493.4333	44.6285	7.4438	2545.5057	97.95	1.75	0.29	33.82	15.41	26.73
1998	2069.7199	29.8364	6.1110	2105.6673	98.29	1.42	0.29	28.07	10.30	21.94
1999	1801.5918	30.5458	5.4448	1837.5824	98.04	1.66	0.30	24.44	10.55	19.55
2000	1488.2025	30.4236	5.1191	1523.7452	97.67	2.00	0.34	20.19	10.51	18.38
2001	1428.3712	26.5909	4.8978	1459.8599	97.84	1.82	0.34	19.37	9.18	17.59
2002	1741.9621	34.2549	5.7577	1781.9747	97.75	1.92	0.32	23.63	11.83	20.67
2003	2079.5633	45.1299	7.3230	2132.0162	97.54	2.12	0.34	28.21	15.58	26.29
2004	2253.6075	37.0431	6.2518	2296.9025	98.12	1.61	0.27	30.57	12.79	22.45
2005	2213.9626	39.1457	6.1323	2259.2406	98.00	1.73	0.27	30.03	13.52	22.02
2006	2199.7343	45.2321	6.8324	2251.7988	97.69	2.01	0.30	29.84	15.62	24.53
2007	1664.7540	32.7780	5.3147	1702.8467	97.76	1.92	0.31	22.58	11.32	19.08
2008	1675.4850	33.3867	5.5509	1714.4226	97.73	1.95	0.32	22.73	11.53	19.93
2009	1824.3586	36.0363	5.8093	1866.2043	97.76	1.93	0.31	24.75	12.44	20.86
2010	1985.0640	39.3549	5.6517	2030.0705	97.78	1.94	0.28	26.93	13.59	20.29
2011	2310.0323	42.5665	6.3696	2358.9684	97.93	1.80	0.27	31.33	14.70	22.87
2012	2273.0863	48.3566	6.8284	2328.2713	97.63	2.08	0.29	30.83	16.70	24.52
2013	1951.0935	49.8388	6.9912	2007.9234	97.17	2.48	0.35	26.47	17.21	25.10
2014	1933.4972	102.4640	15.8856	2051.8469	94.23	4.99	0.77	26.23	35.38	57.04
2015	1797.6960	108.9414	16.9411	1923.5784	93.46	5.66	0.88	24.38	37.62	60.83
2016	1677.5744	116.7297	18.4881	1812.7922	92.54	6.44	1.02	22.76	40.31	66.42

Выбросы СО₂, СН₄, N₂О по регионам для 1А4 приведены в таблице 3-143.

Таблица 3-143: Динамика выбросов парниковых газов прямого действия от категории 1А4


"Другие сектора" по регионам в 1990-2016.

	1А4, кт	СО2-е, Левобереж	ње	1A4, mii tone	СО2е, Правобер	ежье
	CO_2	CH ₄	N ₂ O	CO ₂	CH ₄	N_2O
1990	7372.2624	289.6015	27.8496			
1991	7794.6662	305.7997	28.4916			
1992	5967.8768	178.4291	18.3613			
1993	2271.9102	46.0765	7.4465			
1994	2090.7472	61.9867	7.6673			
1995	1639.7398	32.4319	6.3646	526.8915	1.3094	0.4984
1996	1882.5020	58.8130	7.9577	399.0047	0.9904	0.3767
1997	1707.5287	42.7381	6.8020	785.9046	1.8904	0.6418
1998	1376.8193	28.1894	5.5762	692.9006	1.6470	0.5349
1999	1163.5742	29.0382	4.9660	638.0176	1.5076	0.4789
2000	1010.2005	29.2989	4.7680	478.0021	1.1247	0.3511
2001	983.9677	25.5420	4.5662	444.4035	1.0489	0.3317
2002	1219.2188	33.0450	5.4063	522.7433	1.2099	0.3514
2003	1551.8024	43.9211	6.9890	527.7609	1.2088	0.3340
2004	1488.7901	35.3111	5.7996	764.8175	1.7321	0.4522
2005	1541.7115	37.6281	5.7427	672.2510	1.5176	0.3896
2006	1592.8833	43.8634	6.4827	606.8510	1.3687	0.3497
2007	1341.1456	32.0450	5.1230	323.6084	0.7330	0.1917
2008	1343.3749	32.6329	5.3555	332.1102	0.7538	0.1954
2009	1483.9715	34.5711	5.4940	340.3872	1.4652	0.3153
2010	1555.6437	37.6395	5.2592	429.4203	1.7154	0.3924
2011	1532.4102	40.1206	5.7950	777.6221	2.4459	0.5746
2012	1504.4724	46.2438	6.3038	768.6139	2.1128	0.5246
2013	1378.0156	48.2011	6.5684	573.0779	1.6377	0.4228
2014	1350.1424	100.6023	15.4275	583.3548	1.8617	0.4581
2015	1372.2190	107.2163	16.5362	425.4770	1.7251	0.4048
2016	1380.1246	115.5972	18.2557	297.4499	1.1325	0.2324

Тенденция выбросов парниковых газов категории 1А4 в разбивке по видам источников представлена ниже (Таблица 3-66, Рисунок 3-144).

Таблица 3-144: Эмиссии парниковых газов от категории 1A4 "Другие сектора" по категориям за 1990-2016, кт CO_2 –е.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
1А4а "Коммерческий / институциональный"	1426.11	1106.77	807.23	594.67	390.57	399.10	366.36	310.28	308.61
1А4ь "Жилой сектор"	4701.86	5134.16	3984.89	1021.91	1123.43	1095.16	1405.38	1657.13	1360.78
1А4сі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (стационарные источники)	165.95	864.12	706.10	79.25	34.09	19.75	28.26	32.97	39.38
1А4сіі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (мобильные источники)	1395.79	1023.91	666.44	629.61	612.31	693.23	549.65	545.13	396.89
1А4 "Другие сектора", всего	7689.71	8128.96	6164.67	2325.43	2160.40	2207.24	2349.64	2545.51	2105.67
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1А4а "Коммерческий / институциональный"	230.46	206.98	238.73	428.22	586.35	825.31	704.69	647.70	365.88
1А4ь "Жилой сектор"	1307.63	1079.05	988.89	1096.99	1306.36	1253.24	1368.21	1423.78	1183.55
1А4сі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (стационарные источники)	18.62	20.86	22.11	10.98	12.38	17.24	8.07	4.77	1.97
1А4сіі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (мобильные источники)	280.88	216.86	210.12	245.78	226.92	201.11	178.26	175.56	151.45
1А4 "Другие сектора", всего	1837.58	1523.75	1459.86	1781.97	2132.02	2296.90	2259.24	2251.80	1702.85
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1 А4а "Коммерческий / институциональный"	374.94	483.53	481.33	810.63	783.49	476.41	490.96	345.61	342.99
1А4ь "Жилой сектор"	1188.71	1242.51	1391.83	1395.09	1394.75	1364.73	1361.02	1357.45	1257.33
1А4сі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (стационарные источники)	6.32	4.82	6.11	6.01	8.78	11.00	6.27	8.48	8.47
1А4сіі "Сельское хозяйство/Лесное хозяйство/									
Рыболовство" (мобильные источники)	144.45	135.34	150.81	147.24	141.26	155.78	193.60	212.04	204.00
1А4 "Другие сектора", всего	1714.42	1866.20	2030.07	2358.97	2328.27	2007.92	2051.85	1923.58	1812.79

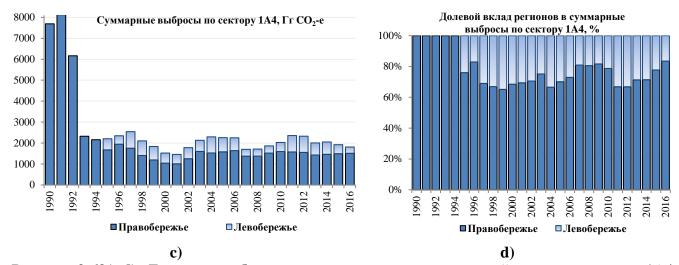
Рисунок 3-69 (а,b): Динамика выбросов парниковых газов от 1A4 "Другие сектора" по категориям за 1990-2016, кт CO_2 —е.

Источником наибольших общих прямых выбросов парниковых газов в категории 1A4 «Прочие сектора» является 1A4b «Бытовой сектор», доля которого колеблется в течение отчетного периода между 43,9 % (1993) и 71,2 % (1999). На втором месте - категория 1A4a «Коммерческий и институциональный сектор» - от 12,2 % (1997) до 35,9 % (2004). Категория 1A4 сіі «Сельское хозяйство / лесное хозяйство / рыбоводство» (мобильные

Категория 1A4 сії «Сельское хозяйство / лесное хозяйство / рыбоводство» (мобильные источники) имеет доли от 6,1% (2012) до 31,4% (1995) (рисунок 3-69b, таблица 3-145).

Таблица 3-145: Доля каждой категории 1A4 «Другие сектора» в общем объеме выбросов парниковых газов прямого действия, %.

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1A4a	18.5	13.6	13.1	25.6	18.1	18.1	15.6	12.2	14.7	12.5	13.6	16.4	24.0	27.5
1A4b	61.1	63.2	64.6	43.9	52.0	49.6	59.8	65.1	64.6	71.2	70.8	67.7	61.6	61.3
1A4ci	2.2	10.6	11.5	3.4	1.6	0.9	1.2	1.3	1.9	1.0	1.4	1.5	0.6	0.6
1A4cii	18.2	12.6	10.8	27.1	28.3	31.4	23.4	21.4	18.8	15.3	14.2	14.4	13.8	10.6
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
1A4a	35.9	31.2	28.8	21.5	21.9	25.9	23.7	34.4	33.7	23.7	23.9	18.0	18.9	
1A4b	54.6	60.6	63.2	69.5	69.3	66.6	68.6	59.1	59.9	68.0	66.3	70.6	69.4	
1A4ci	0.8	0.4	0.2	0.1	0.4	0.3	0.3	0.3	0.4	0.5	0.3	0.4	0.5	
1A4cii	8.8	7.9	7.8	8.9	8.4	7.3	7.4	6.2	6.1	7.8	9.4	11.0	11.3	


Динамика выбросов по регионам наблюдается следующая:

- 1) в Правобережье выбросы снизились на 80,3%: с 7689,71 до 1513,97 тыс. тонн CO2-е (1990/2016);
- 2) в Левобережье имело место также уменьшение выбросов на 43,5%: с 528,69 до 298,81 тыс. тонн CO2-е (1995/2016), (таблица 3-146, рисунки 3-69(c, **d**)).

Таблица 3-146: Доля каждого региона в эмиссиях по сектору 1A4 "Другие сектора" за 1990-2016, тыс. тонн CO2-е и %.

	1A4, C	О2-е, кт, Регио	ны	%		% от 1990	% от 1995
	Правобережье	Левобережье	Молдова	Правобережье	Левобережье	Правобережье	Левобережье
1990	7689.7135		7689.7135	100.00		100.00	
1991	8128.9575		8128.9575	100.00		105.71	
1992	6164.6672		6164.6672	100.00		80.17	
1993	2325.4332		2325.4332	100.00		30.24	
1994	2160.4012		2160.4012	100.00		28.09	
1995	1678.5364	528.6992	2207.2356	76.05	23.95	21.83	100.00
1996	1949.2727	400.3718	2349.6445	82.96	17.04	25.35	75.73
1997	1757.0688	788.4369	2545.5057	69.03	30.97	22.85	149.13
1998	1410.5849	695.0824	2105.6673	66.99	33.01	18.34	131.47
1999	1197.5783	640.0040	1837.5824	65.17	34.83	15.57	121.05
2000	1044.2674	479.4779	1523.7452	68.53	31.47	13.58	90.69
2001	1014.0758	445.7840	1459.8599	69.46	30.54	13.19	84.32

2002	1257.6701	524.3046	1781.9747	70.58	29.42	16.36	99.17
2003	1602.7125	529.3037	2132.0162	75.17	24.83	20.84	100.11
2004	1529.9007	767.0017	2296.9025	66.61	33.39	19.90	145.07
2005	1585.0823	674.1582	2259.2406	70.16	29.84	20.61	127.51
2006	1643.2294	608.5694	2251.7988	72.97	27.03	21.37	115.11
2007	1378.3136	324.5331	1702.8467	80.94	19.06	17.92	61.38
2008	1381.3632	333.0594	1714.4226	80.57	19.43	17.96	63.00
2009	1524.0366	342.1677	1866.2043	81.67	18.33	19.82	64.72
2010	1598.5425	431.5281	2030.0705	78.74	21.26	20.79	81.62
2011	1578.3257	780.6427	2358.9684	66.91	33.09	20.53	147.65
2012	1557.0200	771.2513	2328.2713	66.87	33.13	20.25	145.88
2013	1432.7850	575.1384	2007.9234	71.36	28.64	18.63	108.78
2014	1466.1722	585.6746	2051.8469	71.46	28.54	19.07	110.78
2015	1495.9715	427.6069	1923.5784	77.77	22.23	19.45	80.88
2016	1513.9774	298.8147	1812.7922	83.52	16.48	19.69	56.52

Рисунок 3-69(c,d): Динамика выбросов парниковых газов прямого действия от категории 1A4 "Другие сектора" по регионам в 1990-2016, тыс. тонн CO2-е.

3.5.2. Методология, коэффициенты выбросов, данные по деятельности

Методология

Выбросы парниковых газов от категории 1А4 оценивались в соответствии с методом Уровня 1 Руководства МГЭИК-2006.

Коэффициенты выбросов

Значения используемых коэффициентов выбросов приведены ниже для каждой категории в таблицах 3-147 («Коммерческий и институциональный сектор»), 3-148 (1A4b «Бытовой сектор») и 3-149 («Сельское хозяйство / лесное хозяйство / рыбоводство» -стационарные источники) и 3-150 («Сельское хозяйство / лесное хозяйство / рыбоводство» -мобильные источники).

Таблица 3-147: Коэффициенты выбросов парниковых газов по категории 1А4а "Коммерческий и институциональный сектор", кг/ТДж.

Тип топлива	CO_2	CH ₄	N_2O	NO _x	CO	НМЛОС
Бензин	69300	10	0.6	306	93	20
Дизельное топливо	74100	10	0.6	306	93	20
Мазут	77400	10	0.6	306	93	20
Керосин	71900	10	0.6	306	93	20
СНГ	63100	5	0.1	74	29	23
Другие нефтепродукты	73300	10	0.6	306	93	20
Антрацит	98300	10	1.5	173	931	88,8
Битуминозный уголь	94600	10	1.5	173	931	88,8
Бурый уголь	101000	10	1.5	173	931	88,8
Бурый уголь - брикеты	97500	10	1.5	173	931	88,8
Кокс	107000	10	1.5	173	931	88,8

Тип топлива	CO ₂	CH ₄	N ₂ O	NO _x	СО	НМЛОС
Природный газ	56100	5	0.1	74	29	23
Дрова и древесные отходы	112000	300	4	91	570	300
Другая твердая биомасса	100000	300	4	91	570	300
Древесный уголь	112000	200	1	91	570	300

Источник: для CO₂,CH₄, N₂O – Руководство IPCC 2006, Том. 2, Гл. 2, Таб. 2.4, 2.20-2.21, для NO₃, CO и HMЛОС -EMEP/EEA air pollutant emission inventory guidebook 2016 – Last update July 2017, Таб. 3.7-3.10,стр.40-43, Tier 1 emission factors for NFR source category 1.A.4.a/c, 1.A.5.a.

Таблица 3-148: Коэффициенты выбросов парниковых газов по категории 1А4b "Бытовой

сектор", кг/ТДж.

Тип топлива	CO_2	CH_4	N_2O	NO_x	CO	НМЛОС
Мазут	77400	10	0.6	51	57	0,69
Керосин	71900	10	0.6	51	57	0,69
СНГ	63100	5	0.1	51	26	1,9
Другие нефтепродукты	73300	10	0.6	51	57	0,69
Антрацит	98300	300	1.5	110	4600	484
Битуминозный уголь	94600	300	1.5	110	4600	484
Бурый уголь	101000	300	1.5	110	4600	484
Кокс	107000	300	1.5	110	4600	484
Торф	106000	300	1.4	110	4600	484
Природный газ	56100	5	0.1	51	26	1,9
Дрова и древесные отходы	112000	300	4	50	4000	600
Другая твердая биомасса	100000	300	4	50	4000	600
Древесный уголь	112000	200	1	50	4000	600

Источник: для CO_2 , CH_4 , N_2O – Руководство IPCC 2006, Том. 2, Гл. 2, Таб.. 2.5, 2.22-2.23, для NO_x , CO и HMЛOC – Taб. 3.3-3.6,crp.36-39, Tier 1 emission factors for NFR source category 1.A.4.b,EMEP/EEA air pollutant emission inventory guidebook 2016 – Last update July 2017.

Таблица 3-149: Коэффициенты выбросов парниковых газов по категории 1А4сі "Сельское

хозяйство / лесное хозяйство / рыбоводство" (стационарные источники), кг/ТДж.

Тип топлива	CO2	CH4	N2O	NOx	СО	НМЛОС
Дизельное топливо	74100	10	0.6	306	93	20
Мазут	77400	10	0.6	306	93	20
Керосин	71900	10	0.6	306	93	20
Другие нефтепродукты	73300	10	0.6	306	93	20
Антрацит	98300	300	1.5	173	931	88,8
Битуминозный уголь	94600	300	1.5	173	931	88,8
Бурый уголь	101000	300	1.5	173	931	88,8
Дрова и древесные отходы	56100	5	0.1	74	29	23
Другая твердая биомасса	112000	300	4	91	570	300
Древесный уголь	100000	300	4	91	570	300

Источник: для CO₂, CH₄, N₂O – Руководство IPCC 2006, Том. 2, Гл. 2, Таб.. 2.5, 2.22-2.23, для NO_x, CO и HMЛОС .-EMEP/EEA air pollutant emission inventory guidebook 2016 – Last update July 2017, Таб. 3.7-3.10,стр.40-43, Tier 1 emission factors for NFR source category 1.A.4.a/c, 1.A.5.a.

Для мобильных источников по категории 1A4 с іі коэффициенты выбросов для NO_x СО НМЛОС имеют единицы измерения «кг/кт», таблица 3-150.

Таблица 3-150: Коэффициенты выбросов парниковых газов по категории 1A4 с іі "Сельское хозяйство / лесное хозяйство / рыбоводство" (мобильные источники)), кг/ТДж и кг/кт.

Тип топлива	CO ₂	CH ₄	N ₂ O	NO _x	CO	НМЛОС
	кг/ТДж	кг/ТДж	кг/ТДж	кг/кт	кг/кт	кг/кт
Бензин	69300	10	0.6	7117	770368	18893
Дизельное топливо	74100	10	0.6	34457	11469	3542
СНГ	63100	5	0.1	28571	4823	6720

Источник: для CO₂– Руководство IPCC 2006, Том. 2, Гл. 3, Таб..3.3.1, для CH₄, N₂O – Руководство IPCC 2006, Том. 2, Гл. 2, Таб.. 2.5, 2.22-2.2, для NO₃, CO и HMЛОС Таб. 3-1 Tier 1 emission factors for off-road machinery, стр.23, EMEP/EEA air pollutant emission inventory guidebook 2016 – Update May 2017.

Данные по деятельности

Данные по деятельности представлены в энергетических балансах Республики Молдова и статистических публикациях «Социально-экономическое развитие ПМР». Часть информации была получена от АО «Молдовагаз».

В текущем цикле инвентаризации данные по деятельности были использованы из ТЭБ непосредственно в энергетических единицах (ТДж).

Для Правобережья информация по потреблению топлива в ТЭБ РМ за 1993 -2016 гг имеет следующие особенности: количества топлив по «Коммерческому сектору» и

«Институциональному сектору», как правило, объединены вместе; для «Бытового сектора» и сектора «Сельское хозяйство / Лесное хозяйство / Рыболовство» - отдельно.

Данные по топливу в «Сельскохозяйственном секторе», согласно классификатору МГЭИК-2006, были разделены на две подкатегории: 1А4сі «Стационарные источники» (потребление угля, мазута, природного газа и других видов топлив) и 1А4сіі «Мобильные источники» (дизельное топливо, бензин и СНГ).

Сведения о расходе топлива в Левобережном регионе имеются лишь для некоторых топлив, и только в натуральных единицах. Они были пересчитаны в энергетические единицы (ТДж) с использованием национальных теплотворных коэффициентов.

Далее каждая категория рассмотрена более подробно.

1А4а. "Коммерческий и институциональный сектор"

По данной категории имеется информация о потреблении топлив по каждому региону. По Левобережью –это данные о потреблении природного газа в период 1999-2016, а также сжиженного нефтяного газа для 2011-2016 гг. (таблица 3-151).

Таблица 3-151: Потребление топлива в категории 1А4а в Левобережье, 1999-2016, ТДж.

	1999	2000	2001	2002	2003	2004
Природный газ	227	311	454	2737	2929	7687
	2005	2006	2007	2008	2009	2010
Природный газ	6101	5109	485	666	544	1274
	2011	2012	2013	2014	2015	2016
СНГ,	0.12	0.09	0.06	0.05	0.06	0.2
Природный газ	7077	6865	3403	3597	932	610

Замечание: Значения газа в ТДж рассчитаны с использованием фактических ежегодных НТС.

Для Правобережья временные ряды заполнены для 16 различных видов топлив на основе информации из ТЭБ для каждого года, таблица 3-152.

Таблица 3-152: Потребление топлива в категории 1А4а в Правобережье, 1990-2016, ТДж.

Гаолица 3-152 : Потреоление топлива в категории ТА4а в правооережье,						1990-201	ю, гдж.		
	1990	1991	1992	1993	1994	1995	1996	1997	1998
Бензин				3					
Дизельное топливо	468	360	252	144	88	117	88	59	59
Керосин ламповый		203	457	47					
Мазут	844	732	620	508	235	235	205	59	29
топливо для печей (керосин бытовой)	733			50	29				29
Моторное топливо	43			12					
СНГ	276	199	121	44		59	59	29	
Другие нефтепродукты									
Антрацит	11616	8260	4903	1546	675	440	440	352	323
Битуминозный уголь		799	804	2363	2200	2553	2171	1966	2200
Бурый уголь	12	193	375	557	411	352	352	205	176
Угольные брикеты	36								
Кокс				3					
Природный газ	1422	1422	1737	1138	616	557	734	734	616
Дрова	333	258	184	109	117	117	147	117	117
Древесные отходы				6			29		
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Бензин						2	1	3	36
Дизельное топливо	88	59	29	29	59	50	46	29	29
Керосин ламповый						2			
Мазут	29	29	59	30	58	47	19	7	6
топливо для печей (керосин бытовой)	29	147	205	58	29	70	11	15	19
СНГ			29		29	32	72	32	41
Антрацит	323	645	264	675	1846	1788	1358	1136	1016
Битуминозный уголь	1437	734	1203	1174	1115	745	732	859	570
Бурый уголь	88	59	59	29	29	1			
Кокс									1
Природный газ	499	557	734	1467	1993	2257	2572	2799	3056
Дрова	88	88	117	147	381	242	210	254	247
Древесные отходы					146	78	31	26	18
Сельскохозяйственные отходы						14	5	2	14
Другие виды топлива			29						3
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Бензин	34	6	3	6					5
Дизельное топливо	26	35	130	121	15			153	59
Мазут	96	177	30	10	1	6		5	1

топливо для печей (керосин бытовой)	19	17	59	15	5	1	4	1	1
СНГ	42	382	291	82	125	135	193	70	56
Другие нефтепродукты	2	28	7			1		3	3
Антрацит	801	1191	828	867	898	1032	587	672	655
Битуминозный уголь	673	315	243	217	100	67	197	77	106
Угольные брикеты					1				
Природный газ	3105	4535	4722	5094	5061	2925	3462	3545	3949
Дрова	268	240	209	219	244	185	232	220	237
Древесные отходы	15	36	36	17	18	35	26	14	13
Сельскохозяйственные отходы	28		41	31	88	68	118	50	58
Другие виды топлива	2								
Древесный уголь						3	21	16	13
Брикеты и пеллеты из древесины		•					94	83	

Согласно применяемой эффективной практике (Руководство МГЭИК по эффективной практике, 2000), в категорию 1А4а должны быть перенесены топлива из транспортного сектора (железнодорожного транспорта - 1А3с), которые использованы не для движения, а для вспомогательных целей, например, обогрева зданий вокзалов и другой транспортной инфраструктуры.

Эта рекомендация выполнена, и топлива, которые не используются для движения локомотивов, перенесены в данную категорию (мазут, антрацит, лигнит, битуминозный уголь), таблица 3-153.

Таблица 3-153: Топлива, перенесенные из категории 1А3с «Железнодорожный транспорт» в категорию 1А4а «Коммерческий и институциональный сектор», за 1990-2016 ,ТДж.

1	1		<i>J</i> 7		1 .	,	<i>- ,</i> r ·	1	
	1990	1993	1994	1995	1996	1997	1998	2005	2007
Мазут		300	88	59	29	29	59		
Антрацит	80.1				59	59		1	1
Битуминозный уголь		103	29	29					
Бурый уголь	46.72			59	29	59			
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Мазут	3.5	5.5	8.3	6.6	9.6	1.7	3.3	1.14	3.1
Антрацит	2		2						
Битуминозный уголь	1.6	1.6	0.3	1.1	8.2	0.9	0.3	0.1	0.1

Источник: Топливно-энергетические балансы РМ, 1990 и 1993-2017.

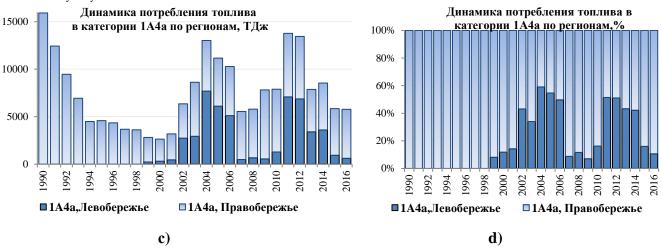
Количества топлив, которые перенесены, включены в суммарные количества топлив каждой группы по категории 1А4а, таблица 3-154.

Таблица 3-154: Потребление по *группам* топлив в категории **1A4a** в РМ в 1990-2016, ТДж.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Жидкое	2364	1494	1451	1108	440	470	381	176	176
Твердое	11790	9252	6082	4572	3315	3433	3051	2641	2699
Газообразное	1422	1422	1737	1138	616	557	734	734	616
Биотопливо	333	258	184	115	117	117	176	117	117
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Жидкое	146	235	322	117	175	203	149	86	131
Твердое	1848	1438	1526	1878	2990	2534	2091	1995	1588
Газообразное	726	868	1188	4204	4922	9944	8673	7908	3541
Биотопливо	88	88	146	147	527	334	246	282	282
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Жидкое	223	651	528	241	156	145	200	233	127
Твердое	1478	1508	1073	1085	1007	1100	784	749	761
Газообразное	3771	5079	5996	12171	11926	6328	7059	4477	4559
Биотопливо	313	576	286	267	350	291	491	383	321

Использование жидких топлив в категории 1А4а значительно сократилось: с 2 364 до 127 ТДж (1990/2016). Потребление твердого топлива снизилось на 94,6%: с 11 790 до 761 ТДж (1990/2016).

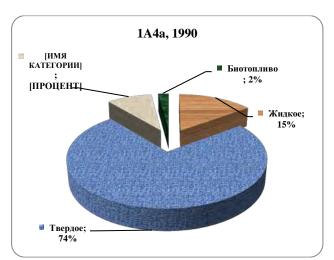
В то же время произошло увеличение потребления газообразного топлива на 220,6%: с 1 422 до 4 559 ТДж (1990/2016). Использование биотоплива было в диапазоне 88-491 ТДж,и в 2016 году составило 321 ТДж, рисунок 3-70 (a,b).


Рисунок 3-70 (а,b): Потребление по *группам* топлив в категории 1A4a «Коммерческий и институциональный сектор» в Республике Молдова в 1990-2016 гг.

В таблице 3-155 показано потребление топлива для 1А4а по регионам за исследуемый период.

Таблица 3-155: Расход топлива в категории 1A4a по регионам и суммарно в PM за 1990-2016, ТЛж.

1 дж.									
	1990	1991	1992	1993	1994	1995	1996	1997	1998
1А4а,Левобережье	*								
1А4а, Правобережье	15910	12426	9453	6933	4488	4577	4342	3668	3608
1А4а, Молдова	15910	12426	9453	6933	4488	4577	4342	3668	3608
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1А4а,Левобережье	227	311	454	2737	2929	7687	6101	5109	485
1А4а, Правобережье	2581	2318	2728	3609	5685	5328	5058	5162	5057
1А4а, Молдова	2808	2629	3182	6346	8614	13015	11159	10271	5542
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1А4а,Левобережье	672	551	1278	7079	6867	3405	3600	933	613
1А4а, Правобережье	5113	7262	6605	6684	6572	4458	4934	4909	5155
1 А4а, Молдова	5785	7813	7883	13763	13439	7863	8534	5842	5768


^{*)} для 1990-1993 данные суммарные по стране; с 1994 информация по Правобережью согласно ТЭБ; для Левобережного региона данные за 1994-1998 отсутствуют.

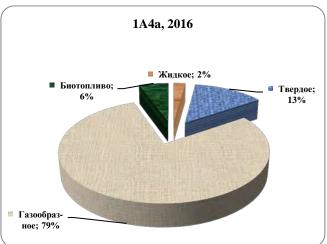


Рисунок 3-70 (c,d). Потребление топлива в категории 1A4a по регионам Республики Молдова в период 1990-2016, ТДж.

Таблица и графики на рисункках 3-70 (c,d) иллюстрируют факт, что ряд значений по потреблению топлива в Левобережье неполон (1999-2016).

В приведенных ниже диаграммах рисунка 3-70 (e,f) производится сравнение структуры в потреблении видов топлива в категории 1A4a в 1990 и 2016 годах.

Рисунок 3-70 (e,f). Доля потребления топлив разных групп в категории 1A4a 'Коммерческий/ Институциональный сектор' в 1990 и 2016 по Молдове в целом.

Анализ рисунка 3-70 (**e,f**) позволяет видеть, что имеет место снижение потребления твердых (с 74% до 13%) и жидких (с 15% до2%) видов топлива, и рост потребления газообразного топлива (с 9% до 79%) и биотоплива (с 2% до 6%) в суммарном количестве.

1А4ь "Жилой сектор"

По категории 1А4b информация имеется для обоих регионов страны.

По *Левобережью* в категории 1A4b «*Жилой сектор*» представлены данные о потреблении природного и сжиженного нефтяного газа в 1995-2016 годах, а также сведения о потреблении древесины за 2009-2016 (Таблица 3-156).

Таблица 3-156: Потребление топлива в категории *1A4b* в Левобережье, 1999-2016, ТДж.

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
СНГ	115	106	64	60	37	18	14	18	23	23	23
Природный газ	7235	5458	11852	10729	9792	7277	6554	5868	5919	5465	5537
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
СНГ	23	21	23	18	27	28	22	18	16	13	11
Природный газ	5422	5074	5049	5272	5889	6241	6248	6152	6163	6054	4674
Древесина				92	97	90	48	42	69	98	62

Источники: по древесине – «Социально-экономическое развитие ПМР», раздел «Материальные и энергетические ресурсы»; для LPG – Статистические ежегодники ПМР; по природному газу – SA "Moldovagaz" письма № 07-730 от 06.06.2007; № 02/1-476 от 23.02.2011; № 02/1-288 от 22.01.2014; № 02/1-507 от 10.02.2015; №г. 02/1-2183 от 03.06.2016, № 03/2-74 от 12.01.2018.

Замечание: Значения газа в ТДж рассчитаны с использованием фактических ежегодных НТС.

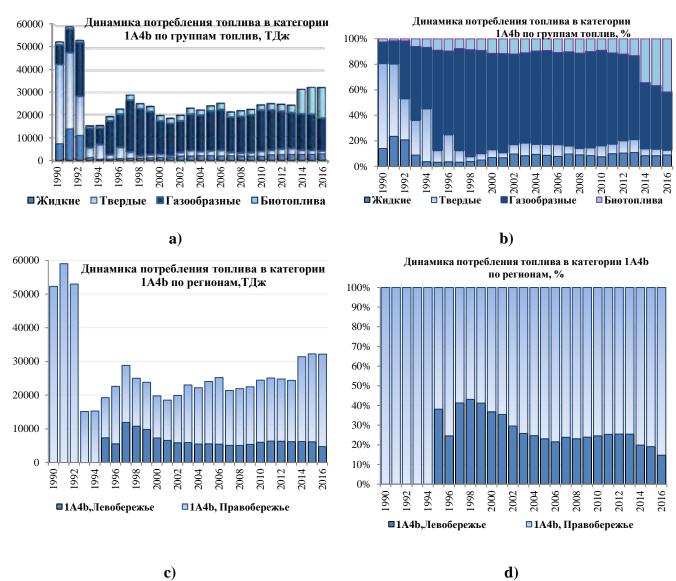
Для Правобережного региона имеются данные об использовании 11 видов топлива для исследуемого периода. Исключение составляют значения для 1991-1992, которые были восстановлены методом интерполяции. Восстановление данных было сделано для следующих топлив: сжиженный нефтяной газ, антрацит, лигнит и древесина (таблица 3-157, помечено цветом).

Количества топлив для этих же лет для мазута, битуминозного угля, природного газа сохранены на текущий момент сохранены «исторические», из предыдущих инвентаризаций.

Для них в последующем цикле будет сделана попытка применить другой метод овсстановления значений.

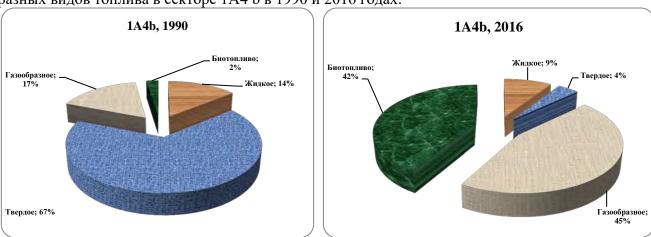
Таблица 3-157: Потребление топлива в категории *1A4b* в Правобережье, 1990-2016, ТДж.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Мазут		1065	7714		29				
Керосин	431			26					
Дизельное топливо	1191	8593	553	15			29		29
СНГ	5758	4277	2797	1317	557	528	704	910	910
Антрацит	32485	22481	12477	2473	3491	1350	1584	1936	440
Битуминозный уголь	25	9792	3961	1468	2847	440	3199	734	558
Бурый уголь	1916	1348	781	214	29	29	29	29	
Кокс				6			29		
Природный газ	8702	10530	23854	8717	7306	7834	9301	11120	10152
Древесина	1052	957	861	766	822	1526	1848	1907	1966
Другая твердая биомасса	234								
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Мазут							2		
Керосин							1		
Дизельное топливо	29	59	29						
СНГ	1144	1320	1232	1936	1934	2098	2079	1977	2070
Другие нефтепродукты							9	1	3
Антрацит	939	1115	763	1526	2286	1749	2012	2345	1334
Битуминозный уголь	323	147	21		59	57	92	45	73
Природный газ	9389	7599	7775	8186	10288	10693	12096	12708	10620
Древесина	1848	1731	1555	1878	1964	1673	1704	2123	1716
Другая твердая биомасса		29			117	130	214	245	197
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Дизельное топливо		2		11					
СНГ	1982	1913	1849	2486	2591	2659	2664	2722	2912
Другие нефтепродукты	1	1		2					
Антрацит	1127	1409	2161	1885	2446	2538	1758	1584	1273
Битуминозный уголь	42	17	7	70	17	10	9	149	8
Торф								8	
Природный газ	11240	11599	12308	11597	10498	9788	10012	9893	9899
Древесина	1942	1767	1808	2134	2543	2880	10425	11439	13131
Другая твердая биомасса	212		66	419	96	134	181	244	115
Древесный уголь					17	11		2	4


Источник: Топливно-энергетические балансы РМ, 1990 и 1993-2017.

В таблице 3-158 и на рисунке 3-71 показано потребление топлива в категории 1A4b «Жилой сектор» по группам топлив.

Таблица 3-158: Потребление по *группам топлив* в категории 1A4b «Жилой сектор» в Республике Моллова в 1990-2016. ТЛж.


	1990	1991	1992	1993	1994	1995	1996	1997	1998
Жидкое	7380	13936	11065	1358	586	643	839	974	999
Твердое	34941	33621	17219	4161	6367	1819	4841	2699	998
Газообразное	8702	10530	23854	8717	7306	15069	14759	22972	20881
Биотопливо	1287	957	861	913	1027	1731	2171	2200	2142
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Жидкое	1210	1397	1275	1954	1957	2121	2114	2001	2094
Твердое	1262	1262	784	1526	2345	1806	2104	2390	1407
Газообразное	19181	14876	14329	14054	16207	16158	17633	18130	15694
Биотопливо	2171	2259	2142	2377	2521	2123	2212	2708	2184
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Жидкое	2006	1934	1876	2527	2613	2677	2680	2735	2923
Твердое	1169	1426	2168	1955	2463	2548	1767	1741	1282
Газообразное	16289	16871	18197	17838	16746	15940	16175	15947	14573
Биотопливо	2466	2254	2208	2780	2977	3231	10799	11835	13401

В период 1990-2016 годов уменьшилось потребление твердого топлива (-96,3%) и жидкого топлива (-60,4%), но существенно возросло использование газообразного (67,5%) и биотоплива (941,5%).

Рисунок 3-71: Потребление по группам топлив в PM (a,b) и по регионам (c,d) в категории 1A4b «Жилой сектор».

По приведенным ниже диаграммам рисунка 3-71(e,f) можно выполнить сравнение потребления разных видов топлива в секторе 1A4 b в 1990 и 2016 годах.

Рисунок 3-71(e,f) Доля потребления топлив в категории 1A4b в 1990 и 2016 в целом по Молдове.

Анализ структуры потребления топлив по рисунку **3-15** (**e**,**f**) позволяет видеть, что произошло снижение потребления твердого (c 67% до 4%) и жидкого (c 14% до 9%) топлива и рост потребления газообразного (c 17% до 45%) и биотоплива (c 2% до 42%) в общей разбивке по группам топлив.

1А4с "Сельское хозяйство/Лесное хозяйство/Рыболовство"

Потребление топлива в категории источников 1A4c «Сельское хозяйство / лесное хозяйство / рыболовство» рассматривается в двух подкатегориях: 1A4ci «Стационарные источники» и 1A4cii «Мобильные источники».

1A4ci «Стационарные источники»

По данной категории имеется информация для обоих регионов.

Для Левобережья учтены данные по потреблению природного газа, мазута и битуминозного угля (таблица 3-159).

Таблица 3-159: Потребление топлива по ІА4сі в Левобережье в период 2003-2016, ТДж.

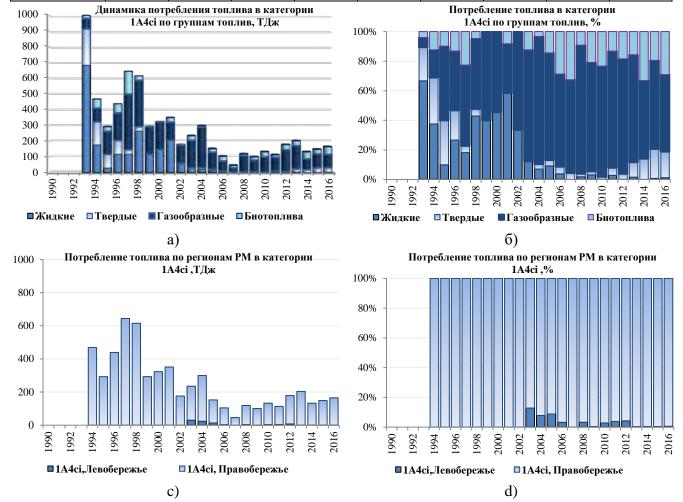
	2003	2004	2005	2006	2008	2009	2010
Мазут					0.1	0.1	0.1
Природный газ	30.5	23.7	13.5	3.4	3.4		3.4
Битуминозный уголь					0.4	0.3	0.2
	2011	2012	2013	2014	2015	2016	
Мазут	0.1	0.1	0.1				
Природный газ	3.4	6.8					
Битуминозный уголь	0.8	0.6	0.6	0.6	0.6	0.95	

источник: по мазуту «Социально-экономическое развитие ПМР», раздел «Материальные и энергетические ресурсы»;; по природному газу — SA "Moldovagaz" prin scrisorile la nr. 07-730 din 06.06.2007; la nr. 02/1-476 din 23.02.2011; la nr. 02/1-288 din 22.01.2014; la nr. 02/1-507 din 10.02.2015; şi la nr. 02/1-2183 din 03.06.2016 ,la nr. 03/2-74 din 12.01.2018, raspuns la Scrisoarea nr. 601/2017-12-03 din 14.12.2017.

Для Правобережья имеются данные по 10 видам топлива (таблица 3-160).

Таблица 3-160: Потребление топлива по 1А4сі в Правобережье в 1990-2016, ТДж.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Дизельное топливо	1078	1206	720	235	59		117	88	264
Мазут	241	1005	683	200	88			29	
Керосин	43	3429	2428	246	29	29			
Другие нефтепродукты									
Антрацит	561	405	250	94	59	29	29	29	
Битуминозный уголь		3910	3834	120	88	59	59		29
Бурый уголь				18					
Природный газ	68	67	67	67	88	147	176	352	293
Древесина и древесные отходы	36	27	18	12	29	29	29	29	
Другая твердая биомасса				29	29		29	117	29
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Дизельное топливо	117								
Мазут						1	3	2	
Керосин		147	205	59	29	20	9	2	
Другие нефтепродукты							2		
Антрацит						7	4	3	
Битуминозный уголь						3	2	2	2
Бурый уголь									
Природный газ	176	176	117	117	177	259	111	65	29
Древесина и древесные отходы			29		29	8	15	18	13
Другая твердая биомасса						2	7	12	2
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Дизельное топливо	_	1		2					


Мазут	2	1		1		3			
Керосин									
Другие нефтепродукты		1						1	2
Антрацит	1	2	2	5		11	12	29	28
Битуминозный уголь	1				6	9	6		
Бурый уголь									
Природный газ	100	74	96	86	132	148	70	89	86
Древесина и древесные отходы	10	19	25	15	31	29	39	27	42

Источник: Топливно-энергетические балансы РМ, 1990 и 1993-2017.

Данные по потреблению топлив в группах (таблица 3-161) по категории 1А4сі «Сельское хозяйство / лесное хозяйство / рыболовство» (*стационарные источники*) позволяют видеть, что потребление жидкого топлива снизилось на 99,9%, твердого также уменьшилось на 94,8%. Использование газообразного топлива возросло на 27% и биотоплива также увеличилось на 33,4%.

Таблица 3-161: Потребление по группам топлив в категории 1А4сі в РМ, 1990-2016, ТДж.

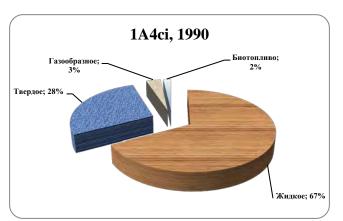

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Жидкое	1363	5639	3832	681	176	29	117	117	264
Твердое	561	4315	4083	232	147	88	88	29	29
Газообразное	68	67	67	67	88	147	176	352	293
Биотопливо	36	27	18	41	58	29	58	146	29
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Жидкое	117	147	205	59	29	21	14	4	
Твердое						10	6	5	2
Газообразное	176	176	117	117	177	258	110	65	29
Биотопливо			29		29	10	22	30	15
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Жидкое	2	3	0	3	0	3		1	2
Твердое	2	2	2	6	7	21	19	30	29
Газообразное	103	74	99	89	139	148	70	89	86
Биотопливо	11	21	31	15	33	32	44	29	48

Рисунок 3-72 (a,b,c,d): Потребление по группам топлив в РМ (a,b) и по регионам (c,d) в категории **1A4ci** в период 1990-2016.

На графиках рисунка 3-72 (c,d) потребления топлив по регионам видно, что ряд для Левобережья неполон (2003-2016).

По приведенным ниже диаграммам рисунка 3-72 (e, f) можно сравнить потребление видов топлива в секторе 1A4 сі в 1990 и 2016 годах.

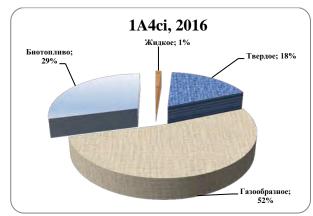


Рисунок **3-72** (**e**, **f**): Доля потребления топлив разных групп в категории 1A4ci в 1990 и 2016 в РМ.

Потребление твердого топлива снизилось (с 28% до18%), жидкого также уменьшилось (с 67% до 1%) топлива, в то вермя как наблюдается рост потребления газообразного топлива (с 3% до 52%) и биомассы (с 2% до 29%).

1A4cii «Мобильное сжигание»

Учет топлива по данной категории имеет следующие особенности. Количество дизельного топлива, указанного в ТЭБ по колонке «Сельское хозяйство», разделено на 2 части. Одна часть (90%) учитывается в данной категории как топливо, сожженное на полях (вне автодорог). Вторая часть (10%) перенесена в категорию 1А3b и рассматривается как топливо, сожженное во время передвижения сельскохояйственной техники на автодорогах. Это касается данных по деятельности для обоих регионов. Общее потребление топлива в категории 1А4сії «Сельское хозяйство / лесное хозяйство / рыбоводство» (мобильные источники) за исследуемый период снизилось в обоих регионах, (таблицы 3-162 и 3-163).

Таблица 3-162: Расход топлива по 1А4сіі в Левобережье за1995-2016, тысяч тонн.

,	,	,			1			,			
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Дизельное топливо	26.8	21.4	28.6	22.1	20.4	14.6	14.4	11.2	7.7	6.9	4.9
Бензин	9.7	6.1	8.9	5.8	3.1	1.8	1.7	1.2	1.3	0.8	0.6
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Дизельное топливо	4.0	2.9	2.7	3.5	7.4	8.4	9.2	10.5	10.2	9.7	2.7
Бензин	0.6	0.4	0.3	0.4	0.6	0.6	0.6	0.8	0.7	0.6	0.3

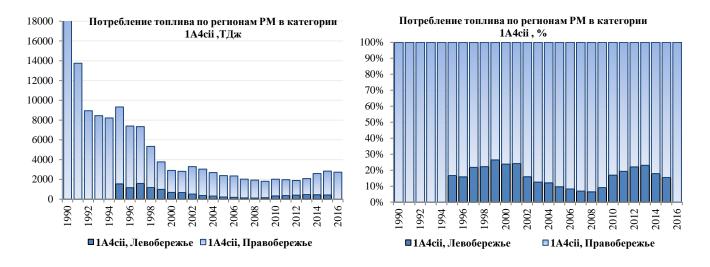
Источник: ПРЕСС - ВЫПУСК «Состояние жилищно - коммунального хозяйства ПМР за 2011-2017 гг»

Таблица 3-163: Потребление топлива по 1А4сіі в Правобережье за 1990-2016, тысяч тонн.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Дизельное топливо	385.7	316.8	206.6	197.0	190.8	180.9	141.3	131.4	96.3
Бензин	7.0	6.4	3.8	1.3	2.0	2.0	5.0	3.0	2.0
СНГ	1.0			0.3					
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Дизельное топливо	63.9	51.3	49.5	65.7	62.1	55.8	50.4	50.4	44.1
Бензин	1.0	1.0	1.0						
СНГ									
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Дизельное топливо	42.3	38.7	39.6	36.9	34.2	37.8	49.5	55.8	63.9
Бензин	*								
СНГ	*								

Источник: Топливно-энергетические балансы РМ, 1990 и 1993-2017.*) для бензина и СНГ в ТЭБ в таблицах в натуральном выражении показаны 0 для ряда лет, хотя в аналогичных таблицах в ТДж имеются значения, таблица 3-86-1.

Данные в ТДж являются более полными по охвату лет для Правобережного региона в рядах значений по бензину и СНГ, таблица 3-164.


Таблица 3-164: Потребление топлива по 1А4сіі по регионам в период 1990-2016, ТДж.

	1А4сіі Правобережье, ТДж			1А4сіі Левобережье, ТДж				1А4сіі Молдова, ТДж				
	Дизельное топливо (0.9)	Бензин	СНГ	Дизельное топливо (0.9)	Бензин	СНГ		Дизельное топливо (0.9)	Бензин	СНГ		
1990	18403	306	46					18403	306	46		
1991	13477	280						13477	280			
1992	8787	166						8787	166			
1993	8380	59	15					8380	59	15		
1994	8106	117						8106	117			
1995	7684	88		1139	423			8823	511			
1996	6021	205		912	267			6933	472			
1997	5598	147		1216	387			6814	534			
1998	4066	88		940	253			5006	341			
1999	2720	59		868	134			3588	193			
2000	2192	29		619	77			2811	106			
2001	2112	29		611	74			2723	103			
2002	2773			475	53			3248	53			
2003	2664			329	55			2993	55			
2004	2370		2	295	34			2665	34	2		
2005	2147	12	2	207	27			2354	39	2		
2006	2156	3	2	171	25			2328	28	2		
2007	1885	6	1	125	17			2009	23	1		
2008	1805	5	3	113	15			1917	20	3		
2009	1639	6	6	149	18			1788	24	6		
2010	1670	4	9	315	28			1986	32	9		
2011	1578	11	8	357	25			1935	36	8		
2012	1464	9	5	393	27			1858	36	5		
2013	1604		6	447	37			2050	37	6		
2014	2112	15	7	436	32			2548	47	7		
2015	2401		5	413	28			2815	28	5		
2016	2722	13	4					2722	13	4		

Суммарные количества потребленных топлив в категории 1А4сіі, по регионам и Молдове в целом, приведены в таблице 3-165 и рисунок 3-73.

Таблица 3-165: Потребление топлива в категории 1А4сіі в РМ в 1990-2016, ТДж.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
1 А4сіі, Левобережье						1562	1179	1604	1193
1А4сіі, Правобережье	18755	13756	8953	8454	8223	7772	6226	5745	4154
1А4сіі, Молдова	18755	13756	8953	8454	8223	9334	7405	7349	5347
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1А4сіі,Левобережье	1002	696	685	528	384	329	233	196	142
1А4сіі, Правобережье	2779	2221	2141	2773	2664	2372	2161	2161	1892
1А4сіі, Молдова	3781	2916	2826	3301	3048	2701	2395	2358	2034
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1А4сіі,Левобережье	127	168	344	383	420	484	467	441	
1А4сіі, Правобережье	1813	1651	1683	1597	1478	1610	2134	2406	2739
1А4сіі, Молдова	1940	1818	2027	1979	1898	2093	2602	2848	2739

Рисунок 3-73: Потребление топлива в категории 1A4cii по регионам в период 1990-2016 (для Правобережья) и в период 1995-2015 (для Левобережья), ТДж .

Потребление топлива в Левобережье снизилось на 72% - с 1 562 ТДж в 1995 году до 441 ТДж в 2015 году. Потребление топлива в Правобережье снизилось на 85% - с 18 755 ТДж в 1990 году до 2739 ТДж в 2016 году в общей разбивке по группам топлив.

3.5.4 Обеспечение качества и контроль качества

Для категории источников 1A4 «Прочие сектора» были выполнены стандартные процедуры проверки и контроля качества в соответствии с методологией оценивания уровня 1. Описание метода расчета по сектору 1A4; данных по деятельности; коэффициентов выбросов, используемых для оценки выбросов парниковых газов; особенностей и нововведений по циклу сделано в специальных страницах файлов по категориям и итоговом файле по сектору. Общая структура файлов по сектору - иерархическая. Выполнено архивирование в бумажном и электронном виде.

3.5.5. Перерасчеты

Для повышения качества национального кадастра парниковых газов в текущем цикле были осуществлены нововведения, которые привели к пересчету выбросов по категории источников 1A4 «Прочие сектора», а именно:

- использование ежегодной НТС по природному газу для всех секторов;
- использование коэффициентов выбросов для газов косвенного действия по Руководству ЕМЕР-2016;
- применение методов восстановления данных. Восстановление выполнено для 1991-1992 для топлив, имеющих пробелы в указанные годы;
- оценка выбросов отдельно для каждого региона выполнена на всех этапах расчетов.

Выбросы, рассчитанные в данном цикле, сравниваются с результатами предыдущей инвентаризации, таблица 3-166.

Таблица 3-166: Сравнение результатов выбросов парниковых газов по категории 1A4 "Другие сектора", включенных в отчеты BUR1 и BUR2 PM, Гг CO₂-е.

	, <u>=</u>										
	1990	1991	1992	1993	1994	1995	1996	1997	1998		
BUR1	7608.40	6194.23	4334.51	2306.80	2156.00	2212.78	2342.97	2548.07	2092.82		
BUR2	7689.71	8128.96	6164.67	2325.43	2160.40	2207.24	2349.64	2545.51	2105.67		
Разница, %	1.07	31.23	42.22	0.81	0.20	-0.25	0.28	-0.10	0.61		

	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	1834.54	1514.33	1448.17	1783.46	2134.96	2302.30	2264.07	2255.59	1704.84
BUR2	1837.58	1523.75	1459.86	1781.97	2132.02	2296.90	2259.24	2251.80	1702.85
Разница, %	0.17	0.62	0.81	-0.08	-0.14	-0.23	-0.21	-0.17	-0.12
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	2008 1716.31	2009 1866.57	2010 2031.00	2011 2358.75	2012 2326.65	2013 2004.76	2014 2046.07	2015 1916.07	2016
BUR1 BUR2				-			-		2016 <i>1812.79</i>

Общие расхождения в выбросах по 1A4, имеющие место в результате перерасчетов, невелики, и составляют менее 1%. Различия в количествах эмиссий для 1991-1992 связаны с восстановлением значений методом интерполяции и замены «исторических» на восстановленные величины.

Далее приведены аналогичные таблицы с результатами перерасчетов выбросов для каждой категории 1A4 «Другие сектора» (таблицы 3-167, 3-168 и 3-169).

Таблица 3-167: Сравнение результатов выбросов парниковых газов по 1A4a "Коммерческий/ институциональный сектор", BUR1 и BUR2 PM, Гг CO₂ -e.

J ,	1 /			,	_				
	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	1427.39	824.98	380.10	594.67	390.57	399.10	366.36	310.28	308.61
BUR2	1426.11	1106.77	807.23	594.67	390.57	399.10	366.36	310.28	308.61
Разница, %	-0.09	34.16	112.37	0.00	0.00	0.00	0.00	0.00	0.00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	230.62	207.23	239.08	430.10	588.02	829.08	707.38	649.60	366.07
BUR2	230.46	206.98	238.73	428.22	586.35	825.31	704.69	647.70	365.88
Разница, %	-0.07	-0.12	-0.14	-0.44	-0.28	-0.45	-0.38	-0.29	-0.05
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	375.14	483.58	481.51	811.05	782.63	475.30	488.84	344.60	
BUR2	374.94	483.53	481.33	810.63	783.49	476.41	490.96	345.61	342.99
Разница, %	-0.05	-0.01	-0.04	-0.05	0.11	0.23	0.43	0.29	

Таблица 3-168: Сравнение результатов выбросов парниковых газов по 1A4b "Жилой сектор", BUR1 и BUR2 PM, $\Gamma\Gamma$ CO₂ -e.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	4701.86	3427.14	2444.50	1020.79	1123.43	1100.71	1407.43	1666.25	1367.61
BUR2	4701.86	5134.16	3984.89	1021.91	1123.43	1095.16	1405.38	1657.13	1360.78
Разница, %	0.00	49.81	63.01	0.11	0.00	-0.50	-0.15	-0.55	-0.50
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	1313.14	1080.35	992.13	1100.99	1309.79	1255.90	1370.64	1425.81	1185.35
BUR2	1307.63	1079.05	988.89	1096.99	1306.36	1253.24	1368.21	1423.78	1183.55
Разница, %	-0.42	-0.12	-0.33	-0.36	-0.26	-0.21	-0.18	-0.14	-0.15
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	1190.40	1242.89	1392.58	1394.60	1393.98	1362.68	1357.36	1350.96	
BUR2	1188.71	1242.51	1391.83	1395.09	1394.75	1364.73	1361.02	1357.45	1257.33
Разница, %	-0.14	-0.03	-0.05	0.03	0.05	0.15	0.27	0.48	

Таблица 3-169: Сравнение результатов выбросов парниковых газов по 1A4ci "Сельское хозяйство / лесное хозяйство / рыболовство», BUR1 и BUR2 PM, Гг CO₂ -е.

ROSMICIBO / MCCHOC ROS		1		JOICI II I					
	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	83,36	918,20	843,47	61,74	29,69	19,75	19,54	26,41	19,71
BUR2	165,95	864,12	706,10	79,25	34,09	19,75	28,26	32,97	39,38
Разница, %	99,08	-5,89	-16,29	28,37	14,81	0,00	44,63	24,83	99,83
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	9,90	9,90	6,83	6,58	10,24	16,20	7,78	4,62	1,97
BUR2	18,62	20,86	22,11	10,98	12,38	17,24	8,07	4,77	1,97
Разница, %	88,07	110,65	223,57	66,81	20,95	6,37	3,76	3,19	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	6,33	4,75	6,11	5,86	8,78	11,00	6,27	8,47	0,00
BUR2	6,32	4,82	6,11	6,01	8,78	11,00	6,27	8,48	8,47
Разница, %	-0,02	1,57	-0,01	2,54	0,01	0,00	0,00	0,10	0,00

В таблице 3-169 большая разница в количестве эмиссий в течение всего временного ряда связана с ошибкой в расчете выбросов от сжигания дизельного топлива по 1A4ci в цикле 1990-2015 (BUR1).

3.5.6. Планируемые улучшения

Улучшения возможны при появлении более полной информации по Левобережному региону.

3.6. 1А5. Неопределенные категории (категория источников 1А5)

3.6.1. Описание категорий источников

Сектор 1А5 «Неопределённые категории», согласно определению классификатору МГЭИК-2006, рассматривает выбросы по «Всем оставшимся видам выбросов при сжигании топлива, неопределённых более нигде; включает выбросы от топлива, поставляемого для вооружённых сил данной страны и других стран, не участвующих в многосторонних операциях». Данная категория включает два источника выбросов:

- 1А5а Стационарное сжигание топлива (все виды топлива, за исключением дизельного топлива, бензина, авиационного бензина, керосина);
- 1А5b Мобильное сжигание топлива, в том числе:
 - 1A5b і Мобильное сжигание топлива для эксплуатации авиационного транспорта (авиационный бензин и керосин);
 - 1A5b ііі Мобильное сжигание топлива для других видов транспорта, не включённые ни в какие иные категории (дизельное топливо и бензин).

Рисунок 3-74. Схема категорий по сектору *1A5* «Неопределённые категории»

3.6.2. Эмиссии парниковых газов по сектору 1А5

Эмиссии парниковых газов прямого действия в СО2-е

В период с 1990 по 2016 год эмиссии парниковых газов прямого действия от сжигания топлива по 1A5 «Неопределённые категории» снизились на 98,2%: с 115,57 до 2,13 тыс. тонн CO_2 - е (таблица 3-170, рисунок 3-75).

Таблица 3-170. Динамика выбросов CO_2 -е по сектору 1A5 «Неопределенные категории» в PM за 1990-2016 гг.

	1990	1991	1992	1993	1994	1995	1996	1997	1998
1A5, тысяч тонн CO ₂ - е	115.5701	107.5724	78.5337	94.3265	89.0194	126.5495	82.8034	77.4557	73.6783
%, по сравнению с 1990 годом	100.0	93.1	68.0	81.6	77.0	109.5	71.6	67.0	63.8
	1999	2000	2001	2002	2003	2004	2005	2006	2007
1A5, тысяч тонн CO ₂ - е	49.8010	36.8044	43.8813	40.1303	28.8076	28.0207	26.2833	39.4920	45.1203
%, по сравнению с 1990 годом	43.1	31.8	38.0	34.7	24.9	24.2	22.7	34.2	39.0
	2008	2009	2010	2011	2012	2013	2014	2015	2016
1A5, тысяч тонн CO ₂ - е	49.2337	13.4527	30.2051	21.5974	8.5786	3.9478	3.3383	2.9147	2.1288
%, по сравнению с 1990 годом	42.6	11.6	26.1	18.7	7.4	3.4	2.9	2.5	1.8

Рисунок 3-75. Величины выбросов CO_2 -е по 1A5 «Неопределённые категории» в PM за 1990-2016 гг

Выбросы каждого парникового газа прямого действия и их долевые вклады в суммарные эмиссии CO₂-е по данному сектору приведены в таблице 3-171.

Общая тенденция –это снижение эмиссий (1990/2016): CO_2 - с 113,97 до 2,1, CH_4 - с 0.2756 до 0,0061; N_2O -с 1,3253 до 0,0233 тысяч тонн CO_2 -е. Наибольший вклад дает CO_2 - 98,6-98,7% в суммарные выбросы по сектору.

Таблица **3-171:** Динамика выбросов парниковых газов прямого действия по 1А5 «Неопределённые категории» в РМ за 1990-2016

_		Выбросы ПГ, та	ыс. тонн СО2-е		Дол	1я от общего колич	ества, %
	CO ₂	CH ₄	N ₂ O	Всего	CO ₂	CH ₄	N ₂ O
1990	113.9722	0.2726	1.3253	115.5701	98.6	0.2	1.1
1991	106.3685	0.1809	1.0231	107.5724	98.9	0.2	1.0
1992	77.7474	0.1152	0.6712	78.5337	99.0	0.1	0.9
1993	93.4518	0.1456	0.7291	94.3265	99.1	0.2	0.8
1994	88.3648	0.1716	0.4830	89.0194	99.3	0.2	0.5
1995	125.6438	0.2589	0.6468	126.5495	99.3	0.2	0.5
1996	81.8376	0.2730	0.6929	82.8034	98.8	0.3	0.8
1997	76.6587	0.2017	0.5953	77.4557	99.0	0.3	0.8
1998	72.8283	0.2211	0.6289	73.6783	98.8	0.3	0.9
1999	49.1563	0.1623	0.4823	49.8010	98.7	0.3	1.0
2000	36.3881	0.1145	0.3018	36.8044	98.9	0.3	0.8
2001	43.3961	0.1253	0.3599	43.8813	98.9	0.3	0.8
2002	39.4529	0.2076	0.4698	40.1303	98.3	0.5	1.2
2003	28.4228	0.1063	0.2785	28.8076	98.7	0.4	1.0
2004	27.6373	0.0782	0.3052	28.0207	98.6	0.3	1.1
2005	25.9403	0.0595	0.2836	26.2833	98.7	0.2	1.1
2006	39.0397	0.0722	0.3801	39.4920	98.9	0.2	1.0
2007	44.5097	0.0975	0.5132	45.1203	98.6	0.2	1.1
2008	48.6609	0.0916	0.4812	49.2337	98.8	0.2	1.0
2009	13.3329	0.0294	0.0903	13.4527	99.1	0.2	0.7
2010	29.9692	0.0586	0.1772	30.2051	99.2	0.2	0.6
2011	21.4301	0.0322	0.1350	21.5974	99.2	0.1	0.6
2012	8.4998	0.0153	0.0635	8.5786	99.1	0.2	0.7
2013	3.8998	0.0075	0.0405	3.9478	98.8	0.2	1.0
2014	3.2915	0.0088	0.0379	3.3383	98.6	0.3	1.1
2015	2.8778	0.0067	0.0302	2.9147	98.7	0.2	1.0
2016	2.1005	0.0061	0.0223	2.1288	98.7	0.3	1.0

Эмиссии газов прямого и косвенного действия

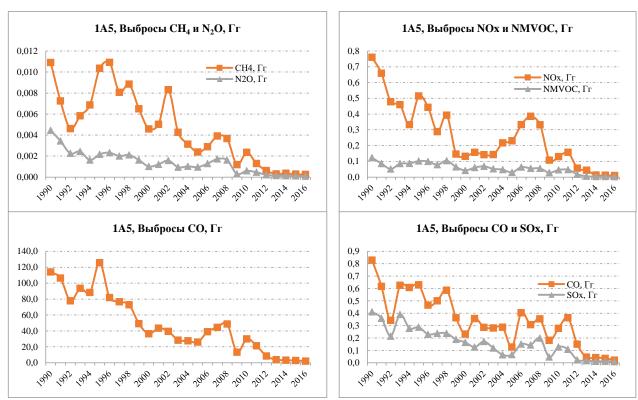
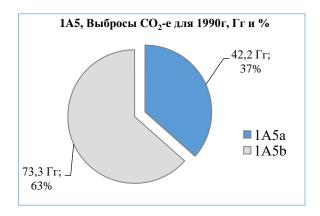
Выбросы по сектору 1A5 «Неопределённые категории» в 2016 году по сравнению с уровнем 1990 года составили следующие величины: CO_2 - 1,8%, CH_4 - 2,2%, N_2O - 1,7%, NO_x - 1,3%, CO - 2,6%, COVNM - 2,1% и SO_2 - 2,4% (таблица 3-172).

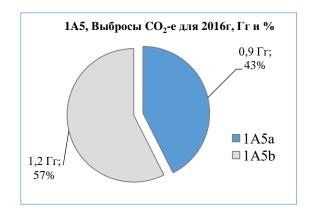
Таблица 3-172: Динамика эмиссий парниковых газов прямого и косвенного действия по 1А5

«Неопределённые категории» в РМ за 1990-2016, тысяч тонн

			1	А5, тыс.	тонн					В %, по о	тношению	к 1990 г		
	CO ₂	CH ₄	N ₂ O	NO _x	CO	COVNM	SO ₂	CO ₂	CH ₄	N ₂ O	NO _x	CO	COVNM	SO_2
1990	113.9722	0.0109	0.0044	0.7597	0.8286	0.1226	0.4110	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1991	106.3685	0.0072	0.0034	0.6579	0.6170	0.0855	0.3599	93.3	66.4	77.2	86.6	74.5	69.8	87.6
1992	77.7474	0.0046	0.0023	0.4776	0.3429	0.0514	0.2146	68.2	42.3	50.6	62.9	41.4	42.0	52.2
1993	93.4518	0.0058	0.0024	0.4591	0.6253	0.0853	0.3903	82.0	53.4	55.0	60.4	75.5	69.6	95.0
1994	88.3648	0.0069	0.0016	0.3325	0.6071	0.0863	0.2787	77.5	63.0	36.4	43.8	73.3	70.4	67.8
1995	125.6438	0.0104	0.0022	0.5138	0.6299	0.1015	0.2872	110.2	95.0	48.8	67.6	76.0	82.8	69.9
1996	81.8376	0.0109	0.0023	0.4423	0.4659	0.0987	0.2300	71.8	100.1	52.3	58.2	56.2	80.6	56.0
1997	76.6587	0.0081	0.0020	0.2875	0.4997	0.0785	0.2379	67.3	74.0	44.9	37.8	60.3	64.1	57.9
1998	72.8283	0.0088	0.0021	0.3919	0.5862	0.1041	0.2375	63.9	81.1	47.4	51.6	70.7	84.9	57.8
1999	49.1563	0.0065	0.0016	0.1458	0.3630	0.0640	0.1887	43.1	59.6	36.4	19.2	43.8	52.3	45.9
2000	36.3881	0.0046	0.0010	0.1311	0.2320	0.0421	0.1644	31.9	42.0	22.8	17.2	28.0	34.4	40.0
2001	43.3961	0.0050	0.0012	0.1565	0.3569	0.0605	0.1268	38.1	46.0	27.2	20.6	43.1	49.4	30.8
2002	39.4529	0.0083	0.0016	0.1411	0.2860	0.0683	0.1720	34.6	76.2	35.4	18.6	34.5	55.7	41.8
2003	28.4228	0.0043	0.0009	0.1427	0.2811	0.0524	0.1187	24.9	39.0	21.0	18.8	33.9	42.8	28.9
2004	27.6373	0.0031	0.0010	0.2161	0.2875	0.0472	0.0644	24.2	28.7	23.0	28.4	34.7	38.5	15.7
2005	25.9403	0.0024	0.0010	0.2301	0.1272	0.0300	0.0661	22.8	21.8	21.4	30.3	15.3	24.5	16.1
2006	39.0397	0.0029	0.0013	0.3325	0.4037	0.0635	0.1512	34.3	26.5	28.7	43.8	48.7	51.8	36.8
2007	44.5097	0.0039	0.0017	0.3855	0.3075	0.0552	0.1437	39.1	35.8	38.7	50.7	37.1	45.1	35.0
2008	48.6609	0.0037	0.0016	0.3318	0.3542	0.0549	0.1988	42.7	33.6	36.3	43.7	42.7	44.8	48.4
2009	13.3329	0.0012	0.0003	0.1073	0.1811	0.0277	0.0472	11.7	10.8	6.8	14.1	21.9	22.6	11.5
2010	29.9692	0.0023	0.0006	0.1294	0.2782	0.0459	0.1281	26.3	21.5	13.4	17.0	33.6	37.5	31.2
2011	21.4301	0.0013	0.0005	0.1561	0.3630	0.0465	0.1085	18.8	11.8	10.2	20.6	43.8	37.9	26.4
2012	8.4998	0.0006	0.0002	0.0565	0.1496	0.0172	0.0238	7.5	5.6	4.8	7.4	18.1	14.0	5.8
2013	3.8998	0.0003	0.0001	0.0432	0.0450	0.0052	0.0176	3.4	2.7	3.1	5.7	5.4	4.2	4.3
2014	3.2915	0.0004	0.0001	0.0119	0.0423	0.0033	0.0118	2.9	3.2	2.9	1.6	5.1	2.7	2.9
2015	2.8778	0.0003	0.0001	0.0112	0.0355	0.0030	0.0124	2.5	2.5	2.3	1.5	4.3	2.4	3.0
2016	2.1005	0.0002	0.0001	0.0097	0.0217	0.0026	0.0098	1.8	2.2	1.7	1.3	2.6	2.1	2.4

Наибольшую долю в структуре общих выбросов парниковых газов составляет углекислый газ, за которым следует закись азота и метан (таблица 3-160, рисунок 3-76).

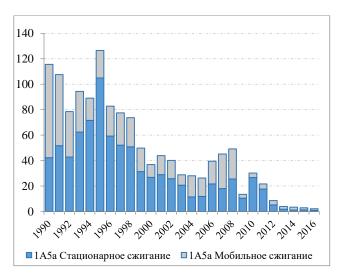




Рисунок 3-76. Динамика выбросов каждого парникового газа по сектору 1А5

Стационарное и мобильное сжигании в секторе 1A5 «Неопределённые категории» Эмиссии газов прямого действия CO_2 -е

В 1990 г. 36,5% от общего объёма выбросов приходилось на *стационарное* (1A5a) сжигание топлива и 63,5% - на *мобильное* (1A5b) сжигание.

К 2016 году доля выбросов от стационарного сжигания топлива увеличилась до 42,6%, а доля от мобильного сжигания топлива снизилась до 57,4% (рисунок 3-77).


Рисунок 3-77. Структура выбросов эмиссий *от стационарных и мобильных источников сектора 1A5 «Неопределённые категории» для 1990 г и 2016 г*

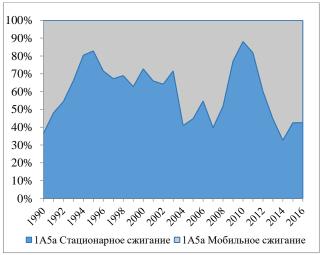

Эмиссии каждого газа прямого действия и их вклад в суммарные выбросы CO_2 -е с разделением на стационарные и мобильные источники сектора 1A5 «Неопределённые категории» приведены в таблице 3-173.

Таблица 3-173: Динамика выбросов парниковых газов прямого действия по 1А5 «Неопределённые категории» в РМ за 1990-2016, тысяч тонн CO₂-е

	1A	5а Стациона тысян то	рное сжиган онн СО2-е	ие,	1 <i>A</i>	45b Мобильн тысяч тоі		2,	1А5, тысяч тонн СО2-е	Доля от	г общего ко %	личества,
	CO ₂	CH ₄	N ₂ O	CO ₂ -e	CO ₂	CH ₄	N ₂ O	CO ₂ -e	Bcero	1A5a	1A5b	1A5
1990	41.9609	0.0495	0.2192	42.2296	72.0113	0.2231	1.1061	73.3405	115.5701	36.5	63.5	100.0
1991	51.5108	0.0285	0.1772	51.7165	54.8577	0.1524	0.8458	55.8559	107.5724	48.1	51.9	100.0
1992	42.5895	0.0304	0.1268	42.7466	35.1579	0.0848	0.5444	35.7871	78.5337	54.4	45.6	100.0
1993	62.1343	0.0514	0.2476	62.4333	31.3175	0.0942	0.4816	31.8933	94.3265	66.2	33.8	100.0
1994	71.3256	0.0658	0.2309	71.6223	17.0392	0.1058	0.2521	17.3971	89.0194	80.5	19.5	100.0
1995	104.4054	0.1242	0.3331	104.8627	21.2384	0.1347	0.3137	21.6868	126.5495	82.9	17.1	100.0
1996	58.7906	0.1551	0.3473	59.2930	23.0470	0.1179	0.3456	23.5105	82.8034	71.6	28.4	100.0
1997	51.7920	0.0769	0.2220	52.0909	24.8668	0.1247	0.3733	25.3648	77.4557	67.3	32.7	100.0
1998	50.4380	0.1194	0.2908	50.8482	22.3903	0.1018	0.3380	22.8301	73.6783	69.0	31.0	100.0
1999	30.9893	0.0815	0.2077	31.2785	18.1670	0.0809	0.2746	18.5225	49.8010	62.8	37.2	100.0
2000	26.5856	0.0532	0.1569	26.7957	9.8025	0.0613	0.1450	10.0087	36.8044	72.8	27.2	100.0
2001	28.7767	0.0569	0.1395	28.9731	14.6194	0.0684	0.2204	14.9082	43.8813	66.0	34.0	100.0
2002	25.3685	0.1186	0.2617	25.7488	14.0844	0.0890	0.2081	14.3815	40.1303	64.2	35.8	100.0
2003	20.4111	0.0668	0.1581	20.6360	8.0117	0.0395	0.1204	8.1716	28.8076	71.6	28.4	100.0
2004	11.3982	0.0249	0.0563	11.4794	16.2391	0.0534	0.2489	16.5414	28.0207	41.0	59.0	100.0
2005	11.6992	0.0278	0.0626	11.7896	14.2411	0.0317	0.2210	14.4938	26.2833	44.9	55.1	100.0
2006	21.4826	0.0322	0.1078	21.6226	17.5571	0.0400	0.2723	17.8694	39.4920	54.8	45.2	100.0
2007	17.7980	0.0339	0.0994	17.9313	26.7117	0.0636	0.4138	27.1890	45.1203	39.7	60.3	100.0
2008	25.3950	0.0291	0.1221	25.5462	23.2659	0.0625	0.3591	23.6875	49.2337	51.9	48.1	100.0
2009	10.3169	0.0155	0.0448	10.3772	3.0161	0.0139	0.0455	3.0755	13.4527	77.1	22.9	100.0
2010	26.4674	0.0420	0.1245	26.6339	3.5018	0.0166	0.0527	3.5712	30.2051	88.2	11.8	100.0
2011	17.5679	0.0177	0.0767	17.6624	3.8622	0.0145	0.0583	3.9350	21.5974	81.8	18.2	100.0
2012	5.1512	0.0028	0.0130	5.1669	3.3486	0.0125	0.0506	3.4116	8.5786	60.2	39.8	100.0
2013	1.7565	0.0006	0.0078	1.7649	2.1433	0.0069	0.0327	2.1828	3.9478	44.7	55.3	100.0
2014	1.0877	0.0004	0.0047	1.0928	2.2039	0.0084	0.0332	2.2455	3.3383	32.7	67.3	100.0
2015	1.2342	0.0004	0.0055	1.2401	1.6436	0.0063	0.0248	1.6747	2.9147	42.5	57.5	100.0
2016	0.9015	0.0002	0.0043	0.9060	1.1989	0.0058	0.0180	1.2228	2.1288	42.6	57.4	100.0

В анализируемый период 1990-2016 выбросы CO_2 -е снизились с 41,96 (1990) до 0,91 (2016) Γ г от стационарного сжигания и с 73,34 (1990) до 1,22 (2016) Γ г от мобильного сжигания, рисунок 3-78.

Рисунок 3-78: Выбросы ПГ при стационарном и мобильном сжигании по сектору 1А5 «Неопределённые категории» в РМ, в 1990-2016 гг., тыс. тонн CO₂-е и %.

Эмиссии газов прямого и косвенного действия сектора 1А5

Динамика выбросов каждого из 7 парниковых газов с разделением по видам сжигания по сектору 1А5 «Неопределённые категории» приведена в таблице 3-174.

Таблица 3-174: Эмиссии парниковых газов по сектору 1А5 при стационарном и мобильном сжигании, тысяч тонн

	-		1А5а Ста	пионапис	е сжиган	ие				145h M	обильное са	кигание		
	CO ₂	CH4	N ₂ O	NO _v	CO	COVNM	SO ₂	CO ₂	CH ₄	N ₂ O	NO _x	CO	COVNM	SO ₂
1990	41.9609	0.0020	0.0007	0.0908	0.3458	0.0459	0.2890	72.0113	0.0089	0.0037	0.6690	0.4828	0.0767	0.1220
1991	51.5108	0.0020	0.0006	0.1355	0.2916	0.0435	0.2649	54.8577	0.0061	0.0037	0.5224	0.3255	0.0539	0.0950
1992	42.5895	0.0012	0.0004	0.1334	0.1655	0.0202	0.1522	35.1579	0.0034	0.0018	0.3442	0.1774	0.0313	0.0624
1993	62.1343	0.0021	0.0008	0.1586	0.3875	0.0485	0.3369	31.3175	0.0034	0.0016	0.3005	0.2378	0.0369	0.0534
1994	71.3256	0.0026	0.0008	0.1867	0.3052	0.0469	0.2561	17.0392	0.0042	0.0008	0.1458	0.3020	0.0394	0.0226
1995	104.4054	0.0050	0.0011	0.3366	0.3173	0.0599	0.2593	21.2384	0.0054	0.0011	0.1771	0.3125	0.0416	0.0279
1996	58.7906	0.0062	0.0012	0.2011	0.2969	0.0717	0.1964	23.0470	0.0047	0.0012	0.2412	0.1689	0.0271	0.0336
1997	51.7920	0.0031	0.0007	0.1428	0.2585	0.0462	0.2014	24.8668	0.0050	0.0013	0.1447	0.2412	0.0324	0.0365
1998	50,4380	0.0048	0.0010	0.1495	0.2909	0.0624	0.2034	22,3903	0.0041	0.0011	0.2424	0.2953	0.0417	0.0341
1999	30,9893	0.0033	0.0007	0.0812	0.2285	0.0465	0.1608	18.1670	0.0032	0.0009	0.0645	0.1345	0.0175	0.0279
2000	26,5856	0.0021	0.0005	0.0540	0.2033	0.0364	0.1515	9.8025	0.0025	0.0005	0.0770	0.0287	0.0057	0.0130
2001	28.7767	0.0023	0.0005	0.0593	0.1541	0.0341	0.1047	14.6194	0.0027	0.0007	0.0973	0.2027	0.0264	0.0221
2002	25.3685	0.0047	0.0009	0.0632	0.2530	0.0620	0.1534	14.0844	0.0036	0.0007	0.0779	0.0330	0.0063	0.0185
2003	20.4111	0.0027	0.0005	0.0565	0.1610	0.0359	0.1069	8.0117	0.0016	0.0004	0.0862	0.1201	0.0166	0.0119
2004	11.3982	0.0010	0.0002	0.0210	0.0596	0.0148	0.0372	16.2391	0.0021	0.0008	0.1951	0.2280	0.0324	0.0272
2005	11.6992	0.0011	0.0002	0.0215	0.0654	0.0163	0.0405	14.2411	0.0013	0.0007	0.2086	0.0618	0.0137	0.0256
2006	21.4826	0.0013	0.0004	0.0397	0.1547	0.0256	0.1197	17.5571	0.0016	0.0009	0.2928	0.2491	0.0379	0.0314
2007	17.7980	0.0014	0.0003	0.0335	0.1302	0.0238	0.0962	26.7117	0.0025	0.0014	0.3520	0.1773	0.0315	0.0475
2008	25.3950	0.0012	0.0004	0.0488	0.1932	0.0274	0.1583	23.2659	0.0025	0.0012	0.2830	0.1610	0.0274	0.0405
2009	10.3169	0.0006	0.0002	0.0216	0.0570	0.0107	0.0426	3.0161	0.0006	0.0002	0.0856	0.1241	0.0170	0.0046
2010	26.4674	0.0017	0.0004	0.0487	0.1652	0.0303	0.1228	3.5018	0.0007	0.0002	0.0806	0.1130	0.0156	0.0053
2011	17.5679	0.0007	0.0003	0.0306	0.1252	0.0180	0.1024	3.8622	0.0006	0.0002	0.1255	0.2378	0.0285	0.0061
2012	5.1512	0.0001	0.0000	0.0086	0.0224	0.0034	0.0185	3.3486	0.0005	0.0002	0.0479	0.1273	0.0138	0.0053
2013	1.7565	0.0000	0.0000	0.0037	0.0155	0.0015	0.0140	2.1433	0.0003	0.0001	0.0395	0.0295	0.0036	0.0036
2014	1.0877	0.0000	0.0000	0.0024	0.0091	0.0009	0.0083	2.2039	0.0003	0.0001	0.0095	0.0331	0.0025	0.0035
2015	1.2342	0.0000	0.0000	0.0026	0.0108	0.0011	0.0098	1.6436	0.0003	0.0001	0.0086	0.0247	0.0019	0.0026
2016	0.9015	0.0000	0.0000	0.0016	0.0089	0.0008	0.0080	1.1989	0.0002	0.0001	0.0080	0.0128	0.0017	0.0018

Далее более подробно рассмотрена категория 1А5а Неопределённые категории, стационарное сжигание в связи с тем, что в ней имеется учет по обоим регионам.

1А5а Неопределённые категории, стационарное сжигание

Эмиссии газов прямого действия в СО2-е

Общие эмиссии парниковых газов по данной категории для 1990-2016 для обоих регионов отражены в таблице 3-175.

Для *Левобережного региона* данные в статистических изданиях имеются только для 2 видов топлива (мазута, угля) и для периода 2008-2016. Величины эмиссий, рассчитанные на основе указанных данных, имеют общую тенденцию снижения, (CO₂-e):

- CO₂- c 5,03 (2008) до 0,9015 (2016) Гг;
- CH₄- с 0,0014 (2008) до 0,0002 (2016) Гг;
- N₂O с 0,0234 (2008) до 0,0043 (2016) Гг;
- СО₂-е с 5,0595 (2008) до 0,9060 (2016) Гг или в 5,6 раз.

Таблица 3-175: Динамика выбросов парниковых газов прямого действия по сектору 1А5а «Неопределённые категории, стационарное сжигание», в Правобережном и Левобережном регионах за 1990-2016, тысяч тонн CO₂-е

тысяч тонн CO ₂ -е 1А5 а Стационарное сжигание, ЛБ 1А5 а Стационарное сжигание, ПБ 1А5 а Стационарное сжигание, Молдова														
1A5	а Стаци	онарное (сжигание	е, ЛБ	1 <i>A</i>	5 а Стаци	онарное	сжигани	е, ПБ	1A:	5 а Стацио	нарное с	жигание	, Молдова
	CO_2	CH ₄	N_2O	CO ₂ -e		CO_2	CH ₄	N_2O	CO ₂ -e		CO_2	$\mathrm{CH_4}$	N_2O	CO ₂ -e
1990	-	-	-	-	1990	41,9609	0,0495	0,2192	42,2296	1990	41,9609	0,0495	0,2192	42,2296
1991	-	-	1	1	1991	51,5108	0,0285	0,1772	51,7165	1991	51,5108	0,0285	0,1772	51,7165
1992	-	-	-	-	1992	42,5895	0,0304	0,1268	42,7466	1992	42,5895	0,0304	0,1268	42,7466
1993	-	-	-	-	1993	62,1343	0,0514	0,2476	62,4333	1993	62,1343	0,0514	0,2476	62,4333
1994	-	-	-	-	1994	71,3256	0,0658	0,2309	71,6223	1994	71,3256	0,0658	0,2309	71,6223
1995	-	-	-	-	1995	104,4054	0,1242	0,3331	104,8627	1995	104,4054	0,1242	0,3331	104,8627
1996	1	-	1	1	1996	58,7906	0,1551	0,3473	59,2930	1996	58,7906	0,1551	0,3473	59,2930
1997	-	-	-	-	1997	51,7920	0,0769	0,2220	52,0909	1997	51,7920	0,0769	0,2220	52,0909
1998	-	-	-	-	1998	50,4380	0,1194	0,2908	50,8482	1998	50,4380	0,1194	0,2908	50,8482
1999	-	-	-	-	1999	30,9893	0,0815	0,2077	31,2785	1999	30,9893	0,0815	0,2077	31,2785
2000	-	-	-	-	2000	26,5856	0,0532	0,1569	26,7957	2000	26,5856	0,0532	0,1569	26,7957
2001	-	-	-	-	2001	28,7767	0,0569	0,1395	28,9731	2001	28,7767	0,0569	0,1395	28,9731
2002	-	-	-	-	2002	25,3685	0,1186	0,2617	25,7488	2002	25,3685	0,1186	0,2617	25,7488
2003	-	-	-	-	2003	20,4111	0,0668	0,1581	20,6360	2003	20,4111	0,0668	0,1581	20,6360
2004	-	-	-	-	2004	11,3982	0,0249	0,0563	11,4794	2004	11,3982	0,0249	0,0563	11,4794
2005	-	-	-	-	2005	11,6992	0,0278	0,0626	11,7896	2005	11,6992	0,0278	0,0626	11,7896
2006	-	-	-	-	2006	21,4826	0,0322	0,1078	21,6226	2006	21,4826	0,0322	0,1078	21,6226
2007	-	-	-	-	2007	17,7980	0,0339	0,0994	17,9313	2007	17,7980	0,0339	0,0994	17,9313
2008	5,0346	0,0014	0,0234	5,0595	2008	20,3604	0,0277	0,0986	20,4867	2008	25,3950	0,0291	0,1221	25,5462
2009	2,8421	0,0008	0,0132	2,8561	2009	7,4748	0,0147	0,0316	7,5211	2009	10,3169	0,0155	0,0448	10,3772
2010	2,6716	0,0007	0,0126	2,6849	2010	23,7958	0,0413	0,1118	23,9490	2010	26,4674	0,0420	0,1245	26,6339
2011	1,6420	0,0004	0,0078	1,6502	2011	15,9259	0,0173	0,0690	16,0122	2011	17,5679	0,0177	0,0767	17,6624
2012	1,5648	0,0004	0,0074	1,5726	2012	3,5864	0,0024	0,0056	3,5943	2012	5,1512	0,0028	0,0130	5,1669
2013	1,5501	0,0004	0,0073	1,5578	2013	0,2064	0,0002	0,0005	0,2071	2013	1,7565	0,0006	0,0078	1,7649
2014	0,9071	0,0002	0,0043	0,9116	2014	0,1806	0,0002	0,0004	0,1812	2014	1,0877	0,0004	0,0047	1,0928
2015	1,0794	0,0003	0,0051	1,0848	2015	0,1548	0,0002	0,0004	0,1553	2015	1,2342	0,0004	0,0055	1,2401
2016	0,9015	0,0002	0,0043	0,9060	2016	-	-	-	-	2016	0,9015	0,0002	0,0043	0,9060

В *Правобережье* также наблюдается снижение эмиссий по данной категории в связи с постоянными усилиями по улучшению распределения топлив Национальным Бюро Статистики, которые увенчались к 2016 году полным распределением топлив по основным категориям и указанием «0» по разделу «Неопределенные категории» (рисунок 3-79).

Рисунок 3-79. Динамика выбросов парниковых газов из категории 1А5 по регионам

3.6.3. Методология, коэффициенты выбросов и данные о деятельности

Методология и коэффициенты выбросов

Оценка прямых выбросов ПГ от категории 1А5 «Неопределённые категории» проводилась в соответствии с методологией 1 уровня, согласно Руководству МГЭИК - 2006, на основе данных о потреблении топлива и коэффициентов выбросов по умолчанию для газов прямого действия. Для оценки газов косвенного действия использованы коэффициенты выбросов по умолчанию согласно Руководству ЕМЕР/ЕЕА- 2016 Update July 2017 (таблица 3-176).

Таблица 3-176: Коэффициенты выбросов для оценки выбросов ПГ по 1А5 «Неопределённые категории», кг/ ТДж -для газов *прямого действия*, и кг/тонну топлива - для газов *косвенного действия*

]	Коэффиц	иенты вы	ібросов				П			
		кг/ ТДж			кг/т то	плива			Источники данных:			
	CO_2	CH ₄	N ₂ O	NOx	CO	COVNM	SO_2	CO ₂ , CH ₄ , N ₂ O	NO _x , CO, COVNM и SO ₂			
				1А5а Ст	ационар	ное сжиган	ие топл	ива				
Антрацит	98300	1	1.5	173	931	88.8	840					
Бурый уголь	101000	1	1.5	173	931	88.8	840		Руководство ЕМЕР/ЕЕА (июль 2017),			
Прочий уголь битуминозный	94600	1	1.5	173	931	88.8	840		категории 1.А.4.а/с, 1.А.5.а, Таб. 3.7			
Кокс	107 000	1	1.5	173	931	88.8	840					
Керосины для печей	71900	3	0.6	306	93	20	94					
Мазут	77400	3	0.6	306	93	20	94		Руководство ЕМЕР/ЕЕА (июль 2017),			
Gaze lampante	71900	3	0.6	306	93	20	94		категории 1.А.4.а/с, 1.А.5.а, Таб. 3.9			
Прочие нефтепродукты	73300	3	0.6	306	93	20	94	Руководство				
Природный газ	56100	1	0.1	74	29	23	0.67	IPCC 2006, Vol. 2, Ta6. 2.2	Руководство ЕМЕР/ЕЕА (июль 2017),			
Сжиженный газ	63100	1	0.1	74	29	23	0.67	Vol. 2, 1ao. 2.2	категории 1.А.4.а/с, 1.А.5.а, Таб. 3.8			
Древесина	112000	30	4	91	570	300	11		категории 1.74.4.ас, 1.74.5.а, 1ао. 5.6			
Прочие виды топлива	112000	30	4	91	570	300	11					
Древесные остатки	100000	30	4	91	570	300	11		D EMED/EEA (2017)			
Сельскохозяйственные остатки	100000	30	4	91	570	300	11		Руководство ЕМЕР/ЕЕА (июль 2017) категории 1.А.4.а/с, 1.А.5.а, Таб. 3.10			
Древесный уголь	112000	30	4	91	570	300	11					
Пеллеты и брикеты	100000	30	4	91	570	300	11					
Биогаз	54600	1	0.1	74	29	23	0.67		Руководство ЕМЕР/ЕЕА (июль 2017), категории 1.А.4.а/с, 1.А.5.а, Таб. 3.8			
	1A	5ь і Мобі	ильное са	кигание т	оплива д	ля эксплуа	тации :	авиационного тра	нспорта			
Авиабензин	71500	0.5	2	4	1200	19	1	Руководство IPCC 2006,	Руководство ЕМЕР/ЕЕА (май 2017),			
Авиакеросин	69300	0.5	2	4	1200	19	1	Vol. 2, Таб. 3.6.4 и Таб. 3.6.5	категории 1.А.З.а, 1.А.Б.b, 1.А.З.а.ii.(i), Таб. 3.3			
·	1A:	5b iii Moo	ильное с	жигание	топлива	для эксплу	атации	других видов тра	нспорта			
Бензин	69300	33	3.2	8.73	84.7	10.05	45.75	Руководство IPCC 2006,	Руководство ЕМЕР/ЕЕА (июнь 2017),			
Дизельное топливо	74100	3.9	3.9	33.37	7.58	1.92	141.04	Vol. 2, Таб. 3.2.1 и Таб. 3.2.2	категории 1.А.3.b.i, 1.А.3.b.ii, 1.А.3.b.iii, 1.А.3.b.iv Таб. 3.5 и Таб. 3.6			

Данные по деятельности

Данные по деятельности для *Правобережного региона* приняты согласно ТЭБ, раздел S.2.1 «Использовано непосредственно в качестве топлива или энергии», столбцы «Для других работ и потребностей» и «Использовано для других целей».

Данные о деятельности, связанные с потреблением топлива для Левобережного региона, представлены в Статистических ежегодниках Левобережного региона и имеются только для мазута и угля за 2008-2016 гг (Таблица 3-177).

Таблица 3-177: Расход топлив по 1А5 «Неопределённые категории» в Левобережье за 2008–2016 гг.

	2008	2009	2010	2011	2012	2013	2014	2015	2016
Прочий уголь битуминозный, ТДж	51.6418	28.9711	28.2409	17.3577	16.5411	16.3859	9.58834	11.4098	9.52982
Прочий уголь битуминозный, тыс. тонн	2.030	1.139	1.110	0.682	0.650	0.644	0.377	0.449	0.375
Мазут, ТДж	1.929	1.31	-	-	-	-	-	-	-
Мазут, тыс. тонн	0.048	0.033	-	-	-	-	-	-	-

Суммарные данные по потреблению топлива по стране в целом для категории 1А5а приведены в таблицах 3-178 и рисунке 3-24.

Таблица 3-178: Потребление топлива по 1А5а «Неопределённые категории, стационарное сжигание 1990-2016 гг. ТЛж

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Антрацит	334.1	238.1	142	46	59	88	60	60	30
Бурый уголь	-	46.7	-	91	29	29	30	30	59
Прочий уголь битуминозный	-	-	-	230	144.5	59	85	116	88
Кокс	-	-	-	3	29	30	1	-	29
Печное топливо	43.1	-	-	-	-	-	-	-	-
Мазут	40.2	273.4	349.7	27	264	850	411	264	161.5
Керосин	-	-	-	247	118	59	88	29	147
Природный газ	-	-	-	100	235	118	30	117	59
Сжиженный газ	46.1	35.4	24.7	14	59	117	30	44.5	59
Древесина	45	-	-	13	30	30	89	30	88
Прочие виды топлива	-	-	-	-	-	-	30	1	-
Древесные остатки	-	-	-	12	1	30	30	30	29.5
Bcero	508.5	593.5	516.5	783	968.5	1410	884	721.5	750
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Антрацит	30	30	59	58	1	16	27	33	98
Бурый уголь	29	29	-	-	-	-	-	-	-
Прочий уголь битуминозный	118	88	58	118	116	26	20	108	15
Кокс	_	29	-	-	-	1	-	-	-
Мазут	59	30	59	41	23	5	3	7	7
Керосин	59	1	1	1	59	2	2	1	1
Прочие нефтепродукты	-	-	-	-	-	1	1	1	1
Природный газ	59	89	30	60	58	104	106	115	90
Сжиженный газ	29	30	177	30	1	13	12	14	16
Древесина	59	29	30	87	59	24	24	27	26
Прочие виды топлива	-	-	-	29	-	-	-	-	-
Древесные остатки	29	29	29	29	16	3	7	4	10
Сельскохозяйственные остатки	_	-	-	-	-	-	-	2	1
Всего	471	384	443	453	333	195	202	312	265
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Антрацит	49	13	25	30	5				
Прочий уголь битуминозный	136.6	34	118.2	91.4	16.5	16.4	9.6	11.4	9.5
Кокс	_	1	-	-	-	-	-	-	-
Мазут	19.9	21.3	19	1	3	2.7	2.3	2	-
Керосин	1	1	1	1	1	-	-	-	-
Природный газ	93	60	83	87	34	-	-	-	-
Сжиженный газ	13	10	105	15	14	-	-	-	-
Древесина	23	9	28	12		_	_	_	-
Древесные остатки	3	5.5	8	2	1	_	_	-	-
Сельскохозяйственные остатки	1	-	7	2	-	_	_	-	_
Всего	339.6	154.8	394.2	241.4	74.5	19.1	11.9	13.4	9.5

Потребление всех видов топлив для категории 1A5a «Стационарное сжигание топлива» имеет тенденцию снижения:

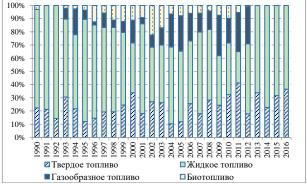
- Антрацит- с 334,1 (1990) до 5 (2012) ТДж;
- Прочий уголь битуминозный- с 230 (1993) до 9,5 (2016) ТДж;
- Кокс- использовался в нескольких годах в незначительных количествах;
- Мазут использовался на протяжении всего временного ряда. Наибольшее количество мазута было сожжено в 1995 году – 850 ТДж, наименьшее в 2011 - 1 ТДж;
- Керосин- с 247 (1993) до 1 (2012) ТДж;
- Природный газ с 100 (1993) до 34 (2012) ТДж;
- Сжиженный газ с 46,1 (1991) до 14 (2012) ТДж;

В 2016 году для стационарного сжигания был использован только один вид топлива Прочий уголь битуминозный.

Рисунок 3-80: Общее потребление топлива по 1А5 «Неопределённые категории» в РМ, 1990–2016 гг.

Данные по потреблению топлива, распределённые по группам топлив, для 1А5 представлены ниже. По сравнению с уровнем базового года, к 2016 году доля жидкого топлива несколько снизилась, соответственно, доля твёрдого топлива увеличилась в общей структуре. С 2015 года нет потребления газообразного топлива и биотоплива (таблица 3-179 и рисунки 3-81).

Таблица 3-179: Общее потребление топлива, *по группам*, для 1А5 «Неопределённые категории» за 1990–2016 гг.


	•	Потребле	ние топлива по гру	иппам, ТДж			Доля от общег	о количества, %	
	Твердое	Жидкое	Газообразное	Биотопливо	Всего	Твердое	Жидкое	Газообразное	Биотопливо
1990	334.10	1112.53	-	44.97	1491.60	22.4	74.6	-	3.0
1991	284.79	1056.13	-	-	1340.92	21.2	78.8	-	-
1992	142.03	852.29	-	-	994.32	14.3	85.7	-	-
1993	370.00	715.32	100.00	25.00	1210.32	30.6	59.1	8.3	2.1
1994	261.50	678.31	235.00	31.00	1205.81	21.7	56.3	19.5	2.6
1995	206.00	1322.04	118.00	60.00	1706.04	12.1	77.5	6.9	3.5
1996	176.00	847.76	30.00	149.00	1202.76	14.6	70.5	2.5	12.4
1997	206.00	681.21	117.00	61.00	1065.21	19.3	64.0	11.0	5.7
1998	206.00	676.05	59.00	117.50	1058.55	19.5	63.9	5.6	11.1
1999	177.00	397.20	59.00	88.00	721.20	24.5	55.1	8.2	12.2
2000	176.00	197.56	89.00	58.00	520.56	33.8	38.0	17.1	11.1
2001	117.00	438.64	30.00	59.00	644.64	18.1	68.0	4.7	9.2
2002	176.00	268.30	60.00	145.00	649.30	27.1	41.3	9.2	22.3
2003	117.00	193.67	58.00	75.00	443.67	26.4	43.7	13.1	16.9
2004	43.00	242.98	104.00	27.00	416.98	10.3	58.3	24.9	6.5
2005	47.00	211.33	106.00	31.00	395.33	11.9	53.5	26.8	7.8
2006	141.00	261.43	115.00	33.00	550.43	25.6	47.5	20.9	6.0
2007	113.00	387.99	90.00	37.00	627.99	18.0	61.8	14.3	5.9

		Потребле	ние топлива <i>по гр</i> ј	иппам, ТДж			Доля от общего	о количества, %	
	Твердое	Жидкое	Газообразное	Биотопливо	Всего	Твердое	Жидкое	Газообразное	Биотопливо
2008	185.64	350.72	93.00	27.00	656.36	28.3	53.4	14.2	4.1
2009	47.97	73.89	60.00	14.50	196.36	24.4	37.6	30.6	7.4
2010	143.24	173.32	83.00	43.00	442.56	32.4	39.2	18.8	9.7
2011	121.36	70.00	87.00	16.00	294.36	41.2	23.8	29.6	5.4
2012	21.54	63.94	34.00	1.00	120.48	17.9	53.1	28.2	0.8
2013	16.39	31.96	-	-	48.35	33.9	66.1	-	-
2014	9.59	32.59	-	-	42.17	22.7	77.3	-	-
2015	11.41	24.56	-	-	35.97	31.7	68.3	-	-
2016	9.53	16.56	-	-	26.09	36.5	63.5	-	-

Общая динамика потребления топлива имеет ярко выраженный характер снижения, с 1491,6 ТДж (1990) до 26,09 ТДж (2016) или в 57 раз меньше.

Потребление твёрдого топлива снизилось на 97% по отношению к базовому году с 334,1 ТДж(1990) до 9,53 ТДж (2016), а жидкого топлива с 1112,53 ТДж (1990) до 16,56 ТДж (2016).

Рисунок 3-81: Общее потребление топлива *по группам*, в рамках категории 1А5 «Неопределённые категории» за 1990–2016 гг.

3.6.4. Оценка неопределенности

К основным факторам, влияющим на неопределённости, относятся методология оценки, коэффициенты выбросов и качество данных о деятельности.

Неопределённости, связанные с коэффициентами выбросов, оцениваются на уровне 5% для CO_2 , и до \pm 50% для CH_4 и N_2O .

Неопределённости в данных о деятельности, связанных с потреблением топлива в энергетике PM, составляют \pm 5% для выбросов CO₂ и CH₄, и \pm 3% для N₂O. Таким образом, совокупные неопределённости в данных о деятельности и коэффициентах выбросов для 1A5 для CO₂ составляют \pm 7,1%, а для CH₄ и N₂O \pm 50,2% и \pm 50,1% соответственно.

Для обеспечения согласованности результатов использовалась одна и та же методология для всего периода в соответствии с эффективной практикой, применяемой к кадастру выбросов ПГ.

3.6.5. Обеспечение качества и контроль качества

Для категории источников 1А5 «Неопределённые категории» были проведены стандартные процедуры обеспечения и контроля качества, в том числе:

- выполнена проверка описания для каждой категории сектора 1А5, сделано разделение данных на три категории, уточнение данных по деятельности и коэффициентов выбросов для мобильного сжигания по сектору;
- указаны источники первичной информации;
- для минимизации ошибок при ручном вводе данных разработаны связи в виде ссылок во всех рабочих файлах. Ручной ввод имеется только в таблицах исходных данных;
- коэффициенты выбросов записаны в одной базовой таблице для каждой категории сектора и далее задействованы автоматически в формулах;
- для выполненных расчётов проверки осуществлены в виде контрольных сумм;
- использованные единицы измерения это ТДж. Для 1990, 1991-1992 и Левобережья выполнены предварительные расчёты в ТДж на основе натуральных единиц с

- применением одних и тех же теплотворных коэффициентов; единицы измерения указаны в каждой таблице (согласованность в расчётах);
- расчётный файл по 1A5 построен по общей структуре: данные по деятельности коэффициенты выбросов расчёты CO₂ и других газов обобщение итоговое по сектору обобщение итоговое по модулю расчёты в CO₂-е расчёты расхождений для текущего цикла в сравнении с предыдущим циклом инвентаризации;
- *движение данных* и результатов расчётов выполнено по иерархической структуре снизу вверх величины по категориям в секторах объединены в итоговые по секторам, а затем в обобщённый файл по модулю в целом в формате CRF;
- внутренняя *документация* сосредоточена в расчётном файле авторской базы данных для 1А5;
- создан архив первичных источников в твёрдой копии и в электронном формате;
- *соответствие* временных рядов для расчётов использован один и тот же метод для всех временного ряда;
- полнота инвентаризации расчёты выполнены для всех лет;
- географический охват для 1990-1992 и 2008-2015 расчёты выполнены для всей территории, а для 1993-2007 только для Правобережного региона;
- построены графики для определения тенденций;
- применимость национальных коэффициентов выбросов коэффициенты выбросов использованы по умолчанию;
- для перерасчётов описаны причины и приведены таблицы сравнения результатов по текущему и предыдущему циклам инвентаризации;
- использование рекомендаций международных экспертов:
 - a) для 1A5 введено разделение на 3 категории 1A5a Stationary, 1A5b Mobile (1A5bi «Aviation Component» и 1A5biii «Other»);
 - б) масла и битум перенесены в Модуль 2 Промышленность.

3.6.6. Перерасчеты

Изменения в цикле 1990-2016 по сектору 1А5 коснулись следующих аспектов:

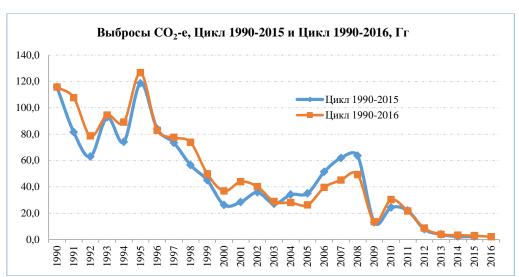

- использование коэффициентов выбросов для газов косвенного действия по Руководству ЕМЕР-2016;
- представление первичных данных и всех расчётов по регионам отдельно, а затем уже суммирование по стране в целом;
- уточнены значения по первичным топливам заново по ТЭБ для всего временного ряда и источникам для Левобережья. Выявлено, что в суммах для всех лет были утеряны данные от одного топлива сжиженного газа. Эти значения невелики от 1 до 117 ТДж или от 1 до 5 тыс. тонн для 13 лет из всего временного ряда. Эти значения были учтены в расчетах текущего цикла.
- в отдельных годах и для отдельных топлив были уточнены значения. Расхождения составили менее 0, 1% в итоговых эмиссиях СО₂-е по сектору.
- ряды данных подготовлены в натуральных единицах и в ТДж;
- восстановлены значения по ряду топлив по методу интерполяции для 1991-1992 г;
- в расчётах использованы значения данных в ТДж для случаев, когда коэффициенты выбросов имеют единицы измерения кг/ТДж (газы прямого действия); для случаев, когда коэффициенты выбросов имеют единицы измерения в кг/тонну, использованы ряды данных в натуральных единицах (для газов косвенного действия и мобильных компонентов автодорожного и авиационного).

Таблица 3-180. Сравнение количеств эмиссий по двум циклам инвентаризации (BUR1, BUR2)

от категории источников 1А5 "Неопределённые категории", Гг СО2-е

	1990	1991	1992	1993	1994	1995	1996	1997	1998			
BUR1	115,570	81,525	62,945	92,660	74,074	118,557	83,926	73,411	56,484			
BUR2	115,570	107,572	78,533	94,326	89,019	126,549	82,803	77,455	73,678			
Расхождение, %	0,0	24,2	19,8	1,8	16,8	6,3	-1,4	5,2	23,3			
	1999	2000	2001	2002	2003	2004	2005	2006	2007			
BUR1	44,960	26,294	28,424	35,799	27,138	34,130	35,017	51,411	61,874			
BUR2	49,801	36,804	43,881	40,130	28,807	28,020	26,283	39,492	45,120			
Расхождение, %	9,7	28,6	35,2	10,8	5,8	-21,8	-33,2	-30,2	-37,1			
	2008	2009	2010	2011	2012	2013	2014	2015	2016			
BUR1	63,4923	13,0278	24,258	21,936	7,7913	3,8456	2,3060	2,2742				
BUR2	49,2337	13,4527	30,205	21,597	8,5786	3,9478	3,3383	2,9147	2,1288			
Расхождение, %	-29,0	3,2	19,7	-1,6	9,2	2,6	30,9	22,0				

В 1990 - 2016 год эмиссии по сектору 1А5 сократились на 98%.

Рисунок 3-82 Сравнение количества эмиссий в двух последних циклах расчётов по сектору 1A5.

3.6.7. Планируемые улучшения

Потенциальные улучшения в категории 1A5 «Прочие» могут быть достигнуты при появлении новых данных о потреблении топлива в Левобережье (или их восстановления) и заполнения существующих пробелов для нескольких лет.

3.7 Летучие выбросы из систем нефти и природного газа (категории источников 1B2)

3.7.1. Описание источников эмиссий сектора 1В2

Летучие эмиссии в РМ имеют место при добыче нефти, ее переработке и хранении, а также при добыче природного газа, схема на рисунке 3-83.

Добыча нефти 1B2 ai Добыча газа 1B2 b

Переработка и хранение нефти 1B2 a iv Распределение нефтепродуктов 1В2 а v

Рисунок 3-83. Схема категорий сектора 1В2 для расчета эмиссий

Добыча нефти

Добыча нефти осуществляется на месторождении возле села Вэлень, в пойме реки Прут, на

территории природного заповедника «Нижний прут» Кагульского района. Оцененные запасы нефти на месторождении составляют 2-3 млн.тонн, экономически выгодные – 0,5-1 млн.тонн.

На месторождении имеется 30 скважин. Добыча производится только из нескольких скважин, остальные законсервированы. В 2003-2005 гг. было задействовано 8 скважин и 5 было в обслуживании. С 2006 по 2012 эксплуатировалось 10, а с 2013 - 15 скважин. Для 2014 – 2015 гг. для расчетов принято такое же количество скважин (15), поскольку информации об изменении их числа нет.

По технологии добытая сырая нефть подается в резервуары — сепараторы по внутренним трубопроводам для предварительной очистки от воды. Затем сепарированная нефть поступает по трубопроводам в накопительные резервуары, откуда транспортируется в цистернах грузовым автотранспортом. В городе Комрат построен нефтеперерабатывающий завод производительностью 30 тысяч тонн в год для получения бензина, дизельного топлива, мазута и других нефтепродуктов.

Ежегодно добывается в среднем около 1-17 тысяч тонн (1-18 тыс.м³) нефти, таблица 3-181 и рисунок 3-84. Плотность нефти составляет 0,941 т/м³ (по данным Отчета «Предельные значения выбросов загрязняющих веществ в атмосферу. Эксплуатация месторождения нефти "Вэлень"», 2015).

Таблица 3-181. Добыча нефти в Республике Молдова в период 2003-2016 гг.*

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Нефть, тысяч тонн*	1	8	5	4	8	15	17	11	13	11	10	8	7	6
Нефть, тысяч м ³	1,000	8,502	5,313	4,251	8,502	15,940	18,066	11,690	13,815	11,690	10,627	8,502	7,439	6,376

^{*}Источник: Топливно-Энергетические Балансы РМ за период 2003-2016

Ведение хозяйственной деятельности на месторождениях нефти и газа осуществлялась американской компанией «Redeco» (1995-2007), затем ООО «Valexchimp» (2007–2016). В 2014 году компания «Valexchimp» планировала ежегодно проводить бурение 1 скважины и ремонт 6 скважин. С 2016 года право на добычу получила американская компания «Fontera Resources Corporation».

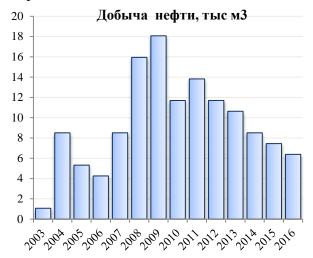


Рисунок 3-84. Объемы добычи природного газа и нефти в Молдове в период 2003-2016гг.

Добыча природного газа

Добыча газа осуществляется на 6 скважинах Викторовского месторождения. Содержание метана в нем составляет 86-92%. Этот газ используется для бытового газоснабжения соседних населенных пунктов Чобалакчия, Сухат, Баймаклия, Флокоаса, Викторовка по локальной сети, не связанной с республиканской газотранспортной системой, в объемах, приведенных в Таблице 3-182 и Рисунке 3-85.

Таблица 3-182: Добыча природного газа в Республике Молдова в период 2003-2016 гг.

		<u> </u>						1 ''					
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Добыча природного газа, ТДж*	8	8	5	4	5	8	3	2	4	4	3	3	4
Ежегодная низшая теплотворная способность газа, ТДж/млн. м3**	33,568	33,597	33,635	33,647	33,660	33,798	33,785	33,827	33,936	34,061	34,221	34,518	34,480
Национальная низшая теплотворная способность (постоянное значение по умолчанию), ТДж/млн. м ³	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860	33,860
Разница между теплотворными значениями, %	0,86	0,78	0,67	0,63	0,59	0,18	0,22	0,10	-0,22	-0,60	-1,06	-1,94	-1,83
Добыча природного газа, млн. м ³	0,2383	0,2381	0,1487	0,1189	0,1485	0,2367	0,0888	0,0591	0,1179	0,1174	0,0877	0,0869	0,1160

Источники: * Топливно-Энергетический Баланс РМ за период 2004-2016;

Газовые сети и поставки природного газа

Газотранспортная система страны включает в себя сети высокого, среднего и низкого давления (некоторые технические параметры трубопроводов приведены в категории 1A3e Трубопроводный транспорт сектора 1A3 Транспорт).

Транспорт газа в РМ осуществляется молдавско-российским предприятием АО «Молдовагаз», в функции которого входит распределение газа потребителям в стране (Правобережный и Левобережный регионы) и транзит в ряд западноевропейских стран, таблица 3-183 и рисунок 3-85.

Таблица 3-183. Объемы природного газа, переданного транзитом и реализованного и в Республике Молдова, млн.м³

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Количество транзитного природного газа, млрд. M^3	25,00	23,00	21,00	19,00	18,2650	20,9090	22,3960	16,9340	16,0210
Количество проданного газа в РМ, млн м ³	3813,70	3843,10	3377,38	2959,80	2861,00	2791,00	3222,00	3491,90	3168,58
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Количество транзитного природного газа, млрд. M^3	17,1424	19,3649	18,6248	21,3323	22,1319	23,8727	25,3129	22,3388	23,6928
Количество проданного газа в РМ, млн .м3	2685,30	2320,20	2628,00	2231,60	2405,40	2565,70	2715,60	2376,20	2489,90
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Количество транзитного природного газа, млрд. M^3	23,2902	17,8911	17,0343	19,8895	19,6200	19,6511	17,9859	16,9700	18.706
Количество проданного газа в РМ, млн .м3	2505,00	2775,00	2970,90	3099,50	3078,10	2386,00	2823,50	2782,00	2799.0

Источник: АО «Молдовагаз»:

Письмо № 604 от 01.04.1999 в ответ на запрос № 02-541 от 28.05.2001,

Письмо № 02-156 от 06.02.2004 в ответ на запрос № 257-01-07 от 26.01.2004,

Письмо № 06-1253 от 27.09.2006 в ответ на запрос № 01-07/1400 от 25.08.2006,

Письмо № 07-730 от 6.6.2007 в ответ на запрос № 47/21-103 от 31.05.2007,

Письмо № 02/1-476 от 23.02.2011 в ответ на запрос № 03-07/175 от 02.02.2011,

Письмо № 02/1-288 от 22.01.2014 в ответ на запрос № 320/2014-01-01 от 03.01.2014,

Письмо № 02/1-507 от 10.02.2015 в ответ на запрос № 407/2015-01-09 от 29.01.2015,

Письмо № 02/1-2183 от 03.06.2016 в ответ на запрос № 512/2016-05-01 от 10.05.2016,

Письмо № 03/2-74 от 12.01.2018 в ответ на запрос № 601/2017-12-03 от 14.12.2017.

^{**}данные в ТДж,; данные в тыс. м³ – расчетные, с использованием теплотворного коэффициента, принятого для газа в данном цикле инвентаризации (33,86 ТДж/ млн м³);

^{**)} Ежегодное теплотворное значение — по письмам № 02-156 от 06.02.2004 полученных от AO "Молдовагаз" в ответ на запрос № 257-01-07 от 26.01.2004;

Письмо №. 06-1253 от 27.09.2006 в ответ на запрос № 01-07/1400 от 25.08.2006;

Письмо №. 07-730 от 6.6.2007 в ответ на запрос №47/21-103 din 31.05.2007;

Письмо №. 02/1-476 din 23.02.2011 в ответ на запрос № 03-07/175 от 02.02.2011;

Письмо №. 02/1-288 от 22.01.2014 в ответ на запрос № 320/2014-01-01 от 03.01.2014;

Письмо №. 02/1-507 от 10.02.2015 в ответ на запрос № 3 407/2015-01-09 от 29.01.2015;

Письмо №. 02/1-2183 от 03.06.2016 в ответ на запрос № 512/2016-05-01 от 10.05.2016;

Письмо №. Nr. 03/2-74 от 12.01.2018 в ответ на запрос № 601/2017-12-03 от 14.12.2017.

Рисунок 3-85. Количество транзитного и реализованного в стране природного газа в период 1990-2016 гг

Поставки сжиженного нефтяного газа

Данные по количеству сжиженного нефтяного газа (LPG) имеются для Правобережного региона для всего временного ряда (1990-2016), и для Левобережного региона - за период 2011-2016 гг., таблица 3-184 и рисунок 3-86. Количество потребленного LPG по Левобережному региону, указанное в статистической литературе, невелико (1,41-2,18 тысяч м³).

Таблица 3-184: Потребление сжиженного газа в Республике Молдова в период 1990-2015гг.

Сжиженный нефтяной газ		1990	1991	1992	1993	1994	1995	1996	1997	1998
Правобережный регион	тыс. тонн	146	128	75,4	39,9	19	19	22	26	25
правооережный регион	тыс. м ³	250	219,18	129,11	68,32	32,53	32,53	37,67	44,52	42,81
		1999	2000	2001	2002	2003	2004	2005	2006	2007
Правобережный регион	тыс. тонн	31	35	47	48	50	52	53	50	53
	тыс. м ³	53,08	59,93	80,48	82,19	85,62	89,04	90,75	85,62	90,75
		2008	2009	2010	2011	2012	2013	2014	2015	2016
Umanakan arrayy yi maryyay	тыс. тонн	55	60	64	67	74	74	77	76	78
Правобережный регион	тыс. м ³	94,18	102,74	109,59	114,73	126,71	126,71	131,85	130,14	133,56
Левобережный регион	тыс. м ³				2,68	2,18	1,87	1,56	1,41	1,52
Молдова для 2011-2016	тыс. м ³				117,41	128,89	128,59	133,41	131,54	135,08

Источники: Энергетические балансы Республики Молдова на 2004-2015 годы для Правобережного региона; для Левобережного региона - ПРЕСС - ВЫПУСК «Состояние жилищно - коммунального хозяйства республики за 2011-2014 гг», 2015.

Рисунок 3-86. Количество потребленного сжиженного газа в РМ в 1990-2016 гг.

3.7.2 Методология расчетов эмиссий

Эффективная практика состоит в разделении деятельности по основным категориям в нефтяной и газовой промышленности и отдельной оценки выбросов по каждой из них. Можно применять разные методологические уровни отдельно для каждой категории, использовать фактические измерения выбросов на крупных источниках.

На текущий момент применен метод уровня 1, который включает расчет эмиссий E каждого парникового газа для каждого сегмента A сектора (нефти и газа) по уравнению:

E парниковый газ , сегмент отрасли =A сегмент отрасли =EF парниковый газ, сегмент отрасли =EEE парниковый газ» сегмент отрасли

E сегмент отрасли = годовые выбросы парникового газа (Γ г);

EF сегмент отрасли = коэффициент выбросов парникового газа (Γ г/ед. деятельности) по сегменту;

A сегмент отрасли = значение по деятельности в данном сегменте (единиц деятельности);

Коэффициенты эмиссий

В расчетах задействованы средние значения из каждого диапазона вариации коэффициентов эмиссий для 4 сегментов отрасли, имеющих место в РМ, таблицы 3-185÷3-188.

Таблица 3-185. Коэффициенты выбросов парниковых газов от нефтяных и газовых скважин

при бурении, тестировании и обслуживании

Категория	Код CISC	CO ₂	CH ₄	N ₂ O	NMVOC				
		Применяемые пределы и средние значения							
Бурение скважин для добычи нефти и газа	1B2a iii 1	100-1700	33-560	-	0,87-15,0				
		900	296,5		7,935				
Т		9000-150000	51-850	0,068-1,1	12-200				
Тестирование скважин для добычи нефти и газа		79 500	450,5	0,584	106				
2	1B2a iii 2	1,9-32,0	110-1800	-	17-2800				
Эксплуатация скважин для добычи нефти и газа		17	955		1 408,5				

Таблица 3-186. Коэффициенты выбросов при добыче, транспортировке и хранении нефти

Категория	Код CISC	CO_2	CH ₄	N ₂ O	NMVOC
		Применяем	ые пределы и средни	не значения	
Hamana na fanana may arahma na fa aya	1B2a iii 2	0,1-4300	2-60000	-	1,8-75000
Летучие выбросы при нефтедобыче		2 150	30 000		37 500,9
Davier and analysis and state and st	1B2a i	95-130	720-990	-	430-590
Вентилирование при нефтедобыче		112,5	855		510
Character as you want and a second	1B2ai	41000-56000	25-34	0,64-0,88	21-29
Сжигание на факеле при нефтедобыче		48 500	30	0,76	25
Транспортировка нефти цистернами	1B2a iii 3	2,30	25	-	250
Перегонка нефти	1B2a iii 4	-	21,8	-	-
Распределение нефтепродуктов	1B2a iii 5	-	-	-	-

Таблица 3-187. Коэффициенты эмиссий при добыче, транспортировке и хранении газа

Категория	Код CISC	CO ₂	CH ₄	N ₂ O	NMVOC
		Приг	меняемые пределы	и средние значен	ния
Летучие выбросы при добыче природного газа	1B2b ii 2	14-180	380-24000	-	91-1200
		97	12 190		645,5
Летучие выбросы при транспортировке природного газа	1B2b ii 4	0,88-2,00	166-1100	-	7,0-16,0
		1,44	633		11,50
Потунна выбразы при разпрататанни прирадного горо	1B2b ii 5	51-140	1100-2500	-	16-36
Летучие выбросы при распределении природного газа		95,5	1 800		26
Canada and daylore was referred to the same and the same	1B2b ii	1200-1600	0,76-1,00	0,021-0,029	0,62-0,85
Сжигание на факеле при добыче природного газа		1 400	0,88	0,025	0,74
The street was the street and the st	1B2bi	3,1-7,3	44-740	-	4,6-11,0
Продувки при транспортировке природного газа		5,20	392		7,80

Таблица 3-188. Коэффициенты выбросов при транспортировке сжиженного газа

Категория	Код CISC	CO_2	CH ₄	N_2O	NMVOC
Летучие выбросы при транспортировке сжиженного нефтяного газа	1B2aiii 3	430	=	0,0022	•

3.7.3. Результаты расчетов эмиссий по сектору 1В2

Общая тенденция по сектору 1B2 - это снижение выбросов. Эмиссии в CO_2 -е в 2016 году составили 618,61 Γ г, что на 24% ниже количества летучих выбросов в 1990 году (812,88 Γ г), таблица 3-189 и рисунок 3-87.

Таблица 3-189. Динамика выбросов ПГ от категории источников 1В2 "Летучие выбросы из

систем нефти и природного газа", Гг

	1000	1001	1002	1002	1004	1007	1007	1007	1000
	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO_2 , $\Gamma\Gamma$	0,64	0,61	0,52	0,44	0,41	0,42	0,47	0,47	0,43
CH_4 , $\Gamma\Gamma$	32,49	30,49	27,60	24,80	23,87	26,46	28,76	23,64	22,12
N_2O , $\Gamma\Gamma$	5,50E-07	4,82E-07	2,84E-07	1,50E-07	7,16E-08	7,16E-08	8,29E-08	9,79E-08	9,42E-08
NMVOC, ΓΓ	0,58	0,54	0,49	0,44	0,43	0,48	0,52	0,42	0,39
СО2-е, Гг	812,88	762,93	690,62	620,50	597,19	661,81	719,36	591,53	553,55
	1999	2000	2001	2002	2003	2004	2005	2006	2007
CO_2, Γ_{Γ}	0,39	0,38	0,41	0,39	1,06	1,10	1,12	1,23	1,26
CH_4 , $\Gamma\Gamma$	22,40	24,03	23,82	25,88	27,06	29,37	31,02	27,33	29,05
Ν ₂ Ο, ΓΓ	1,17E-07	1,32E-07	1,77E-07	1,81E-07	4,86E-06	4,87E-06	4,87E-06	6,03E-06	6,04E-06
ΝΜΥΟΟ, ΓΓ	0,40	0,43	0,43	0,47	0,54	0,87	0,78	0,68	0,87
СО2-е, Гг	560,51	601,01	595,93	647,45	677,52	735,35	776,56	684,49	727,61
	2008	2009	2010	2011	2012	2013	2014	2015	2016
CO_2, Γ_{Γ}	1,2748	1,2732	1,2747	1,3141	1,3104	1,6441	1,6721	1,6581	1,4946
CH_4 , Γ_{Γ}	28,8986	23,9173	23,1928	26,4162	26,0365	24,7983	23,8129	22,6641	21,1424
N_2 Ο, Γ Γ	6,05E-06	6,07E-06	6,08E-06	6,10E-06	6,12E-06	9,04E-06	9,05E-06	9,05E-06	2,97E-01
ΝΜΌΟ, ΓΓ	1,1483	1,1325	0,8770	1,0167	0,9297	0,8793	0,7772	0,7158	0,6615
СО2-е, Гг	723,74	599,21	581,10	661,72	652,22	621,60	597,00	568,26	618,6186

Рисунок 3-87. Эмиссии ПГ по 1В2 "Летучие выбросы из систем нефти и природного газа"

Таблица 3-190. Выбросы ПГ от категории источников 1В2 "Летучие выбросы из систем нефти и природного газа" по регионам, Гг и %

Гигаграмм	1990	1991	1992	1993	1994	1995	1996	1997	1998
Правобережный регион	805,163	906,622	775,269	665,296	541,363	627,529	678,561	548,163	515,371
Левобережный регион					77,1607	55,6082	65,4963	72,5587	66,2453
Молдова	805,1627	906,6216	775,2688	665,2960	618,5236	683,1369	744,0574	620,7220	581,6167
Правобережье, %	100	100	100	100	87,5	91,9	91,2	88,3	88,6
Левобережье, %					12,5	8,1	8,8	11,7	11,4
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Правобережный регион	529,219	577,082	577,788	648,079	676,134	729,503	772,891	693,077	729,296
Левобережный регион	66,0875	63,2194	70,9037	53,2578	57,5193	64,2250	63,1653	47,5397	57,8079
Молдова	595,3063	640,3016	648,6921	701,3372	733,6534	793,7282	836,0558	740,6166	787,1037
Правобережье, %	88,9	90,1	89,1	92,4	92,2	91,9	92,4	93,6	92,7
Левобережье, %	11,1	9,9	10,9	7,6	7,8	8,1	7,6	6,4	7,3
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Правобережный регион	723,515	587,867	568,115	650,873	647,317	644,808	604,622	570,894	618,619
Левобережный регион	61,9702	78,6962	84,8291	89,0377	89,4073	61,0962	79,8377	83,6077	82,7058
Молдова	785,4848	666,5631	652,9441	739,9111	736,7247	705,9040	684,4601	654,5012	701,3244
Правобережье, %	92,1	88,2	87,0	88,0	87,9	91,3	88,3	87,2	88,2
Левобережье, %	7.9	11,8	13.0	12,0	12,1	8.7	11,7	12,8	11,8

Источники данных

Первичные данные по деятельности для категории 1В2 собраны из следующих источников: 1) ТЭБ (данные по добыче газа и нефти, по потреблению сжиженного газа) – как базовый источник информации;

- 2) Письма АО «Молдовагаз» за ряд лет объемы газа, переданного транзитом и распределенного внутри страны, а также структура газовых сетей (базовый источник информации), Таблица 3-191.
- 3) Годовые отчеты АНРЕ данные по импорту сжиженного газа (дополнительный источник данных, используется для процедур контроля и проверки качества первичных данных).

Таблица 3-190. Количество транзитного, импортированного и потребленного природного газа

Габлица 3-190. Количество транзі	1 990	1991	1 992	1993	1994	1995	1996	1997	1998
Количество импортируемого природного	1 990	1991	1 994	1993	1774	1993	1990	1771	1770
газа, млн. м ³	3844	3873	3435	3093	3012	3005	3489	3676	3333
Теплотворная способность газов, ккал / м ³	3044	3073	3433	3073	3012	3003	3407	7980	7970
Теплотворная способность газов, ккал / м Теплотворная способность газов, ТДж / млн. м ³								33,404	33,362
Плотность метана, кг / м ³								0,683	0,683
,								97.9	97.9
Процент метана в природном газе	30	30	50	133	151	214	267	184	164
Технологические потери, в том числе:			58						
в распределительных сетях	30	30	58	133	52	71	112	68	107
в магистральных сетях	0	0	0	0	98	143	155	116	58
Количество природного газа, переданного					40.04	***	20.207	4 < 02 4	4 < 0.04
транзитом, млн. м ³					18,265	20,909	22,396	16,934	16,021
Потребленное количество природного газа в					****	.=			
Молдове, в том числе:	3813,7	3843,1	3377,38	2959,8	2861	2791	3222	3491,9	3168,58
Правобережный регион					1149,95	1557,88	1769,61	1882,9	1699,58
Левобережный регион					1711,05	1233,12	1452,39	1609	1469
Технологические потери, % от общего	0,78	0,77	1,69	4,30	5,01	7,12	7,65	5,01	4,92
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Количество импортируемого природного									
газа, млн. м ³	2856,8	2477,5	2732,1	2419,8	2614,6	2687,2	2819,2	2472,3	2714,7
Теплотворная способность газов, ккал / м ³	7976	7978	7972	7992	8007	8019	8026	8035	8038
Теплотворная способность газов, ТДж / млн. м ³	33,388	33,396	33,371	33,455	33,517	33,568	33,597	33,635	33,647
Плотность метана, кг / м ³	0,683	0,683	0,683	0,683	0,683	0,683	0,683	0,683	0,683
Процент метана в природном газе	97,9	97,9	97,9	97,9	97,9	97,9	97,9	97,9	97,9
Технологические потери, в том числе:	154,7	116,9	90,1	92,6	103,3	73,3	102,8	94	96,2
в распределительных сетях	102,5	79,4	72,8	65,5	66,1	52,9	54,2	55,6	54,5
в магистральных сетях	52,2	37,5	17,3	27	37,2	20,4	48,6	38,4	41,7
Количество природного газа, переданного	,	,-	.,-		/	- 7	-,-	,	,.
транзитом, млн. м ³	17,1424	19,3649	18,6248	21,3323	22,1319	23,8727	25,3129	22,3388	23,6928
Потребленное количество природного газа в		,		,					
Молдове, в том числе:	2685,3	2320,2	2628	2231,6	2405,4	2565,7	2715,6	2376,2	2489,9
The state of the s	, .	,		1050		,	- , -	/	,-
Правобережный регион	1219,8	918,3	1055,7	,6	1129,9	1141,5	1314,9	1322	1208
Левобережный регион	1465,5	1401,9	1572,3	1181	1275,5	1424,2	1400,7	1054,2	1281,9
Технологические потери, % от общего	5.42	4.72	3,30	3,83	3,95	2.73	3,65	3,80	3,54
1 content recture nomepu, 70 cm dougeed	2008	2009	2010	2011	2012	2013	2014	2015	%
Количество импортируемого природного	2000	2007	2010	2011	2012	2010	2011	2010	70
газа, млн. м ³	2725,5	2979,4	3176,2	3213,1	3182,5	2472.5	2915,6	2926	-23,9
Теплотворная способность газов, Ккал / м ³	8041	8074	8071	8081	8107	8137	8175	8246	20,5
Теплотворная способность газов, ТДж / млн. м ³	33,660	33,798	33,785	33,827	33,936	34,061	34,221	34,518	
Плотность метана, кг / м ³	0,683	0,683	0,683	0,6914	0,6906	0,6946	0,6992	0,705	
Процент метана в природном газе	97,9	97,9	97,9	96,9	97	96,5	96,1	95,5	
Технологические потери, в том числе:	94.7	93,9	98,6	113,6	104.4	86,5	90,1	93,3	
	55,5		57,9	54,4	52,1	49,8	48,3	43	
в распределительных сетях	39,2	55,7	40,7	59,2				101	
в магистральных сетях	39,2	38,2	40,7	39,2	52,3	36,7	43,8	101	
Количество природного газа, переданного	22 2002	17 0011	17 02 42	10 0005	10.62	10 (511	17 0050	16.07	
транзитом, млн. м ³	23,2902	17,8911	17,0343	19,8895	19,62	19,6511	17,9859	16,97	
Потребленное количество природного газа в	2505	2555	2050.0	2000 5	2050 1	2207	2022.5	2502	25.1
Молдове, в том числе:	2505	2775	2970,9	3099,5	3078,1	2386	2823,5	2782	-27,1
Правобережный регион	1130,8	1029,9	1089,8	1152,1	1095,5	1031,2	1053,1	928	
	1 127/1/2	1745,1	1881,1	1974,4	1982,6	1354,8	1770,4	1854	l
Левобережный регион Технологические потери, % от общего	1374,2 3,47	3,15	3,10	3,54	3,28	3,50	3,16	4,92	

Источник: АО «Молдовагаз» :

Письмо № 604 от 01.04.1999 в ответ на запрос № 02-541 от 28.05.2001,

Письмо № 02-156 от 06.02.2004 в ответ на запрос № 257-01-07 от 26.01.2004,

Письмо № 06-1253 от 27.09.2006 в ответ на запрос № 01-07/1400 от 25.08.2006,

Письмо № 07-730 от 6.6.2007 в ответ на запрос № 47/21-103 от 31.05.2007,

Письмо № 02/1-476 от 23.02.2011 в ответ на запрос № 03-07/175 от 02.02.2011,

Письмо № 02/1-288 от 22.01.2014 в ответ на запрос № 320/2014-01-01 от 03.01.2014,

Письмо № 02/1-507 от 10.02.2015 в ответ на запрос № 407/2015-01-09 от 29.01.2015, Письмо № 02/1-2183 от 03.06.2016 в ответ на запрос № 512/2016-05-01 от 10.05.2016,

Письмо № 03/2-74 от 12.01.2018 в ответ на запрос № 601/2017-12-03 от 14.12.2017.

3.7.3 Оценка неопределенности

Основные факторы, влияющие на неопределенности, связаны с методологией оценки, коэффициентами выбросов, а также с полнотой и качеством данных о деятельности.

Неопределенности, связанные с коэффициентами выбросов ПГ прямого действия, оцениваются в \pm 25%. Неопределенности в данных о деятельности, связанные с потреблением топлива до \pm 25%.

Неопределенности по 1В2 "Летучие выбросы из систем нефти и природного газа" оценены на уровне \pm 35,36%. *Комбинированные неопределенности* составили \pm 0,0091% - для CO_2 , \pm 2,1902% - для CH_4 . Неопределенности ε *тенденциях* составили \pm 0,0026% для CO_2 и \pm 0,5918% для CH_4 .

3.7.4 Обеспечение качества и контроль качества

Для сектора 1В2 "Летучие выбросы из систем нефти и природного газа" выполнены стандартные процедуры проверки и контроля качества, в соответствии с методологией оценки Уровня 1 (МГЭИК, 2006). Они включили:

- описание категории, соответствие данных по деятельности и коэффициентов выбросов классификатору МГЭИК-2006;
- проверку источников первичной информации, указанных в каждой таблице с данными;
- проверку коэффициентов выбросов;
- проверку последовательности расчетов, согласованности временных рядов, полноты инвентаризации по длине временного ряда, полноты географического охвата источников эмиссий в секторе, прозрачности расчетов;

При выполнении расчетов в специальном расчетном файле были реализованы рекомендации Руководства МГЭИК по документированию, архивированию для возможной минимизации ошибок. Для этого были выполнены следующие действия:

- коэффициенты эмиссий записаны в одной базовой таблице для каждой категории сектора и далее задействованы в формулах в автоматическом режиме;
- для промежуточных проверок предусмотрены строки контрольных сумм;
- для уменьшения количества ошибок ручного ввода предусмотрены связи в виде ссылок во всех рабочих листах. Ручной ввод имеется только в таблицах исходных данных;
- расчетный файл по 1В2 построен по *общей структуре, которая отражает движение данных*: описание сектора и его особенностей данные по деятельности коэффициенты выбросов расчеты парниковых газов итоговые выбросы по сектору для каждого газа расчеты в СО₂-е расчеты расхождений для текущего цикла в сравнении с предыдущим циклом инвентаризации.
- для связи авторской базы данных и текста главы предусмотрено специальное форматирование таблиц для удобства переноса в текст главы;
- *движение данных* и результатов расчетов осуществляется по иерархической структуре снизу вверх: величины по категориям объединены в итоговые по каждому сектору; результаты по секторам объединены в итоговый суммарный файл по модулю в целом;
- *внутренняя документация* сосредоточена в расчетном файле авторской базы данных для 1B2;
- создан архив первичных источников в твердой копии и в электронном формате.

Также выполнены следующие процедуры проверки и контроля качества:

- проверка *соответствия временных рядов*: для расчетов использован один и тот же метод для всех временного ряда;
- проверка *полноты инвентаризации по временному ряду:* расчеты выполнены для всех лет. Добыча газа и нефти началась в 2003 и 2004, поэтому ряды данных для этих позиций

- короче, чем в других секторах модуля «Энергетика»;
- построены графики для определения тенденций.
- *применимость национальных коэффициентов* выбросов: коэффициенты выбросов использованы по умолчанию, но использованы национальные низшие теплотворные коэффициенты;
- *использование рекомендаций международных экспертов*, касающихся использования ежегодной HTC по природному газу и представления результатов по каждому региону страны отдельно.

Выполненные расчеты в ТДж с уточнением категорий источников по классификатору МГЭИК-2006 в текущем цикле инвентаризации станут базовыми для последующего улучшения.

3.7.5 Перерасчеты

Цикл 1990-2015

Перерасчеты были предприняты в связи с уточнениями в распределении первичных данных по категориям сектора 1B2, в том числе:

- 1) с учетом структуры программного комплекса IPCC-2006, версия V2.17;
- 2) с исключением строк, связанных с заполнением строк «Flaring» в секторах нефти и газа;
- 3) с заполнением новых, ранее не присутствовавших, дополнительных строк по учету выбросов от газовых скважин;
- 4) с заполнением новой категории 1.В.2.а.iii.4 Refining (oil) для СН₄.
- 5) с использованием других коэффициентов преобразования в CO_2 -е для газов прямого действия (для CH_4 -25 вместо 21, для N_2O -298 вместо 310).

Полученные величины эмиссий при перерасчетах в данном цикле инвентаризации, отличаются от количеств, полученных в предыдущем цикле. Расхождения составляют 18-20%, Таблица 3-192.

Таблица 3-192. Сравнительные результаты инвентаризации выбросов ПГ из категории источников 1В2 «Летучие выбросы из систем нефти и природного газа", включенных в Цикл 1990-2013 и Цикл 1990-2015, Γ г CO_2 - е

		,							
Эмиссии, Гг СО2-е	1990	1991	1992	1993	1994	1995	1996	1997	1998
Цикл 1990-2013	682,932	640,9545	580,1931	521,3013	501,7084	555,9854	604,3381	498,127	466,2276
Цикл 1990-2015	812,8794	762,9286	690,6247	620,5042	597,1941	661,8075	719,3601	591,5343	553,5516
Разница, %	19,03	19,03	19,03	19,03	19,03	19,03	19,03	18,75	18,73
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Цикл 1990-2013	465,0927	503,4185	500,1666	542,2695	573,3672	617,5696	660,3041	575,2321	611,7275
Цикл 1990-2015	560,5056	601,0105	595,9298	647,4523	677,5233	735,3523	776,5573	684,4862	727,6056
Разница, %	20,51	19,39	19,15	19,40	18,17	19,07	17,61	18,99	18,94
	2008	2009	2010	2011	2012	2013	2014	2015	((2015-1990)/1990) *100
Цикл 1990-2013	608,8065	504,3022	488,7817	556,6107	548,5296	522,8092		570,8936	
Цикл 1990-2015	723,7414	599,2069	581,0975	661,7214	652,2248	621,6035	596,9973	570,8936	-30,09
Разница, %	18,88	18,82	18,89	18,88	18,90	18,90		0,00	

Сокращение: BUR – Biennial Update Report (англ.)

Цикл 1990-2016

В цикле 1990-2016 перерасчеты произведены для данного сектора по 2 причинам:

- 1) в связи с выделением отдельно Левобережного региона (суммарные количества эмиссий сохранились без изменения);
- 2) использованием ежегодной НТС по природному газу. Изменения в данных по потреблению природного газа составили менее 1,5%, что малозначимо, и суммарные эмиссии практически не изменились, таблица 3-193.

Таблица 3-193: Сравнительные результаты инвентаризации выбросов по 1B2 «Летучие выбросы из систем нефти и природного газа» в BUR1(цикл 1990-2015) и BUR2 (цикл 1990-2016), тысяч тонн CO_2 -е

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	805,1627	906,6216	775,2688	665,2960	541,3629	627,5288	678,5611	548,1633	515,3714
BUR2	805,1627	906,6216	775,2688	665,2960	541,3629	627,5288	678,5611	548,1633	515,3714
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	529,2188	577,0822	577,7884	648,0794	676,1341	729,5032	772,8905	693,0769	729,2958
BUR2	529,2188	577,0822	577,7884	648,0794	676,1341	729,5032	772,8905	693,0769	729,2958
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	723,5146	587,8670	568,1149	650,8734	647,3175	644,8078	604,6224	570,8936	
BUR2	723,5146	587,8670	568,1149	650,8734	647,3175	644,8078	604,6224	570,8936	618,6186
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

3.7.6 Планируемые улучшения

Потенциальные улучшения по сектору 1В2 "Летучие выбросы из систем нефти и природного газа" могут быть реализованы при наличии дополнительной информации по утечкам в системе распределения нефти и природного газа. При этом учитываются утечки при производстве, переработке, рафинировании и распределении нефтепродуктов и природного газа конечным потребителям, при функционировании оборудования, потерях при испарении, вентилировании, случайных разливах при повреждении трубопроводных систем и т.д.

Улучшения возможны при использовании метода более высокого уровня. Также возможны улучшения в данных, если будет доступной информация для Левобережного региона за весь временной ряд для количеств потребленного сжиженного газа.

3.8 Международная авиация

3.8.1 Описание категорий источников

В рамках категории источников "Международная авиация" выполняется мониторинг выбросов парниковых газов от сжигания топлив на международном авиационном транспорте. Выбросы парниковых газов по данной категории относятся к той стране, в которой воздушное судно заправлялось топливом.

В Молдове международные воздушные перевозки осуществляются авиасудами, использующими керосин. Авиапарк Молдовы на текущий момент включает самолеты производителей зарубежных стран и стран СНГ различных типов.

Авиасуда стран СНГ представлены самолетами ТУ-134, ТУ-154, АН(2,12,24,26,28,32,72,74), Ил-18, Ил-76, Як (18,40,42) и вертолетов - Ми(8, 17,26), Ка(26, 32).

Авиасуда производителей других стран включают:

- большие коммерческие реактивные самолеты A-319, 320, 321; В -707(737, 739, 747,757), EMb-190 (120,135,145,170), Fokker 70 и Fokker 100, MD-81(82,83) RJ-85, RJ-100, CRJ,
- Rombac-561 Rc:
- турбовинтовые ближнемагистральные средние самолеты Saab-340 (другое название SF-340), Saab-2000 (SF-2000), L410, DHC8, ATR-42;
- легкие турбовинтовые самолеты- X-32 Becas;
- малые реактивные самолеты- Falcon-2000EX, Learjet-35;

В 2016 году вылеты осуществлялись и самолетом А-300-600.

Рисунок 3-88. Фото (1) некоторых самолетов (слева направо): Airbus A320; Boeing 707; Boeing 737-500; Cessna 500; Dassault Falcon 2000; Embraer 190; Embraer EMB-120 Brasilia; ERJ-190; Fokker 70

Общее количество вылетов растет с каждым годом (рисунок 3-88), составляя тренд от 2 829 (1995 г) до 12 058 (2016 г) вылетов.

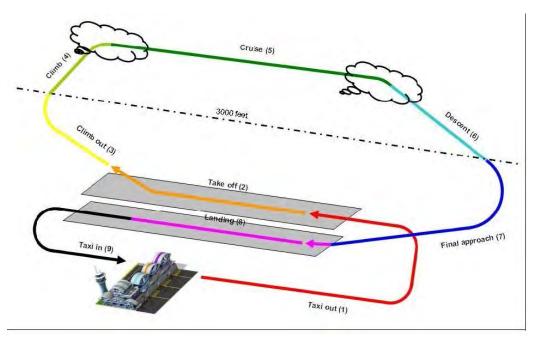


Рисунок 3-89. Количество вылетов самолетов

Эмиссии CO_2 составляют наибольшую долю в общем объеме выбросов от международного воздушного транспорта (около 70%). Водяной пар дает вклад чуть менее 30%, и только около 1% составляет вклад других газообразных загрязняющих веществ (NOx, CO, SO₂, HMЛОС). Выбросы метана и закиси азота незначительны. Отмечается, что современные воздушные суда практически не выделяют CH_4 , особенно во время крейсерского полета (МГЭИК, 2006).

Полет разделяется на две стадии: (I) цикл взлета / посадки (в/п), производимый на высоте ниже 914 м, и (II) круизный полет (К) на высоте более 914 метров, рисунок 3-90. Считается, что лишь около 10% выбросов происходят во время цикла в/п, остальные 90% - во время круизного полета. Исключение составляют выбросы СО и НМЛОС: 30% происходят в цикле в/п, остальные 70% - в круизном полете.

Рисунок 3-90. Фазы полета. Высота 914 м, отмеченная пунктирной линией, разделяет цикл взлета/посадки и круизный полет.

В 1990-2010 годов выбросы парниковых газов по категории источников "Международная авиация" имели нисходящий тренд (таблица 3-194). Начиная с 2010 года, наблюдается рост количества вылетов, и, соответственно, эмиссий. В 2016 году величина выбросов CO₂ превысила уровень 1990 года.

Таблица 3-194: Динамика выбросов ПГ от категории источников "Международная авиация" ϵ

период 1990-2016, Gg

	1990	1991	1992	1993	1994	1995	1996	1997	1998
CO ₂	216,5837	232,8535	96,2944	62,1153	37,8367	41,9184	65,8650	75,6418	72,4923
CH ₄	0,0105	0,0113	0,0047	0,0030	0,0018	0,0059	0,0048	0,0054	0,0041
N ₂ O	0,0070	0,0075	0,0031	0,0020	0,0012	0,0013	0,0021	0,0024	0,0023
NO _x	0,8905	0,9574	0,3959	0,2554	0,1556	0,1572	0,2563	0,3033	0,2935
CO	0,5270	0,5666	0,2343	0,1512	0,0921	0,1403	0,1684	0,1927	0,1739
NMVOC	0,2334	0,2510	0,1038	0,0669	0,0408	0,0813	0,0900	0,1018	0,0883
$SO_x(SO_2)$	0,0687	0,0738	0,0305	0,0197	0,0120	0,0133	0,0209	0,0240	0,0230
	1999	2000	2001	2002	2003	2004	2005	2006	2007
CO ₂	72,4890	66,2279	61,8894	62,0647	70,1110	67,3304	67,6488	75,9610	79,8999
CH ₄	0,0040	0,0043	0,0039	0,0036	0,0035	0,0035	0,0035	0,0040	0,0028
N_2O	0,0023	0,0021	0,0020	0,0020	0,0023	0,0022	0,0022	0,0025	0,0026
NO _x	0,2907	0,2728	0,2403	0,2505	0,2887	0,2767	0,2800	0,3208	0,3447
CO	0,1724	0,1738	0,1649	0,1652	0,1786	0,1815	0,1836	0,2037	0,1871
NMVOC	0,0877	0,0800	0,0728	0,0671	0,0705	0,0622	0,0628	0,0722	0,0698
$SO_x(SO_2)$	0,0230	0,0210	0,0196	0,0197	0,0222	0,0213	0,0214	0,0241	0,0253
	2008	2009	2010	2011	2012	2013	2014	2015	2016
CO_2	89,2738	82,6571	82,6894	95,4144	107,6790	130,4626	154,5245	218,4141	313,0386
CH ₄	0,0017	0,0018	0,0027	0,0032	0,0031	0,0046	0,0034	0,0058	0,0063
N_2O	0,0029	0,0027	0,0027	0,0031	0,0034	0,0042	0,0050	0,0070	0,0100
NO_x	0,3939	0,3672	0,3600	0,3984	0,4332	0,5235	0,6239	0,9076	1,3124
CO	0,1807	0,1729	0,1894	0,2213	0,2338	0,3098	0,3279	0,4463	0,6066
NMVOC	0,0752	0,0709	0,0734	0,0959	0,1073	0,1345	0,1425	0,2200	0,2929
$SO_x(SO_2)$	0,0283	0,0262	0,0262	0,0303	0,0342	0,0414	0,0490	0,0693	0,0993

Эмиссии по категории "Международная авиация" составляли в 2016 году следующие величины: CO_2 - 144.5%, CH_4 – 60.2%, N_2O – 143.2%, NO_x – 147,4%, CO – 115,1%, COVNM – 125,5%, SO_2 – 144.6% от уровня выбросов 1990 года (таблица 3-195).

Таблица 3-195: Тенденции выбросов парниковых газов из категории источников "Международная авиация" (1990=100%)

тителидут				(-100/	~ /								
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CO_2	100,0	107,5	44,5	28,7	17,5	19,4	30,4	34,9	33,5	33,5	30,6	28,6	28,7	32,4
CH_4	100,0	107,5	44,5	28,7	17,5	56,8	45,7	51,2	39,1	38,0	41,5	37,3	34,7	33,4
N2O	100,0	107,5	44,5	28,7	17,5	19,2	30,2	34,6	33,2	33,2	30,6	28,7	29,0	32,7
NO_x	100,0	107,5	44,5	28,7	17,5	17,7	28,8	34,1	33,0	32,6	30,6	27,0	28,1	32,4
CO	100,0	107,5	44,5	28,7	17,5	26,6	32,0	36,6	33,0	32,7	33,0	31,3	31,4	33,9
NMVOC	100,0	107,5	44,5	28,7	17,5	34,8	38,6	43,6	37,8	37,6	34,3	31,2	28,7	30,2
$SO_x(SO_2)$	100,0	107,5	44,5	28,7	17,5	19,4	30,4	34,9	33,5	33,5	30,6	28,6	28,6	32,4
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	коммента
														рий
CO_2	31,1	31,2	35,1	36,9	41,2	38,2	38,2	44, 1	49,7	60,2	71,3	100,8	144,5	
CH_4	33,1	33,4	37,8	26,4	16,1	17,4	25,3	30,9	29,2	44,2	32,8	55,7	60,2	
N2O	31,7	31,9	35,8	37,3	41,1	38,2	38,4	43,7	49,1	59,5	70,9	99,5	143,2	Тенден-
NO_x	31,1	31,4	36,0	38,7	44,2	41,2	40,4	44,7	48,7	58,8	70,1	101,9	147,4	ция
CO	34,4	34,8	38,7	35,5	34,3	32,8	35,9	42,0	44,4	58,8	62,2	84,7	115,1	роста
NMVOC	26,7	26,9	30,9	29,9	32,2	30,4	31,4	41,1	46,0	57,6	61,0	94,2	125,5	
$SO_x(SO_2)$	31,1	31,2	35,1	36,9	41,2	38,2	38,2	44, 1	49,7	60,2	71,4	100,9	144,6	

В 1990-2016 динамика выбросов парниковых газов имела тенденцию снижения от 216,58 (1990) до 6258 (2001), а затем роста до 316,19 (2016) CO_2 -е, Γ г (таблица 3-196 и рисунок 3-91).

Таблица 3-196: Суммарные эмиссии по категории "Международная авиация" (Γ г CO_2 -е); доля каждого газа прямого действия к уровню к 1990 (%) и доля каждого газа в общей сумме (%) т.3-208

		Эмиссии	в CO ₂ -е, Гг		Доля каж	дого газа	к уровню т	c 1990 (%)	Доля кажд	ого газа в обп	цей сумме (%)
	CO ₂	CH ₄	N ₂ O	Total	CO ₂	CH ₄	N ₂ O	Total	CO ₂	CH ₄	N ₂ O
1990	216,5837	0,2618	2,0881	218,9336	100,0	100,0	100,0	100,0	98,9	0,1	1,0
1991	232,8535	0,2815	2,2450	235,3800	107,5	107,5	107,5	107,5	98,9	0,1	1,0
1992	96,2944	0,1164	0,9284	97,3393	44,5	44,5	44,5	44,5	98,9	0,1	1,0
1993	62,1153	0,0751	0,5989	62,7892	28,7	28,7	28,7	28,7	98,9	0,1	1,0
1994	37,8367	0,0457	0,3648	38,2473	17,5	17,5	17,5	17,5	98,9	0,1	1,0
1995	41,9184	0,1487	0,4001	42,4672	19,4	56,8	19,2	19,4	98,7	0,4	0,9
1996	65,8650	0,1196	0,6300	66,6146	30,4	45,7	30,2	30,4	98,9	0,2	0,9
1997	75,6418	0,1341	0,7235	76,4994	34,9	51,2	34,6	34,9	98,9	0,2	0,9
1998	72,4923	0,1025	0,6940	73,2888	33,5	39,1	33,2	33,5	98,9	0,1	0,9
1999	72,4890	0,0994	0,6934	73,2819	33,5	38,0	33,2	33,5	98,9	0,1	0,9
2000	66,2279	0,1086	0,6399	66,9765	30,6	41,5	30,6	30,6	98,9	0,2	1,0
2001	61,8894	0,0978	0,5990	62,5861	28,6	37,3	28,7	28,6	98,9	0,2	1,0
2002	62,0647	0,0909	0,6047	62,7602	28,7	34,7	29,0	28,7	98,9	0,1	1,0
2003	70,1110	0,0875	0,6823	70,8808	32,4	33,4	32,7	32,4	98,9	0,1	1,0
2004	67,3304	0,0866	0,6628	68,0797	31,1	33,1	31,7	31,1	98,9	0,1	1,0
2005	67,6488	0,0874	0,6661	68,4023	31,2	33,4	31,9	31,2	98,9	0,1	1,0
2006	75,9610	0,0989	0,7468	76,8068	35,1	37,8	35,8	35,1	98,9	0,1	1,0
2007	79,8999	0,0690	0,7782	80,7471	36,9	26,4	37,3	36,9	99,0	0,1	1,0
2008	89,2738	0,0421	0,8591	90,1750	41,2	16,1	41,1	41,2	99,0	0,0	1,0
2009	82,6571	0,0455	0,7970	83,4996	38,2	17,4	38,2	38,1	99,0	0,1	1,0
2010	82,6894	0,0663	0,8016	83,5573	38,2	25,3	38,4	38,2	99,0	0,1	1,0
2011	95,4144	0,0810	0,9115	96,4069	44,1	30,9	43,7	44,0	99,0	0,1	0,9
2012	107,6790	0,0765	1,0257	108,7812	49,7	29,2	49,1	49,7	99,0	0,1	0,9
2013	130,4626	0,1157	1,2430	131,8213	60,2	44,2	59,5	60,2	99,0	0,1	0,9
2014	154,5245	0,0859	1,4810	156,0913	71,3	32,8	70,9	71,3	99,0	0,1	0,9
2015	218,4141	0,1458	2,0772	220,6372	100,8	55,7	99,5	100,8	99,0	0,1	0,9
2016	313,0386	0,1576	2,9904	316,1867	144,5	60,2	143,2	144,4	99,0	0,0	0,9

Рисунок 3-91: Динамика выбросов парниковых газов прямого действия по категории "Международная авиация" в Молдове в период 1990-2016 годов, Гг CO₂-е

Для периода 1990-1994 данные приведены для Молдовы в целом, для 1995-2016 –только для Правобережного региона.

3.8.2 Методы, коэффициенты выбросов и данные о деятельности, восстановление пропущенных значений

Для оценки по методу уровня 1 требуются данные о потреблении топлива и коэффициенты выбросов, используемые по умолчанию. Применение методологии уровня 2 возможно при наличии данных о деятельности по количеству рейсов, выполняемых каждым типом воздушных судов, а также о количестве топлива, потребленного для каждого этапа полета: цикла «взлет / посадка» и крейсерского полета.

Расчет выбросов ПГ из категории источников "Международная авиация" был проведен в соответствии с методологией оценки уровня 2. Основные уравнения, используемые в расчетах, по методу 2:

Общие эмиссии = Эмиссии во время цикла «взлет/посадка» + эмиссии во время круизного полета (для каждого типа самолета)

Эмиссии во время цикла «взлет/посадка» = Количество циклов «взлет/посадка» * Эмиссионный коэффициент (для каждого типа самолета)

Потребление топлива на «взлеты/посадки»= Количество циклов «взлет/посадка» *Потребление топлива на 1 цикл «взлет/посадка»

Эмиссии во время круизного полета=(Общее потребление топлива - потребление во время «взлетов/посадок»)*
Эмиссионный коэффициент для круизного полета

При оценке выбросов ПГ в Молдове были использованы коэффициенты выбросов по Руководствам МГЭИК 1996 и МГЭИК 2006 (таблицы 3-197 и 3-198).

Таблица 3-197: Коэффициенты выбросов по Руководству МГЭИК 1996 года для международного воздушного транспорта

	CO_2	CH ₄	N_2O	NO_X	CO	COVNM	SO_2
Новые авиасуда: кг/на цикл в/п	7900	1.5	0.2	41	50	15	2.5
Старые авиасуда: кг/на цикл в/п	7560	7	0.2	23.6	101	66	2.4
Все типы авиасудов: кг/на цикл в/п	3150	0	0.1	17	5	2.7	1.0

Sursa: Ghidul CISC revăzut 1996, Vol. 3, Tab. 1-52, pag. 1.98.

Коэффициенты выбросов в Руководстве МГЭИК 2006 («Mobile combustion», tab. 3.6.9) приведены для каждого типа самолета. Также в этом документе имеется специальная таблица соответствий типов и модификаций самолетов разных производителей (tab.3.6.3). Используя

обе указанные таблицы, можно выбрать коэффициенты эмиссий для конкретных самолетов авиапарка страны.

Для случаев отсутствия определенного типа самолета в перечне самолетов таблиц 3.6.3 и 3.6.9, используются коэффициенты выбросов для репрезентативного самолета. Упоминание об этом имеется в МГЭИК 2006, на странице 74 тома «Mobile combustion»,а также в сносках таблицы 3.6.9.

Репрезентативных самолетов несколько: ATR-42, DHC8-100, Beech Kipr Air, Cessna 525/560. Они различаются по мощности двигателей (до 1000 л.с., от 1000 до 2000 л.с., более 2000 л.с.) и типу (турбовинтовые, малые реактивные).

Для самолетов, выполнявших вылеты в PM, подготовлена таблица соответствия между ними и репрезентативными типами самолетов из таблицы 3.6.9 ("Mobile combustion", МГЭИК 2006) с кратким описанием технических характеристик, (таблица 3-198).

Таблица 3-198. Специальная таблица соответствия репрезентативным типам авиасудов для самолетов, выполнявшим международные вылеты в РМ, и по таблицам 3.6.3 и 3.6.9 МГЭИК-2006, том «Mobile Combustion»

Тип	Группа	Марки самолетов,	Описание
самолета		которые выполняли вылеты в Молдове	(www.wikipedia)
A 210		е коммерческие реактивные самолеты	A 220 27 (D 72.5
A-319 A-320	Большой	A-319 A-320	А-320: длина 37,6 м. Вес-73,5 тонн Максимальная скорость-890км/ч
A-321	коммерческий	A-320 A-321	Число пассажиров-320
A-321	реактивный	A-321	Дальность полета- 5500 км
B-707	Большой	B-707	В-707:Длина 37,6 м. Вес-151,3 тонн
D-/U/	коммерческий	D-/0/	Максимальная скорость -890км/ч
	реактивный		Число пассажиров-189(эконом)
	реактивный		Дальность полета-6000км
			Двигатель P&WJT
B-737	Большой	B-737	В-737: Длина 31м. Вес-60 тонн
	коммерческий	(коэффициенты приняты	Максимальная скорость -910км/ч
	реактивный	как для В-737-300/400/500)	Число пассажиров-132
	•		Дальность полета-3400км
B-747	Большой коммерческий	В-747 (коэффициенты приняты	
	реактивный	как для 747/400 и 281F)	
B-757	Большой коммерческий	В-757 (коэффициенты приняты	
	реактивный	как для 757/300)	
Fokker 70 и	Региональный реактивный	Fokker 70 и Fokker 100	Fokker 100: Длина 35м. Вес-45тонн
Fokker 100			Число пассажиров-109
14D 00	, , , , , , , , , , , , , , , , , , ,	MD 01	Дальность полета-2390км
MD-80	Среднемагистральный	MD-81	MD-82: Длина 45м. Вес-67тонн
	Пассажирский самолет фирмы McDonnellDouglas	MD-82 MD-83	Максимальная скорость -925км/ч Число пассажиров-135/155/172
	фирмы WeDonnenDouglas	(коэффициенты приняты как для MD-80)	Дальность полета-3100км
		(коэффициенты приняты кик оля МД-00)	Двигатель 2*9455 кгс
RJ-RJ-85	Среднемагистральный	RJ-85	RJ-85: Длина -26м. Вес-44тонн
	реактивный самолет аналог	RJ-100	Максимальная скорость -831км/ч
	RJ-70, RJ-80,	(коэффициенты	Число пассажиров-85 или 100
	RJ-100, BAE 146-200	приняты как для RJ-RJ-85)	Дальность полета-2963км
			4 турбовентиляторных реактивных
			двигателя, с тягой по 31,2кН
EMb-190	Семейство самолетов E-Jet,	EMb-190	EMb-190: Длина 36м. Bec-50,3 тонн
	EMb-190-двухмоторный		Максимальная скорость -890км/ч
	турбовентиляторный		Число пассажиров-98/106
	реактивный самолет, имеет 4		Дальность полета-2963км
	модификации (ЕМЬ-		Двигатель: GE CF34-10E
	170,175,190,195); вариант		турбовентиляторный реактивный,
EMb-170	названия E-Jet Самолет для региональных	EMb-170	двухмоторный ЕМb-170: Длина 29,9м. Вес-21,1тонн
EMIO-170	линий, самый маленький	ENIO-170	Максимальная скорость -890км/ч
	представитель класса Е-Jet,		Число пассажиров-70/110
	название удлиненной		Дальность полета-2963км
	версии- ЕМЬ-175		Двигатель: GE CF348E
	1		турбовентиляторный реактивный,
			двухмоторный
BAC-111	Большой коммерческий	Rombac-561 Rc	ВАС-111: Длина 21м.Вес-47,4 тонн
(из семейства ВАЕ)	реактивный ближне-		Максимальная скорость -850км/ч
,	магистральный		Число пассажиров-119
	самолет (British and Romania)		Дальность полета-2780км
CRJ-100/200	Региональный реактивный	CRJ	CRJ-100/200: Длина 26,8м.Вес-21

(Bombardier)	Канадский	CRG-2 (вероятно, ошибка в записи марки и должно быть CRJ-2)	тонн Максимальная скорость -860км/ч Число пассажиров-50 Дальность полета-1800/2500/3150км Двигатель:2*4180кг/с
		урбовинтовые средние самолеты	
Применены коэффициенты выбросов как для репрезентативного * самолета DHC8-100	Самолет ближне- магистральный Saab-340 Самолет региональный	Saab-340 (SF-340)	Saab-340 (SF-340): Длина 19м. Вес-13 тонн Максимальная скорость -525км/ч Число пассажиров-37 Дальность полета-1500км Двигатель: 2*1870 л.с. Saab-2000: Длина 27м. Вес-23 тонн
коэффициенты выбросов как для репрезентативного самолета ATR-42	турбовинтовой Saab-2000	(SF-2000)	Максимальная скорость -560км/ч Число пассажиров-50 Дальность полета-2300км
АТR-42 (АТR-42-320 АТR-42-500) - репрезентативный самолет на 42-50 пассажиров, с мощностью на валу более 2000 л.с.	Самолет региональный турбовинтовой франко- итальянский Pratt&Whitney PM120,127 kN, 2*2150 л.с. или 2*2400 л.с.	1) L410 -турбовинтовой самолет на 20 пассажиров, применены коэффициенты выбросов как для ATR-42; 2) Saab 2000 – региональный турбовинтовой самолет для 50 пассажиров с дальностью до 2000 км и двигателями R- AE2100A,2 х 4155 л.с. с 6-лопастными винтами, применены коэффициенты выбросов как для ATR-42	АТR-42: Длина 22м.Вес-16,700 тонн Максимальная скорость -860км/ч Число пассажиров-50 Дальность полета-1950км Двигатель:2*2400 л.с.
DHC8-100- репрезентативный турбовинтовой самолет с двигателем <i>от 1000 до 2000</i> л.с.	Канадский турбовинтовой самолет, двигатели Пратта и Уитни	1)DHC8; 2)SA-227 (2*820 кВт или 2*1115 л.с.)- применены коэффициенты выбросов как для DHC8-100; 3)Saab 340 -ближне- магистральный турбовинтовой самолет для 37 пассажиров с дальностью до 1500 км и двигателями GE СТТ-9В,2 х 1870 л.с., применены коэффициенты выбросов как для DHC8-100;	DHC8-100: Длина 33м. Максимальная скорость -650км/ч Число пассажиров-80 Дальность полета-2430км Двигатели: по 1115 л.с.
Веесh Кірг Аіг- репрезентативный малый самолет, турбовинтовой с двигателем до 1000 л.с.	Веесh Кірг Аіг -Легкий турбовинтовой самолет для частных и корпоративных вылетов. Длина 12м Вес- 6800 кг Макс. Скорость-580км/ч Число пассажиров-7 Дальность полета-2430км Двигатель:2*1050 л.с.	В РМ: X-32 Весаѕ -Легкий турбовинтовой самолет. Длина 6,5м Вес- 450 кг Макс. Скорость-168 км/ч Число пассажиров-1 Дальность полета-300-400км Двигатель:1*100 л.с.	Для X-32 Весаѕ применены коэффициенты выбросов такие же, как для репрезентативного самолета «Beech Kipr Air»
G 505/550		Малые реактивные самолеты	G 505/560
Сеssna 525/560 - репрезентативный малый реактивный самолет для 5 пассажиров, с двигателем до 1000 л.с.	С малой тягой, реактивный турбовентиляторный, двигатели 2*ТРДД	1)Falcon-2000EX административный турбовентиляторный реактивный самолет на 10-19 пассажиров с двигателями 2* ТРДД Pratt Whitney Canada PW308C; 2)Learjet-35 (двигатели- General Electric CJ610-8) для 8 пассажиров	Сеssna 525/560: Длина 13,26м Вес- 5,3 тонн Максимальная скорость -650км/ч Число пассажиров-5 Дальность полета-300-400км Двигатели: 2* 9,77 кН.
	циенты для мощности двигатело =735 Ватт (метрическая л.с.); 1 кг	ей: rc=0,0098 кН; 1л.с.=75 кгс <u>.(www.covert-me.com</u>))

^{*)} средние и малые самолеты имеют большое разнообразие. Так как для них отсутствуют специальные коэффициенты выбросов, то рекомендуется использовать коэффициенты выбросов репрезентативных самолетов. Репрезентативные самолеты имеются трех типов для турбовинтовых моделей (ATR-42; DHC8-100; Beech Kipr Air) и одного типа для малых турбовентиляторных реактивных (Cessna 525/560). Рекомендации об их применении указаны на стр.74 МГЭИК-2006, «Mobile Combustion».

Таблица 3-199. Коэффициенты выбросов для оценки эмиссий от международного воздушного транспорта (МГЭИК 2006)

	Репрезентативный	Потребление	Коэффициенты выбросов по умолчанию									
т	тип самолета (по	топлива во			CH_4			N ₂ O		NO _x		
Тип самолета в РМ	таблицам 3.6.3. и 3.6.9 МГЭИК 2006, Том 2. Глава 3)	время цикла взлета/посадки, тонн	Кг/ (в/п)	Кг/ круизный полет	Κ _Γ / (в/π)	Кг/ круизный полет	Κ _Γ / (в/п)	Кг/ круизный полет	Κr/ (в/п)	Кг/ круизный полет		
TU-154	TU-154B	2.23	7030	3150	11.9	0	0.2	0.1	14.33	9.1		
TU-134	TU-134	0.93	2930	3150	1.8	0	0.1	0.1	8.68	8.5		
YAK-40	YAK-42M	0.91	2880	3150	0.25	0	0.1	0.1	10.66	15.6		
YAK-42	YAK-42M	0.91	2880	3150	0.25	0	0.1	0.1	10.66	15.6		
IL-18		2.31	7300	3150	7.4	0	0.2	0.1	31.64	15.7		
IL-76		2.31	7300	3150	7.4	0	0.2	0.1	31.64	15.7		
AN-12 - AN-74	YAK-42M	0.91	2880	3150	0.25	0	0.1	0.1	10.66	15.6		
A319	A319	0.73	2310	3150	0.06	0	0.1	0.1	8.73	11.6		
A320	A320	0.77	2440	3150	0.06	0	0.1	0.1	9.01	12.9		

	Репрезентативный	Потребление	Коэффициенты выбросов по умолчанию									
T.	тип самолета (по	топлива во		CO ₂		CH ₄		N ₂ O		NO _x		
Тип самолета в РМ	таблицам 3.6.3. и 3.6.9 МГЭИК 2006, Том 2. Глава 3)	время цикла взлета/посадки, тонн	Кг/ (в/п)	Кг/ круизный полет	Кг/ (в/п)	Кг/ круизный полет	Κ _Γ / (в/п)	Кг/ круизный полет	Κ _Γ / (в/п)	Кг/ круизный полет		
A321	A321	0.96	3020	3150	0.14	0	0.1	0.1	16.72	16.1		
B707	B707	1.86	5890	3150	9.75	0	0.2	0.1	10.96	5.9		
B737	B737/300/400/500	0.78	2480	3150	0.08	0	0.1	0.1	7.19	11		
B739	B737/900	0.8	2780	3150	0.07	0	0.1	0.1	12.3	14		
B747	B747/400 și 281F	3.24	10240	3150	0.22	0	0.3	0.1	42.88	12.4		
B757	B-757/300	1.46	4630	3150	0.01	0	0.1	0.1	17.85	9.8		
L-410	DHC-8-400	0.2	640	3150	0	0	0.02	0.1	1.51	12.8		
MD-83, MD-81, MD-82	MD-80	1.01	3180	3150	0.19	0	0.1	0.1	11.97	12.4		
RJ-85, RJ-70, RJ- 100	RJ-RJ85	0.6	1910	3150	0.13	0	0.1	0.1	4.34	15.6		
BAE-146	BAE-146	0.57	1800	3150	0.14	0	0.1	0.1	4.07	8.4		
E-120ER	ERJ-145	0.31	990	3150	0.06	0	0.03	0.1	2.69	7.9		
E145, E135	E145	0.31	990	3150	0.06	0	0.03	0.1	2.69	7.9		
Fokker-70	Fokker 100/70/28	0.76	2390	3150	0.14	0	0.1	0.1	5.75	8.4		
Fokker-100	Fokker 100/70/28	0.76	2390	3150	0.14	0	0.1	0.1	5.75	8.4		
CRJ-2	CRJ-100ER	0.33	1060	3150	0.06	0	0.03	0.1	2.27	8		
ATR-42	ATR-42	0.2	620	3150	0.03	0	0.02	0.1	1.82	14.2		
SF-340B	DHC8-100	0.2	640	3150	0	0	0.02	0.1	1.51	12.8		
SF-2000	ATR-42	0.2	620	3150	0.03	0	0.02	0.1	1.82	14.2		
DHC-8	DHC-8-400	0.2	640	3150	0	0	0.02	0.1	1.51	12.8		
E190	E145	0.31	990	3150	0.06	0	0.03	0.1	2.69	7.9		
HS-25	Cessna-525/500	0.34	1070	3150	0.33	0	0.03	0.1	0.74	7.2		
Learjet-35	Cessna 525/500	0.34	1070	3150	0.33	0	0.03	0.1	0.74	7.2		
Rom Bac 561R	BAC111	0.8	2520	3150	0.15	0	0.10	0.1	7.40	12		
SA-227	DHC-8-400	0.2	640	3150	0.00	0	0.02	0.1	1.51	12.8		
Falcon 2000EX	Cessna 525/500	0.34	1070	3150	0.33	0	0.03	0.1	0.74	7.2		
X32-912 Becas	Beech King Air	0.07	230	3150	0.06	0	0.01	0.1	0.3	8.5		
CRJ	CRJ-100ER	0.33	1060	3150	0.06	0	0.03	0.1	2.27	8		
A-300-600	A-300	1,72	5450	3150	0,12	0	0,2	0,1	25,86	14,8		

Рисунок 3-92. Фото (2) некоторых воздушных судов (слева направо): *1 ряд*: Ил-18; Ил-76; Ка-32; *2 ряд*: Ми-2;; Ми-17; А-300-600; *3 ряд*: SA227; C-26 Metro; Як-42;

Таблица 3-199: (продолжение)

	Репрезентативный тип	Потребление	Коэффициенты выбросов								
Tr.	самолета (по	топлива во	CO		COVNM		$SO_x(SO_2)$				
Тип самолета в	таблицам 3.6.3. и 3.6.9	время цикла		Кг/		Кг/		Кг/			
I IVI	PM IPCC 2006, Vol. 2, Cap.		Кг/ (в/п)	круизны	Кг/ (в/п)	круизны	Кг/ (в/п)	круизный			
	3)	тонн		й полет		й полет		полет			
TU-154	ТУ-154В	2.23	143.05	5	107.13	2.7	2.22	1			
TU-134	ТУ-134	0.93	27.98	5	16.19	2.7	0.93	1			
YAK-40	YAK-42M	0.91	10.22	5	2.27	2.7	0.91	1			
YAK-42	YAK-42M	0.91	10.22	5	2.27	2.7	0.91	1			
IL-18		2.31	103.33	5	66.56	2.7	2.31	1			
IL-76		2.31	103.33	5	66.56	2.7	2.31	1			

	Репрезентативный тип	Потребление			Коэффици	иенты выбр	осов	
_	самолета (по	топлива во	C	0	COV	/NM	SO _x ((SO ₂)
Тип самолета в	таблицам 3.6.3. и 3.6.9	время цикла		Кг/		Кг/		Кг/
PM	IPCC 2006, Vol. 2, Cap.	взлета/посадки,	Кг/ (в/п)	круизны	Кг/ (в/п)	круизны	Кг/ (в/п)	круизный
	3)	тонн	,	й полет	()	й полет	()	полет
AN-12 - AN-74	YAK-42M	0.91	10.22	5	2.27	2.7	0.91	1
A319	A-319	0.73	6.35	5	0.54	2.7	0.73	1
A320	A-320	0.77	6.19	5	0.51	2.7	0.77	1
A321	A-321	0.96	7.55	5	1.27	2.7	0.96	1
B707	B-707	1.86	92.37	5	87.81	2.7	1.86	1
B737	B737/300/400/500	0.78	13.03	5	0.75	2.7	0.78	1
B739	B737/900	0.8	7.07	5	0.65	2.7	0.88	1
B747	B747/400 și 281F	3.24	26.72	5	2.02	2.7	3.24	1
B757	B757/300	1.46	11.62	5	0.1	2.7	1.46	1
L-410	DHC-8-400	0.2	2.24	5	0	2.7	0.2	1
MD-83, MD-81, MD-82	MD-80	1.01	6.46	5	1.69	2.7	1.01	1
RJ-85,RJ-70,RJ-100	RJ-RJ85	0.6	11.21	5	1.21	2.7	0.6	1
BAE-146	BAE-146	0.57	11.18	5	1.27	2.7	0.57	1
E120ER	E145	0.31	6.18	5	0.5	2.7	0.31	1
E145, E135	E145	0.31	6.18	5	0.5	2.7	0.31	1
Fokker-70	Fokker100/70/28	0.76	13.84	5	1.29	2.7	0.76	1
Fokker-100	Fokker100/70/28	0.76	13.84	5	1.29	2.7	0.76	1
CRJ-2	CRJ-100ER	0.33	6.7	5	0.56	2.7	0.33	1
ATR-42	ATR-42	0.2	2.33	5	0.26	2.7	0.2	1
SF-340B	DHC8-100	0.2	2.24	5	0	2.7	0.2	1
SF-2000	ATR-42	0.2	2.33	5	0.26	2.7	0.2	1
DHC-8	DHC-8-400	0.2	2.24	5	0	2.7	0.2	1
E190	E145	0.31	6.18	5	0.5	2.7	0.31	1
HS-25	Cessna-525/500	0.34	34.07	5	3.01	2.7	0.34	1
Learjet-35	Cessna 525/500	0.34	34.07	5	3.01	2.7	0.34	1
Rom Bac 561R	BAC111	0.8	13.07	5	1.36	2.7	0.8	1
SA-227	DHC-8-400	0.2	2.24	5	0	2.7	0.2	1
Falcon 2000EX	Cessna 525/500	0.34	34.07	5	3.01	2.7	0.34	1
X32-912 Becas	Beech King Air	0.07	2.97	5	0.58	2.7	0.07	1
CRJ	CRJ-100ER	0.33	6.7	5	0.56	2.7	0.33	1
A300-600	A300	1,72	14,8	5	1,12	2,7	1,72	1

Большие коммерческие самолеты производства стран СНГ в 2005 - 2016 гг эксплуатировались меньше по сравнению с периодом 1995-2004 гг. Самолеты производства других стран, наоборот, имели тренд роста вылетов (таблицы 3-200, 3-201).

Таблица 3-200: Количество международных рейсов в 1995-2005

Taosinga S 200: Rosin ice ibo Me	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
AN-2											1
AN-12			23	9	13	15	7	25	27	197	111
AN-24	729	929	950	1037	755	976	749	562	124	3241	2811
AN-26	3			12	7	570	182	1	6	243	861
AN-28					1	6	6		3	2	3
AN-32				55	95	964	968	850	250	1131	1038
AN-72	23	15	19	17	21	49	53	24	28	27	87
AN-74	31	7	5	11	7	4	1	2	1	2	1
II-18	15	23	23	45	71	62	18			10	98
Il-76	22	23		20	28	20		7	8	2	5
Mi-8						688	1300	3294	5375	3906	3375
Mi-26											4
TU134	1001	1395	1261	1299	1325	1268	1329	1024	887	403	15
TU154	287	114	189	53	23	26	25	16	5	12	14
YAK-40	169	561	779	662	770	655	283	289	304	230	94
YAK-42	371	342	527	642	531	499	367	668	638	283	518
Altele	158	176	366	137	104	102	91	178	142	255	475
Все вылеты самолетов производства стран											
СНГ	2809	3585	4142	3999	3751	5904	5379	6940	7798	9944	9511
A320					15				142	924	1256
ATR-42			58	131	141	141	151	145	159	198	199
BAE-146										115	253
B-MD-83										16	10
B707	9	7									1
B737		27	84	128	110	16	35	102	201	341	311
B747								2			
B757				7				2	2	5	1
CRJ-2							96	103	218	350	356
CRJ					36	100					
DHC-8			45								
E120							667	627	495	842	821
E145							323	208	1	2	2
Fokker-70			,		23			,	,	,	7
HS-25			9						,	,	
L410	11		,	56	45	19		7	7	37	3
Learjet-35			8						,	,	
RJ-70			,			7	10	22	5	2	
RJ-85											36

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
RJ-100					2	25	118	51	19	10	
RomBac-561RC								39			
SAAB-340			372	550	505	1259	1467	1024	1671	369	132
SAAB-2000									269	970	2238
Все вылеты самолетов производства других											
стран	20	34	576	872	877	1567	2867	2332	3189	4181	5626
Все выполненные вылеты	2829	3619	4718	4871	4628	7471	8246	9272	10987	14125	15137

Таблица 3-201: Количество международных рейсов в 2006-2016

	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
AN-2	144	126	145	227	202						
AN-12	194	149	1								
AN-24	2782	1573	5								
AN-26	3085	1690	264	1175	863	463	652	689	302	765	383
AN-32	672	379	47								
AN-72	68	198									
Il-18	155	12	1	31	78	247	128	6	0		
Il-76							52	377	216	577	622
Ka-32	42	283	126	126	139	300	284	309	268	171	193
Mi-2						1297	1022			1249	796
Mi-8	3088	3974	5032	4321	6720	2315	1264	3462	4133	2661	3021
Mi-17						320	493	1129	969	376	153
Mi-26	3	64	84	84							
TU134	65	236	52	1							
YAK-18		2	16	88	5						
YAK-40	52	3	1								
YAK-42								3	3	161	
Все вылеты самолетов производства стран СНГ	10350	8689	5774	6053	8007	4942	3895	5975	5891	5960	5168
A319										445	965,5
A320	1679	1340	1517	1935	1779	1524	1399	1041.5	1239	1955	2701
A321	2									640	473
B-MD-81		9	134								
B-MD-82		196	182		11	20	35	3,50	157,5		
B-MD-83		28	54	31		6		- ,	/-		
B707							58				
B737		61	1				6	22	6	104	40
B739									1		
B747										361	614
DHC-8		11									
E120	525	600	614	622	555	604	767	779	828	131	
E135								0	16	306	
E190					458	711	744	1500.5	1559	1654	1839,5
Fokker-70	455	85	10	12	13	3,5	3				
Fokker-100	58			5	4	26	25	8	2		
L410	1	2				117	258	144,5			
Learjet-35						415	399	425	215	149	
SAAB-340	21	2				12					
SAAB-2000	1934	1469	1442	1269	969	486	48				
SA-227								95			
Falcon 2000EX								350	298		
X32-912 BECAS										228	
F28F Enstrom										21	
A-300-600											251
Все вылеты самолетов производства других	44.00	2002	2074	2074	2500	20245	25.42	42.00	4224	#022	<000¢
стран	4675	3803	3954	3874	3789	3924.5	3742	4369	4321	5933	6890
Все выполненные вылеты	15025	12492	9728	9927	11796	8866.5	7637	10344	10212	11933	12058

Sursa: Administrația de Stat a Aviației Civile a Republicii Moldova prin scrisorile la nr. 3978 din 02.10.2006 și la nr. 1328 din 13.09.2011; Autoritatea Aeronautică Civilă a Republicii Moldova prin scrisorile la nr. 474 din 13.02.2014, la nr. 366 din 02.03.2015, la nr. 1156 din 27.05.2016 și la nr. 4040 din 28.12.2017
Ссылка на НИ 1990-2016

Таблица 3-202: Соотношение вылетов самолетов производства стран СНГ и других стран в 1995-2016

	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Вылеты самолетов производства стран СНГ, %	99.3	99.1	87.8	82.1	81.1	79.0	65.2	74.8	71.0	70.4	62.8
Вылеты самолетов производства других стран, %	0.7	0.9	12.2	17.9	18.9	21.0	34.8	25.2	29.0	29.6	37.2
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Вылеты самолетов производства стран СНГ, %	68.9	69.6	59.4	61.0	67.9	55.7	51.0	57.8	57.7	49.7	42.9
Вылеты самолетов производства других стран, %	31.1	30.4	40.6	39.0	32.1	44.3	49.0	42.2	42.3	50.3	57.1

Источник: Администрация гражданской авиации РМ, письма nr. 3978 din 02.10.2006 și la nr. 1328 din 13.09.2011; Autoritatea Aeronautică Civilă a Republicii Moldova prin scrisorile la nr. 474 din 13.02.2014, la nr. 366 din 02.03.2015, la nr. 1156 din 27.05.2016 și la nr. 4040 din 28.12.2017

Данные о деятельности, связанные с потреблением керосина для обеспечения международного воздушного транспорта, были получены от Администрации гражданской авиации (АГА), таблица 3-203.

Имеются различия между данными потребления керосина для обеспечения международного воздушного транспорта, включенными в энергетические балансы РМ, и данными, полученными от АГА (для периода 2003-2015 разница является значительной) (Таблица 3-203).

Таблица 3-203: Потребление керосина для международного воздушного транспорта в Молдове в период 1990-2016, ктонн

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Данные ТЭБ	69,00			19,70	11,00	11,00	18,00	21,00	17,00
Данные АГА	68,69	73,85	30,54	19,70	12,00	13,30	20,90	24,00	23,00
Разница, %	-0,4			0,0	9,1	20,9	16,1	14,3	35,3
	1999	2000	2001	2002	2003	2004	2005	2006	2007
Данные ТЭБ	20,00	20,00	16,00	19,00	11,00	11,00	12,00	12,00	14,00
Данные АГА	23,00	21,00	19,62	19,67	22,22	21,33	21,44	24,07	25,33
Разница, %	15,0	5,0	22,6	3,5	102,0	93,9	78,6	100,6	80,9
	2008	2009	2010	2011	2012	2013	2014	2015	2016
Данные ТЭБ	14,00	14,00	13,00	13,00	15,00	13,00	17,00	18,00	32,00
Данные АГА	28,32	26,22	26,21	30,26	34,16	41,38	49,01	69,30	99,50
Разница, %	102,3	87,3	101,7	132,8	127,7	218,3	188,3	285,0	210,9

Sursa: ТЭБ за 1990, 1993-2013; Администрация гражданской авиации РМ письма nr. 3978 от 02.10.2006 и nr. 1328 от 13.09.2011; Autoritatea Aeronautică Civilă a Republicii Moldova prin Scrisorile la nr. 474 din 13.02.2014, la nr. 366 din 02.03.2015 și la nr. 1156 din 27.05.2016 și la nr. 4040 din 28.12.2017

Для оценки эмиссий были использованы данные от АГА, как от первичного предприятия, рис.А. Для двух лет имеются пропуски в данных по ТЭБ (1991 и 1992).

Рисунок 3-93. Сопоставление данных по топливам для авиации по ТЭБ и по письмам АГА **Рисунок 3-94**. Пример применения метода интерполяции для восстановления двух отсутствующих значений в ряду (по фактическим данным)

Для данной категории применено 2 метода восстановления данных. Метод интерполяции использован для восстановления значений за 1991-1992 г, рисунок 3-94.

В цикле инвентаризации за 1990-2015 для периода 1990-1994 выбросы рассчитаны по методу 1, для периода 1995-2016 – по методу 2. Это дает несогласование ряда значений эмиссий.

В цикле инвентаризации за 1990-2016 это несогласование устранено путем применения специального метода восстановления значений - метода частичного совмещения. Он использован для восстановления значений в ряду, полученном по методу 2 для 1995-2016, на участок 1990-1994.

Более подробно применение каждого метода восстановления описано далее.

Восстановление пропущенных значений

1. Метод интерполяции применен для восстановления значений в 1991и 1992 годах.

Это наиболее простой метод для *интерполирования* значений, отсутствующих в интервале между известными соседними точками. Расчетные формулы для определения пропущенных значений:

$$\Delta V(k) = \frac{V_n - V_m}{n - m}, V(k) = V(k - 1) + \Delta V(k). \tag{1}$$

Расчеты выполнены на основе фактических данных (1990, 1993) в таблице 3-204.

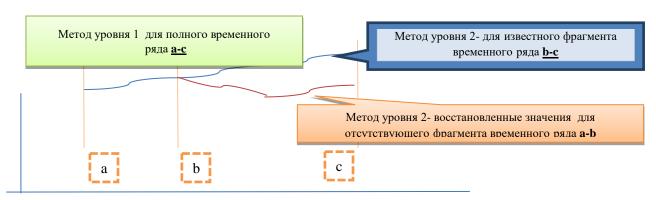
Таблица	3-204	Интерполяция пропушенных	значений ппя	1991-1992

Номер точки	1	2	3	4
Обозначение	X_{m}			X_n
Год	1990	1991	1992	1993
Топливо, тыс. т	69	?	?	19,7
CO_2 , $\Gamma\Gamma$	212,7819	?	?	60,7508

После подстановки значений из таблицы 1 в формулу (1) получены следующие величины для топлива:

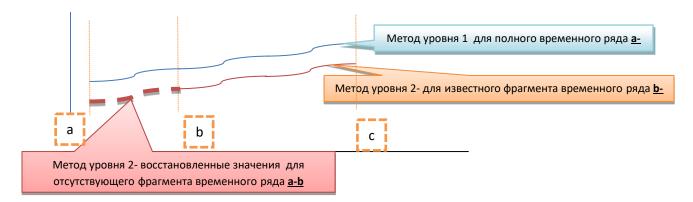
$$\Delta V$$
 (топливо) = $\frac{V(1993) - V(1990)}{1993 - 1990} = \frac{19,7 - 69}{3} = \frac{-49,3}{3} = -16,4333$, где $V(1991) = V(1990) + \Delta V = 69 + (-16,4333) = 52,5667$ тыс. тонн; $V(1992) = V(1991) + \Delta V = 52,5667 + (-16,4333) = 36,1333$ тыс. тонн.

Расчеты можно выполнить аналогично и для эмиссий:


$$\Delta V$$
 (эмиссии CO_2) = $\frac{60,7508-212,7819}{1993-1990}$ = $-50,677$ Гг,

V(1991) = 212,7819 + (-50,677) = 162,1048 Γ_{Γ} , V(1992) = 162,1048 + (-50,677) = 111,4278 Γ_{Γ} . Найденные значения восполняют пропуски для 1991-1992 Γ_{Γ} ., таблица 3-205.

Таблица 3-205. Ряды с восстановленными значениями для 1991-1992 г


Номер точки	1	2	3	4
Обозначение	X_{m}			X_n
Год	1990	1991	1992	1993
Топливо, тыс.т	69	52,5667	36,1333	19,7
CO_2 , $\Gamma\Gamma$	212,7819	162,1048	111,4278	60,7508

2. Метод частичного совмещения используется тогда, когда внедряется метод более высокого уровня, но нет данных для его применения к более ранним годам во временном ряду. Для РМ такой случай имеется для категории «Международная авиация». Метод 2 используется для периода 1995-2015 (интервал b-с на поясняющей схеме на рис.3-95). Для периода 1990-1994 (интервал a-b) нет подробных данных для его применения, и сохраняется метод 1 для этих лет. Такой случай является несогласованным частичным совмещением. Оно должно быть исправлено. Совмещение двух кривых на момент до начала пересчета отображено на рис.3-96.

Рисунок 3-95. Поясняющая схема несогласованности трендов по методу 1 и методу 2 для двух участков временного ряда

Ряд для 1990-1994 (значения в интервале a-b) надо перестроить в предположении, что существует последовательное соотношение между результатами ранее использованного метода уровня 1 и нового метода 2. Оценочные значения для 1990-1994 устанавливаются путем пропорциональной корректировки ранее определенных значений по методу 1 на основе того соотношения, которое имеет место для периода, когда данные имеются для обоих методов. Поясняющая схема приведена на рис. 3-96.

Рисунок 3-96. Поясняющая схема сопоставления трендов по методу 2 и методу 1 для двух участков временного ряда и восстановления значений для одного из участков

Формула пересчетов оценочных значений для 1990-1994 имеет вид:

$$y_0 = x_0 \cdot \left(\frac{1}{n-m+1} \cdot \sum_{i=m}^n (y_i/x_i)\right), \tag{3}$$

где y_0 – пересчитанное оценочное значение выбросов;

 x_0 – предыдущее значение по предыдущему методу 1;

 y_i , x_i – значения для той части временного ряда, когда известны значения и по методу уровня 1 и уровня 2б (от года n и до года m);

m-n – ряд лет, для которых имеются значения по обоим методам.

По указанной формуле значения в интервале a-b были пересчитаны (таблица 3-206 и рис.3-97). Восстановленные значения эмиссий CO_2 -е для метода 2 на участке 1990-1994 оказались меньше, чем рассчитанные по методу 1. Качественный характер трендов, приведенных на рис.3-206, подтвердился. Применение метода восстановления улучшило ряд значений.

Таблица 3-206. Восстановление значений по методу частичного совмещения для 1990-1994

		Эмиссии CO ₂ -е, Гг, категория «Авиабункера»										
		восстановлени частичи	ные значения ного совмеще		по методу 2							
	1990	1991	1992	1993	1994	1995	1996	1997	1998			
До восстановления	220,53	236,23	97,66	62,94	42,47	66,61	76,50	73,29				
После восстановления	218,93	218,93 235,38 97,34 62,79 38,25 42,47 66,61 76,50 73,29										

Реализация метода осуществлена в специальных расчетных таблицах (для каждого парникового газа отдельно), рисунок 3-97.

	метод 1	метод 2	восстановленные	1/(2016-1995+1)=0,045455					значения	значения		по методам		между историческими и	
	CO2,Gg	CO2,Gg	(Σ(yi / xi))	(1/(r	n-m+1))*(Σ(yi / xi))	y0=x0* (1/(n-m+1))*(Σ(yi / xi))	НИР 1990-2	015	(метод2-ме	етод1) /метод 1	(восст к мет	оду 2-исторі	
1990	211,8259	216,5837				216,5837			217,3668	1990	2,25		-0,36		
1991	227,7383	232,8535				232,8535			232,8115	1991	2,25		0,02		
1992	94,1791	96,29445				96,29445			96,2635	1992	2,25		0,03		
1993	60,75076	62,11528				62,11528			62,0927	1993	2,25		0,04		
1994	37,00554	37,83672				37,83672			37,8235	1994	2,25		0,03		
1995	41,01447	41,9184	1,022		1,022					1995	2,20				
1996	64,45132	65,8650							_	1996	2,19				
1997	74,01108	75,6418	1,022	350 -						1997	2,20				
1998	70,92729	72,4923	1,022	300 -					†	1998	2,21				
1999	70,92729	72,4890			→ -1	метод 1 CO2,Gg				1999	2,20				
2000	64,7597	66,2279	1,023	250 -	метод 2 CO2,Gg					2000	2,27				
2001	60,50406	61,8894	1,023	200 -				, , , , , , , , , , , , , , , , , , ,		2001	2,29				
2002	60,65825	62,0647	1,023							2002	2,32				
2003	68,52192	70,1110	1,023	150 -				- 1		2003	2,32				
2004	65,77735	67,3304	1,024	100 -	Į					2004	2,36				
2005	66,1033	67,6488	1,023		\ p+	-		-		2005	2,34				
2006	74,24082	75,9610	1,023	50 -	7 -4					2006	2,32				
2007	78,11561	79,8999	1,023	0 -					_	2007	2,28				
2008	87,32845	89,2738	1,022		1990 1991 1993 1994 1995 1996	2000 2000 2000 2000 2000 2000 2000 200		010	2008	2,23					
2009	80,84384	82,6571	1,022						N	2009	2,24				

Рисунок 3-97. Фотоизображение фрагмента расчетной таблицы для восстановления данных по методу частичного совмещения (для CO₂)

Рисунок 3-98. Сравнение количеств эмиссий по методу 1 и восстановленных для метода 2 на участке 1990-1994 по методу частичного совмещения, CO₂-е

Вычисленные восстановленные значения (1990-1994) меньше первоначальных значений по методу 1 в диапазоне $((-0,21) \div (-0,72))$ %, таблица 3-207.

Таблица 3-207. Сравнение первоначальных количеств выбросов (Γ г CO_2 -е) для периода 1990-1994 и восстановленных значений по методу частичного совмещения для категории «Международная авиация»

	1990	1991	1992	1993	1994	1995	1996	1997	1998
Значения до восстановления	220,52	236,23	97,66	62,94	38,33	42,47	66,61	76,49	73,29
Значения после восстановления	218,93	235,38	97,34	62,79	38,25	42,47	66,61	76,49	73,29
Разность,%	-0,72	-0,36	-0,33	-0,23	-0,21	0,00	0,00	0,00	0,00

3.8.3 Оценка неопределенности

Основные факторы, которые влияют на неопределенности, связаны с методологией оценки, коэффициентами выбросов для расчета выбросов ПГ от категории источников "Международная авиация" и качеством доступных данных о деятельности.

Неопределенности, связанные с $\kappa o_3 \phi \phi$ ициентами выбросов для выбросов CO_2 , оцениваются на уровне 5%. для CH_4 достигают \pm 10%, а для N_2O - до \pm 100%.

Неопределенности в данных о деятельности, связанные с *потреблением топлива* в международной авиации, считаются относительно низкими (\pm 5%).

Неопределенности выбросов ПГ от категории источников "Международная авиация" были рассчитаны по применяемой стандартной методологии и составили следующие величины: CO_2 до \pm 7,07%, CH_4 \pm 11,18%, N_2O \pm 100.12%.

Комбинированные неопределенности, представленные в виде процента от общего объема выбросов по Модулю "Энергетика", составили: \pm 0,0969% для CO_2 , \pm 0,0004% для CH4 и \pm 0,0140% для N2O.

Неопределенности по *тенденции* были оценены на уровне \pm 0,0253% для CO2, для CH4 \pm 0,001% и \pm 0,0019% для N2O.

3.8.4. Обеспечение качества и контроль качества

Для категории источников "Международная авиация" осуществлен стандартный перечень процедур проверки и контроля качества (МГЭИК, 2000).

Проверка по процедурам сбора данных, введения данных и обработки данных включила:

- выполнение *перекрестной проверки* соответствия данных по деятельности и коэффициентов выбросов для каждого типа самолета; указаны источники *первичной информации*;
- для выполнения расчетов разработан специальный файл с использованием формата из софта «Электронные таблицы МГЭИК-1996», в котором все расчеты автоматизированы для минимизации ошибок. Ручной ввод имеется только в таблицах исходных данных. Для выполненных расчетов проверки осуществлены в виде контрольных сумм;
- *движение данных* и результатов расчетов выполнено по иерархической структуре снизу вверх; величины по категориям в секторах объединены в итоговые по секторам, а затем в обобщенный файл по модулю в целом.
- Выполнены рекомендации международных экспертов:
 - 1. По авиасектору имелась рекомендация использовать репрезентативные самолеты для самолетов, которые не представлены в перечне МГЭИК-2006, но имеются в национальном авиапарке; рекомендация выполнена.
 - 2. По авиасектору выбросы в текущем цикле рассчитаны на основе данных от АГА, аналогично предыдущей инвентаризации. Выполнены дополнительные исследования по анализу и сопоставлению первичных данных по потребленному топливу.
- Полнота: временной ряд заполнен для всех лет;
- Согласованность временного ряда: использован один и тот же метод и одни и те же коэффициенты, имевшееся ранее несогласование устранено путем применения метода частичного совмещения;
- Сравнимость: в ряду данных значения одного порядка; Своевременность: расчеты выполнены с запаздыванием на 2 года;
- Точность: расчеты в автоматическим режиме в специальном файле, 4 знака после запятой;
- Прозрачность: Расчеты легко проверить, изменения между циклами помечены комментариями и перерасчетами, имеются в описании нововведения по циклам;
- Совершенствование: изучены методы восстановления значений в рядах, применен метод интерполяции для восстановления значений для 1991-1992, метод частичного совмещения для восстановления начала ряда;
- *Достоверность*: расчеты выполнены на основе данных из писем от АГА, сравнены с данными официальных статистических изданий (ТЭБ);
- Документирование и архивирование: все ТЭБ имеются в архиве в электронной и бумажной версиях, письма от АГА в специальной архивной папке и на электронных носителях, расчетные файлы сохраняются на нескольких электронных носителях;
- Сравнение коэффициентов выбросов по изданиям Руководств по Инвентаризации выбросов МГЭИК (1996, 2006), EMEP-2013, EMEP-2016; EMEP-2016 Update July 2017;

3.8.5. Перерасчеты

В текущем цикле инвентаризации был предпринят ряд мер по улучшению качества национальной инвентаризации $\Pi\Gamma$, в результате чего сделаны перерасчеты выбросов $\Pi\Gamma$ по категории источников "Международная авиация".

Перерасчеты по данной категории выполнены в связи с уточнением коэффициентов выбросов для ряда самолетов, благодаря разработке таблицы соответствия самолетов в РМ и репрезентативных типов самолетов по таблице 3.6.9 Руководства МГЭИК 2006 (Таблица 3-198). Причинами перерасчетов также послужили:

- 1. восстановление значений в период с 1991-1992 по методу интерполяции;.
- 2. восстановление значений по методу частичного совмещения;

Различия между «историческими» данными за период 1990-1994 гг. и восстановленными значениями отличаются значениями в диапазоне $0.03 \div (-0.36)\%$.

В 2016 году выбросы превысили уровень 1990 года на 44,42% (Таблица 3-208)

Таблица 3-208: Сравнительные результаты инвентаризации выбросов парниковых газов по категории источников "Международная авиация ", BUR1 (цикл 1990-2015) и BUR2 (цикл 1990-2016), Гг CO₂ е

	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	220,5278	236,2342	97,6598	62,9362	38,3261	42,4672	66,6146	76,4994	73,2888
BUR2	218,9336	235,3800	97,3393	62,7892	38,2473	42,4672	66,6146	76,4994	73,2888
Разница, %	-0,72	-0,36	-0,33	-0,23	-0,21	0,00	0,00	0,00	0,00
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	73,2819	66,9765	62,5861	62,7602	70,8808	68,0797	68,4023	76,8068	80,7471
BUR2	73,2819	66,9765	62,5861	62,7602	70,8808	68,0797	68,4023	76,8068	80,7471
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	90,1750	83,4996	83,5573	96,4069	108,7812	131,8213	156,0913	220,6372	
BUR2	90,1750	83,4996	83,5573	96,4069	108,7812	131,8213	156,0913	220,6372	316,1867
Разница, %	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

3.8.6. Планируемые улучшения

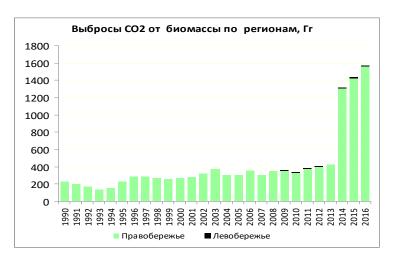
Потенциальные улучшения в рамках категории источников "международная авиация" могут быть реализованы при переходе к методологии более высокого уровня.

Применение метода уровня 3 для международной авиации возможно по методологии, изложенной в Руководствах ЕМЕР-2013, 2016 с использованием таблиц — Приложений. Таблицы содержат значения фактических *измеренных* эмиссий загрязняющих веществ на различных дистанциях полета для каждого типа самолета.

По данной категории имеются наработки и тестовые расчеты по применению метода 3, описанного в Руководстве ЕМЕР-2016.

В Руководстве EMEP-2016 Upgrade July 2017 также имеется описание метода 3 - калькулятора по расчету эмиссий от авиации. Планируется его освоение в следующем цикле.

3.9. Выбросы СО2 от сжигания биомассы


3.9.1. Описание категории источников

В данной категории рассматриваются отдельно выбросы CO_2 , которые имеют место при сжигании биомассы (эмиссии всех остальных газов учитываются в своих секторах). Эта позиция выделяется в связи с тем, что в отдельном модуле рассчитывается поглощение CO_2 лесными насаждениями с использованием результатов, полученных в данной категории.

Выбросы диоксида углерода от сжигания биомассы возросли на 570,9% (2016/1990), таблица 3-209, Рисунок 3-99. Основная причина резкого прироста связана с улучшением учета в статистике благодаря применению другой методологии учета.

Таблица 3-209: Эмиссии CO₂ от сжигания биомассы в 1990÷2016 гг., тысяч тонн

	1990	1991	1992	1993	1994	1995	1996	1997	1998
СО2 от сжигания биомассы, Гг	232,8093	201,2009	169,5924	143,2360	157,4600	230,0480	294,0280	291,1280	269,0120
	1999	2000	2001	2002	2003	2004	2005	2006	2007
СО2 от сжигания биомассы, Гг	266,1120	272,3720	282,2280	322,0800	373,5760	307,6800	307,3920	361,4360	304,6560
	2008	2009	2010	2011	2012	2013	2014	2015	2016
СО2 от сжигания биомассы, Гг	352,4520	362,1000	341,0480	384,6400	403,3840	429,2796	1314,4896	1439,5226	1561,9690

Рисунок 3-99. Выбросы CO_2 от сжигания биомассы в РМ в 1990÷2016 гг, тысяч тонн

3.9.2. Методология, коэффициенты выбросов и данные о деятельности

Методология

Расчет выбросов CO₂ при сжигании биомассы проводился в соответствии с методологией Уровня 1, МГЭИК 2006 года. Основное уравнение, используемое в процессе расчета:

Эмиссии (газ_i) = Σ (Количество потребленного топлива; • Коэффициент выбросов;).

Коэффициенты эмиссий

Для расчетов газов *прямого* действия применялись коэффициенты выбросов по умолчанию согласно МГЭИК-2006, для газов *косвенного* действия - по ЕМЕР-2016.

Потребление биомассы (древесина, древесные отходы: кора, опилки и отходы деревообработки, сельскохозяйственные отходы: солома, соломенная шелуха, кукурузные початки, древесный уголь, древесные брикеты и пеллеты; биогаз) имеет место в следующих секторах национальной экономики:

- при производстве электро- и теплоэнергии (1A1);
- в обрабатывающей промышленности (1A2);
- в коммерческом / институциональном (1A4a), бытовом (1A4b);
- в сельскохозяйственном/лесном/ рыбоводческом (1A4c) секторах;
- для других работ и потребностей (1A5).

В таблице 3-210 систематизированы коэффициенты эмиссий для расчетов всех парниковых газов от биомассы (не только для CO_2) по всем категориям.

Таблица 3-210: Коэффициенты выбросов при сжгании биомассы сектора 1 «Энергетика», кг/ТДж

	кг/ТДж	CO ₂	CH ₄	N ₂ O	NO _x	CO	NM	$SO_x(SO_2)$	Для: NO _x , CO, NMVOC, SO _x
							VOC		
	Древесина	112000	30	4	81	90	7,31	10,8	1.А.1 Руководство ЕМЕР/ЕЕА по
	Отходы дерево-								инвентаризации выбросов загрязни-
	обработки и сельского	112000	30	4	81	90	7,31	10,8	телей воздуха, 2016 г. Раздел
	хозяйства								«Энергетическая отрасль»
	Отходы сельскохо-	100000	30	4	81	90	7,31	10,8	Таб. 3-7. Коэффициенты выбросов
	зяйственного								Метод уровня 1 для категории
1A1	производства								источников 1.А.1.а с использованием
	Древесный уголь	112000	200	4	81	90	7,31	10,8	биомассы
	Древесные брикеты и	100000	30	4	81	90	7,31	10,8	Таб. 3-4. Коэффициенты выбросов
	пеллеты								Уровня 1 для категории источников
	Биогаз	54600	1	0,1	89	39	2,6	0,281	1.А.1.а с использованием газо-
	Другие виды топлива	100000	30	4	81	90	7,31	10,8	образного топлива

	Древесина	112000	30	4	91	570	300	11	1.А.2 Руководство ЕМЕР/ЕЕА по
	Отходы деревообработки и сельского хозяйства	112000	30	4	91	570	300	11	инвентаризации выбросов загрязнителей воздуха, 2016г. Раздел «Производственные отрасли и
	Отходы сельскохо- зяйственного производства	100000	30	4	91	570	300	11	строительство (сжигание)». Обновлено в ноябре 2016 года Таб. 3-3. Коэффициенты выбросов
1A2	Древесный уголь	112000	200	4	91	570	300	11	уровня 1 для сжигания в 1.А.2 Промышленности с использованием
IAZ	Древесные брикеты и пеллеты	100000	30	4	91	570	300	11	газообразного топлива
	Биогаз	54600	1	0,1	74	29	23	0.67	<i>Таб.</i> 3-5. Коэффициенты выбросов
	Другие виды топлива	100000	30	4	91	570	300	11	уровня 1 при сжигании в 1.А.2 Промышленности с использованием биомассы Таб. 3-1. Сводные данные о агрегировании по группам топлив методом Уровня 1
	Древесина	112000	300	4	91	570	300	11	1.A.4.ai, 1.A.4.bi, 1.A.4.ci, 1.A.5.a
	Отходы	112000	300		71	370	300	- 11	Руководство ЕМЕР/ЕЕА по
	деревообработки и сельского хозяйства	112000	300	4	91	570	300	11	инвентаризации выбросов загрязнителей воздуха, 2016 г Раздел «Прочие
	Отходы сельскохо- зяйственного производства	100000	300	4	91	570	300	11	сектора — сжигание в малых количествах». Последнее обновление июль 2017 года
1A4a	Древесный уголь	112000	200	1	91	570	300	11	Таб. 3.10. Коэффициенты выбросов
	Древесные брикеты и пеллеты	100000	300	4	91	570	300	11	уровня 1 для категории источников Номенклатура отчетности (HO)
	Биогаз	54600	5	0,1	74	29	23	0,69	1.А.4.а/с, 1.А.5.а, с использованием твердой биомассы
	Другие виды топлива	100000	300	4	91	570	300	11	таб. 3.8. Коэффициенты выбросов уровня 1 для категории источников НО 1.A.4.a/c, 1.A.5.a, с исполь-
									зованием газообразного топлива
	п	112000	200	4	50	1000	600	11	1 4 4 1 1 4 4 1 1 4 5
	Древесина Отходы дерево- обработки и сельского	112000 112000	300	4	50	4000	600	11 11	1.А.4.аі, 1.А.4.bі, 1.А.4.сі, 1.А.5.а Руководство ЕМЕР/ЕЕА по инвентаризации выбросов загрязни-
	хозяйства Отходы сельскохо- зяйственного	100000	300	4	50	4000	600	11	телей воздуха, 2016 г Раздел «Прочие сектора – сжигание в малых количествах». Последнее обновление
	производства Древесный уголь	112000	200	1	50	4000	600	11	июль 2017 года <i>Таб. 3.6.</i> Коэффициенты выбросов
1A4b	Древесные брикеты и пеллеты	100000	300	4	50	4000	600	11	метода Уровня 1 для категории источников Номенкдатура отсетности (НО) 1.А.4.b, с использованием
	Биогаз	54600	5	0,1	51	26	1,9	0,3	биомассы
	Другие виды топлива	100000	300	4	50	4000	600	11	Таб. 3.4. Коэффициенты выбросов метода Уровня 1 для категории источников НО 1.А.4.b, с использованием газообразного топлива
	Древесина	112000	300	4	91	570	300	11	
	Отходы деревообработки и сельского хозяйства	112000	300	4	91	570	300	11	
1A4c	Отходы сельскохо- зяйственного производства	100000	300	4	91	570	300	11	1.А.4.а.і, 1.А.4.b.і, 1.А.4.с.і, 1.А.5.а Руководство ЕМЕР/ЕЕА по инвентаризации выбросов загрязни-
	Древесный уголь	112000	200	1	91	570	300	11	телей воздуха, 2016 г Раздел «Прочие
	Древесные брикеты и	100000	300	4	74	29	23	0,69	сектора – сжигание в малых количествах». Последнее обновление
	пеллеты	E4600	_	0.1	0.1	570	200	1.1	июль 2017 года
	Биогаз Другие виды топлива	54600 100000	5 300	0,1	91 91	570 570	300	11 11	Таб. 3.10. Коэффициенты выбросов
	другие виды гоплива	100000	300	7	71	310	500	11	метода Уровня 1 для источников НО
	Древесина	112000	30	4	91	570	300	11	1.A.4.a/c, 1.A.5.a, при использовании твердой биомассы
	Отходы деревообработки и сельского хозяйства	112000	30	4	91	570	300	11	<i>Таб.</i> 3.8. Коэффициенты выбросов уровня 1 для источников НО 1.A.4.a/c,
1A5	Отходы сельскохо- зяйственного производства	100000	30	4	91	570	300	11	1.А.5.а, при использовании газообразного топлива
	Древесный уголь	112000	200	4	91	570	300	11	1
1	Древесные брикеты и	100000	30	4	74	29	23	11]
	пеллеты								

	Биогаз	54600	1	0,1	91	570	300	11	
	Другие виды топлива	100000	30	4	91	570	300	11	
									Для выбросов NO_x , CO , $NMVOC$, SO_x
Источн	ики: Для выбросов СО2, О	СН ₄ и N ₂ O -	Руково	дство М	ІГЭИК 2	006 г., То	ом 2, Глава	a. 2,	- Руководство ЕМЕР/ЕЕА по
Табл. 2.	.2-2.5, c.17, 19, 21, 23								инвентаризации выбросов загрязни-
									телей воздуха, 2016 г.

Данные по деятельности

Источниками данных являются ТЭБ Молдовы за 1990 и 1993-2016 годы, и статистические издания Левобережного региона (данные имеются только для бытового сектора).

Данные о деятельности в ТЭБ имеются в натуральных единицах (тысяч тонн, тысяч плотных м³) и в энергетических единицах (тыс. т.у.т. и ТДж). Исключением является ТЭБ за 1990 год, в котором данные приведены в натуральных единицах и в т.у.т..

Биомасса имеет много видов и учитывается в разных единицах измерения. Для пересчета в т.у.т. и ТДж использованы следующие соотношения:

- один M^3 плотной древесины = 0,73 т; одна тонна древесной коры = 0,42 т.у.т.;
- одна тонна древесной щепы = 0,05 т.у.т.; одна тонны древесной опилки = 0,36 т.у.т.;
- одна тонна древесных отходов = 0,12 т.у.т.;
- одна тонна отходов сельского хозяйства (солома, семенная шелуха) = 0,50 т.у.т.;
- одна тонна отходов сельскохозяйственного производства (отходы кукурузы) = 0,33 т.у.т.;
- 1 т.у.т. = 2 тонны отходов сельского хозяйства;
- 1 тысяча тонн древесины = 12,32 ТДж; 1000 м^3 плотной древесины = 8,99 ТДж;
- $1 \text{ ТДж} = 111,2 \text{ м}^3$ плотной древесины;
- 1 кт сельскохозяйственных и древесных отходов = 14,67 ТДж;
- 1000 т.у.т. сельскохозяйственных и древесных отходов = 29,34 ТДж.

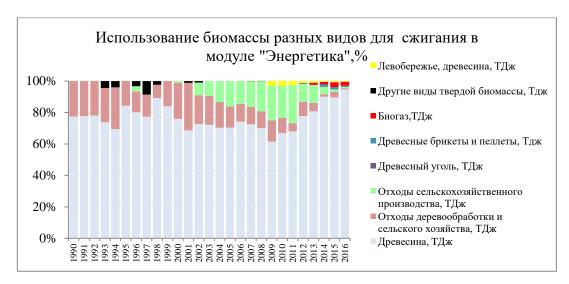
Коэффициент содержания углерода для древесины = 30,50 т С/ТДж; для отходов сельскохозяйственного производства = 27,30 т С/ТДж.

Представление информации по биомассе в ТЭБ различается. В публикациях ТЭБ за 1990 и 1993-2002 приведены количества только для двух видов биомассы - древесины и древесных отходов, таблица 3-211.

Таблица 3-211: Потребление биомассы в Республике Молдова в 1990-2002 гг., ТДж

Категория ІРСС	Тип топлива	1990	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1A1	Древесина / древесные отходы	9	6		9							
IAI	Другие виды твердой биомассы	59	50	147	88	88	59	29	29	59	147	235
1A2	Древесина / древесные отходы	135	1027		29	29	29					
IAZ	Другие виды твердой биомассы	176	302	29								
1A4a	Древесина / древесные отходы	333	109	117	107	147	117	117	88	88	117	147
1A4a	Другие виды твердой биомассы		6			29						
1A4b	Древесина / древесные отходы	1052	766	822	1526	1048	1907	1966	1848	1731	1555	1878
1A40	Другие виды твердой биомассы	234	147	205	205	323	293	176	323	499	587	499
1A4c	Древесина / древесные отходы	36	9	29	29	29	29				29	
1A4C	Другие виды твердой биомассы		3									
1A5	Древесина / древесные отходы	45	13	30	30	88	30	88	59	29	30	87
IAS	Другие виды твердой биомассы		12	1	30		30		29		29	29
1A	Общее потребление биомассы	2079	2450	1380	2053	1781	2494	2376	2376	2406	2494	2875

В ТЭБ за 2003-2012 имеются данные для 3 видов биомассы (древесины, древесных отходов и сельскохозяйственных отходов). В ТЭБ за 2013-2016, помимо указанных, также имеются данные о потреблении биогаза, древесных брикетов и пеллет. Для отдельных лет существуют позиции «Прочее топливо» (таблица 3-212).


Таблица 3-212: Потребление биомассы в Республике Молдова в 1990-2016 гг., ТДж

	ТДж	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1A1a i	Биогаз														
1A1a ii	Биогаз														
1A1a iii	Дрова	9	8	7	6										
	Отходы деревообработки и	59	56	53	50	147	88		59	29	29	59	147		
	сельского хозяйства														29

вреиляемства 134.9 112 88 65 29 29 29 20	C	Отходы сельскохозяйственного							8	8							1
Откоры деренобработия и сещеского хозийства 1048 Дерености деренобработия и сещеского хозийства Откоры деренобработия и сещеского хозийства 1052,3 947 861 766 822 1536 1848 1907 1966 1948 1171 117		1														235	205
Сельского колийства 332,76 258 184 109 117 117 147 117 117 18 8 88 117 147 147 147 147 117 117 188 88 117 147 1		•					20	29	25	9	29						
ПАНВ Девесения 332,76 258 184 109 117 117 147 117 117 188 88 117 147			1/5,8	140	103	6/	29										
Отколы деревнобраютия и сельского хозийства 1923 957 861 766 822 1526 1848 1907 1966 1848 1731 1555 1878			332.76	258	184	109	117	117	14	17	117	117	88	88	117	147	381
Другие виды пераоб бизмаесы 1052.2 957 861 766 822 1526 848 1907 1966 1848 1731 1555 1878		4															
Дады Древесии 1992,3 997 861 766 822 1526 848 1907 1966 1848 1731 1555 1878 88 88 7731 1555 1878 7870																	146
ВВ Отходы деревообработка и сельскохоміственного производня деревообработка и сельскохоміственного производня в распеченного производня в распе																	
Сельского хозяйства 19 19 117 29 29 29 29 117 20 117															_	1878	1964
Отколы сельекохомійственного произодства 29 29 29 117 29 29 29 117 29 29 29 117 29 29 29 29 29 29 29 2			234,4	205	176	147	205	205	32	23	293	176	323	499	587	400	440
Производства 129 29 117 29 29 29 29 29 29 29 2														29		499	440
Превесина 1														2)			117
ПАС Девесина 35,974 27 18 9 29 29 29 29 29 29 29						29	29		25	9	117	29					
Пересона Пересона		4															
шр Сельского хожийства 29 29 29 117 29 29 30 88 59 29 30 87			35,974	27	18	-	29	29	25	9	29			_	29		29
Другие виды твераоб биомаесы 29 29 29 117 29 29 29 29 117 29 29 29 29 29 29 29 2						3											
ASS Древесния	·					29	29		25	9	117	29		+			+
Отконы деревообработки и сенского ховійства 12 1 30 30 29 79 14 10 18 14 201 11 10 18 14 201 11 11 11 12 2 1 1 1 1 1 2 2 1 1 3 3 5 4 39 226 229 321 1 Ala iii Древеский изина свыскохохозійства протовобработки и сенскохохозійства протовобработки и сенского хозійств			44,968	34	24			30					59	29	30	87	59
Collectory хозяйства Collectory хозяйства Collectory хозяйства Collectory хозяйства Collectory xosяйства Collectory xosяйств																	1
Общее потребление, ТДж 2079 1823 1567 1311 1438 2054 2070 2729 2434 2376 2435 2523 2904	С	сельского хозяйства								_							<u> </u>
IAIa i Биогаз																	
Alai Виогаз		Общее потребление, ТДж															3370
IAIa ii Древесния			2004	2005	2006	2007	200	8 20	009	2010) 20)11	2012				2016
IAIa ііі Древесина 3 3 2 1 1 2 1 1 37 29 Отходы дереворабработки и сельскогозийственного производства 16 16 1 1 1 2 2 1 3 3 5 Древесные бриксты и пелеты 226 226 214 239 373 435 514 399 226 229 321 Древесные бриксты и пелеты 9 11 7 6 7 4 11 17 7 99 387 1A2 Древесныя деревообработки и сельского хозійства 39 26 1 5 14 10 16 25 36 5 16 407 Отходы деревообработки и сельского хозійственного производства 78 31 26 18 15 36 36 17 18 35 22 10 1A4a Древесный ўголь 78 31 26 18 15 36 36 1											_					14	2
Отходы деревообработки и сельского хозяйства			2	2	2	+	1		1	2	_	1	1				ļ
Сельского хозяйства 16 16 1 1 1 2 2 1 3 3 5		4	3	3		+	1	_	1		_	1	1	31	29		-
Отходы сельскохозяйственного производства 226 226 214 239 373 435 514 399 226 229 321			16	16	1	1	1	,	,	2		1	3	3	5		
Превесные брикеты и пелеты Превесные бри			10	10	1	+ -	1		_								
Биогаз			226	226	214	239	373	3 43	35	514	3	99	226	229	321		
1A2 Древесниа 9 11 7 6 7 4 11 17 20 13 44 Отходы деревообработки и сельскохозяйства 39 26 1 5 14 10 16 25 36 5 16 407 ПА4а Древссина 242 210 254 247 268 240 209 219 244 185 232 220 Отходы деревообработки и сельского хозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы деревообработки и сельского хозяйства 14 5 2 14 28 300 41 31 88 68 118 50 Древссный утоль 14 5 2 14 28 300 41 31 88 68 118 50 Древссный брикеты и пелеты 1673 1704 2123 1716 1942 1767																	22
Отходы деревообработки и сельского хозяйства 39 26 1 5 14 10 16 25 36 5 16 407 Отходы сельского хозяйстваного производства 242 210 254 247 268 240 209 219 244 185 232 220 Отходы деревообработки и сельского хозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы сельского хозяйстваного производства 14 5 2 14 28 300 41 31 88 68 118 50 Древсеный уголь 3 21 16 Древсеный уголь 4 3 21 16 Древсеный руголь 5 2 14 28 300 41 31 88 68 118 50 Древсеный уголь 6 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 Отходы деревообработки и сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельского хозяйства 130 214 245 197 212 66 419 96 134 105 135 Древсеные брикеты и пелеты 76 109 ЛБ Древсениа 1 пелеты 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1																	359
сельского хозяйства 39 26 1 5 14 10 16 25 36 5 16 407 Отходы сельскохозяйства 242 210 254 247 268 240 209 219 244 185 232 220 Отходы деревообработки и сельскохозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы сельскохозяйственного производства 14 5 2 14 28 300 41 31 88 68 118 50 Древесные брикеты и пелеты 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 Иза 20 294 340 271 312 395 237 137 273 164 124 52 Отходы сельского зайственного производства 3 214 2		•	9	11	7	6	7	4	4	11	1	7	17	20	13	44	
Отходы сельскохозяйственного производства 2 2 10 1.44а Древесина 242 210 254 247 268 240 209 219 244 185 232 220 Отходы деревообработки и сельского хозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы сельского хозяйственного производства 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 3 21 16 32 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 ПВ сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы деревобработки и сельского хозяйства 130 214 245 197 212 66 419			20	26	1	5	14	1	0	16		5	26	5	16	407	
Производства 242 210 254 247 268 240 209 219 244 185 232 220			39	20	1	3	14	1	.0	10		.5	30	3	10	407	
Отходы деревообработки и сельского хозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы сельскохозяйственного производства 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 ПБ Отходы деревообработки и сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельского хозяйства 130 214 245 197 212 66 419 96 134 105 135 Древсеный уголь 130 214 245 197 212												5	2	10			
сельского хозяйства 78 31 26 18 15 36 36 17 18 35 26 14 Отходы сельскохозяйства 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 1 4 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 1 4 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 Ив сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельскохозяйства 130 214 245 197 212 66 419		1	242	210	254	247	268	3 24	40	209					232	220	237
Отходы сельскохозяйственного производства 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь Древесные брикеты и пелеты 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 Отходы деревобработки и сельского хозяйственного производства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы деревобработки и сельскохозяйственного производства 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 13 13 24 24	C	Отходы деревообработки и															
производства 14 5 2 14 28 300 41 31 88 68 118 50 Древесный уголь Древесные брикеты и пелеты 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 Отходы деревообработки и сельского хозийства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы деревообработки и сельского хозийства 130 214 245 197 212 66 419 96 134 105 135 Древесные брикеты и пелеты 130 214 245 197 212 66 419 96 134 105 135 Древесные брикеты и пелеты 92 97 90 48 42 69 98 1A4c Древесина 8 12 18 12 10 17 25 15 31			78	31	26	18	15	3	6	36	1	7	18	35	26	14	13
Древесный уголь 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439				_			20		00	4.4			00		110	50	50
Древесные брикеты и пелеты 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439		•	14	5	2	14	28	30	UU	41	- 1 3	1	88				58 13
1A4b Древесина 1673 1704 2123 1716 1942 1767 1808 2134 2543 2880 10425 11439 ПБ Отходы деревообработки и сельского хозийства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельского хозийства 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 130 214 245 197 212 66 419 96 134 105 135 Древесные брикеты и пелеты 17 11 2 76 109 ЛВ Древесина 8 12 18 12 10 17 25 15 31 28 37 27 Отходы деревообработки и сельского хозийства 2 7 12 2 1 2 3 5 1 Древесина 24 24		•	1	1		+	-	-			-			3			13
ПБ Отходы деревообработки и сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельского хозяйства производства 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 130 214 245 197 212 66 419 96 134 105 135 Древесные брикеты и пелеты 14 15 10 17 25 15 31 28 37 27 Отходы деревообработки и сельскохозяйственного производства 2 7 12 2 1 2 2 3 5 1 1A5 Древесина 24 24 27 26 23 9 28 12 1 1A5 <td></td> <td>3 4</td> <td>1673</td> <td>1704</td> <td>2123</td> <td>1716</td> <td>194</td> <td>2 17</td> <td>67</td> <td>1808</td> <td>21</td> <td>34</td> <td>2543</td> <td>2880</td> <td></td> <td></td> <td>13131</td>		3 4	1673	1704	2123	1716	194	2 17	67	1808	21	34	2543	2880			13131
ПБ сельского хозяйства 320 294 340 271 312 395 237 137 273 164 124 52 Отходы сельскохозяйства 130 214 245 197 212 66 419 96 134 105 135 Древесный уголь 17 11 2 76 109 ЛБ Древесина 92 97 90 48 42 69 98 1А4с Древесина 8 12 18 12 10 17 25 15 31 28 37 27 Отходы деревообработки и сельского хозяйства 3 1 2 1 2 1 2 1 2 3 5 1 Древесные брикеты и пелеты 2 7 12 2 1 2 3 5 1 Древесные брикеты и пелеты 24 24 27 26 23 9 28 12		•	10,0	1701	2123	1,10	1,77	- + 1/	٠.	1000		-		2000	10120	11107	10101
Производства 130 214 245 197 212 66 419 96 134 105 135			320	294	340	271	312	2 39	95	237	1	37	273	164	124	52	89
Древесный уголь 17 11 2 76 109		**															
Древесные брикеты и пелеты 92 97 90 48 42 69 98 1A4c Древесина 8 12 18 12 10 17 25 15 31 28 37 27 Отходы деревообработки и сельского хозяйства 3 1 2 1 2 1 2 Отходы сельскохозяйственного производства 2 7 12 2 1 2 6 2 3 5 1 Древесина 24 24 27 26 23 9 28 12 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы деревообработки в сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйства 3 7 4 10 3 8 2 1	-		130	214	245	197	212	2		66	4	19			105	_	53
ЛБ Древесина 92 97 90 48 42 69 98 1А4с Древесина 8 12 18 12 10 17 25 15 31 28 37 27 Отходы деревообработки и сельского хозяйства 3 1 2 1 2 1 2 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 3 5 1 1 2 4 2 2 3 5 1 1 1 2 3 5 1 1 1 2 3 5 1			-	-	<u> </u>	-	-	_					17	11	7.0		4
1A4c Древесина 8 12 18 12 10 17 25 15 31 28 37 27 Отходы деревообработки и сельского хозяйства 3 1 2 1 2 1 2 Отходы сельскохозяйства 2 7 12 2 1 2 6 2 3 5 1 Древесные брикеты и пелеты 1 2 2 2 3 5 1 1A5 Древесина 24 24 27 26 23 9 28 12 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного 3 7 4 10 3 8 2 1			1	1	1	+	-	-	12	07	-	10	19	42			62
Отходы деревообработки и сельского хозяйства 3 1 2 1 2 1 2 0 1 2			- Q	12	18	12	10										62 42
сельского хозяйства 3 1 2 1 2 Отходы сельскохозяйственного производства 2 7 12 2 1 2 6 2 3 5 1 Древесные брикеты и пелеты 1 2 2 3 5 1 1A5 Древесина 24 24 27 26 23 9 28 12 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного 3 7 4 10 3 8 2 1			- 0	12	10	12	10	1		23	+ '		J.1	20	31		
Отходы сельскохозяйственного производства 2 7 12 2 1 2 6 2 3 5 1 Девесные брикеты и пелеты 1 2 4 24 27 26 23 9 28 12 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного				3		1		1	2					1	2		
Производства 2 7 12 2 1 2 6 2 3 5 1																	
1A5 Древесина 24 24 27 26 23 9 28 12 Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного 1 3 8 2 1	П	троизводства	2	7	12	2	1	- 2	2	6			2	3	5		2
Отходы деревообработки и сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного											_					1	4
сельского хозяйства 3 7 4 10 3 8 2 1 Отходы сельскохозяйст-венного 2 1			24	24	27	26	23	- 9	9	28	1	2			-		<u> </u>
Отходы сельскохозяйст-венного			2	7	4	10	,			o		,	1				
			- 5	/	4	10	3	-		8	+	_	1		1		-
					2	1	1			7		2					
Общее потребление, ТДж 2787 2793 3278 2769 3213 3312 3113 3526 3646 3904 11914 13099			2787	2793				3 33	12				3646	3904	11914	13099	14153

Во все годы в наибольших количествах потреблялись древесина (от 63 до 95%), древесные (от 22 до 0,7%) и сельскохозяйственные остатки (0,8-24%). В последние 5 лет в небольших количествах также начато использование биогаза, пеллет, древесного угля. При этом снизилось использование древесных и сельскохозяйственных остатков.

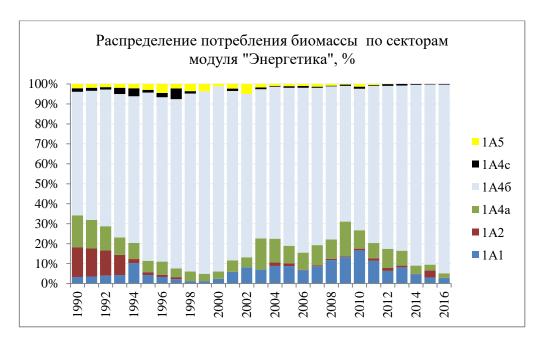

Данные по Левобережному региону имеются только за 8 последних лет, и необходимо пополнение или восстановление временного ряда, рисунок 3-100, таблица 3-221.

Рисунок 3-100 .Соотношение использования разных видов биомассы в энергетических целях. Наибольшее количество биомассы используется в бытовом секторе (от 61,9 до 94,7%), таблица 3-213.

Таблица 3-213. Суммарное использование биомассы по категориям и по видам,%

						112302			Р		•		
		Распр	еделение	по сектора	1M, 70				Распределени	е по видам (оиомассы,%		
	1A1	1A2	1A4a	1А4б	1A4c	1A5	Древе- сина	Древесные и сельско- хозяйственные остатки	Сельско- хозяйственные остатки	Древе- сный уголь	Брикеты и пеллеты	Био- газ	Прочие виды био- массы
1990	3,3	14,9	16,0	61,9	1,7	2,2	77,4	22,6					
1991	3,5	14,0	14,4	64,7	1,5	1,9	77,7	22,3					
1992	4,0	12,7	12,1	68,5	1,2	1,6	78,1	21,9					
1993	4,3	10,1	8,8	71,9	3,1	1,9	73,8	21,7					4,4
1994	10,2	2,0	8,1	73,4	4,0	2,2	69,4	26,6					4,0
1995	4,3	1,4	5,7	84,3	1,4	2,9	84,3	15,7					
1996	3,3	1,1	6,6	82,4	2,2	4,5	80,2	13,2	3,3				3,3
1997	2,2	1,1	4,3	84,9	5,3	2,2	77,4	14,0					8,6
1998	1,2		4,8	89,2	1,2	3,6	89,2	8,4					2,4
1999	1,2		3,7	91,4		3,7	84,0	16,0					
2000	2,4		3,6	92,8		1,2	75,9	22,9	1,2				
2001	5,8		5,8	84,9	1,1	2,3	68,6	30,2					1,1
2002	8,1		5,1	81,9		5,0	72,7	18,2	8,1				1,0
2003	6,9		15,6	74,8	0,9	1,8	72,2	18,2	9,6				
2004	8,8	1,7	12,0	76,2	0,4	1,0	70,3	16,4	13,3				
2005	8,8	1,3	8,8	79,2	0,8	1,1	70,3	13,5	16,2				
2006	6,6	0,2	8,6	82,6	0,9	1,0	74,2	11,3	14,5				
2007	8,7	0,4	10,2	78,9	0,5	1,3	72,5	11,1	16,4				0,1
2008	11,7	0,7	9,7	76,8	0,3	0,8	70,1	10,7	19,1				0,1
2009	13,2	0,4	17,4	68,1	0,6	0,3	63,3	13,8	22,9				
2010	16,6	0,9	9,2	70,9	1,0	1,4	69,1	9,9	21,0				
2011	11,4	1,3	7,6	78,8	0,4	0,5	69,8	5,3	24,9				
2012	6,3	1,5	9,6	81,7	0,9	0,0	78,8	9,2	11,5	0,5			
2013	8,1	0,9	7,5	82,8	0,8		81,6	5,4	11,5	0,4		1,2	
2014	4,6	0,2	4,1	90,6	0,4		90,6	1,5	4,6	0,2	1,4	1,7	
2015	3,1	3,4	2,9	90,4	0,2		90,2	3,6	1,4	0,1	1,5	3,1	
2016	2,7		2,3	94,7	0,3		95,2	0,7	0,8	0,1	0,6	2,6	

Рисунок 3-101. Потребление биомассы в разных секторах модуля «Энергетика»

Использование биомассы в секторе 1A1 в разные годы было в диапазоне от 1,2 до 16,6%; в секторе 1A2 - от 0,2 до 14,9%, в секторе 1A4a - от 2,3 до 17,4%, в секторе 1A4c — от 0,2 до 4,0%, в секторе 1A5 —от 0,3 до 5%. Общая наблюдаемая тенденция - снижение использования биомассы во всех секторах, кроме бытового, рис.3-33.

Для двух лет (1991-1992) ТЭБ отсутствуют. Данные для этих лет были восстановлены методом интерполяции. «Исторические» данные, приведенные в предыдущем цикле, были заменены на восстановленные. Использование биомассы разных видов в количественном выражении приведено на рис.3-34. Значения для 2014-2016, которые приведены в ТЭБ и рассчитанные по измененной методике, являются явно «выпадающими» в ряду, рис.3-102.

Задачей последующего цикла работ по сектору «Сжигание биомассы» будет являться восстановление значений для предыдущих лет по методу частичного совмещения, аналогично тому, как были восстановлены значения в секторе «Международная авиация».

Рисунок 3-102. Использование биомассы разных видов, ТДж

Использование биомассы в 2016 году распределилось в следующих соотношениях: древесина-95,2%, биогаз -2,6%, остальные виды биомассы - не более 1 %, рис.3-103.

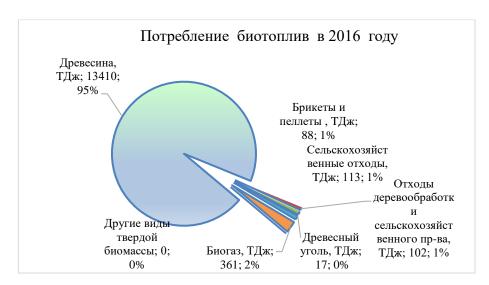


Рисунок 3-103. Структура потребления по типам биотоплива, ТДж и %

В статистических публикациях Левобережного региона имеется информация по потреблению биомассы (только древесины), только для одной категории (в жилом секторе) в натуральных единицах (плотных тыс. м³), и только за период 2009-2016 гг. (таблица 3-214).

Таблица 3-214: Потребление древесины в Левобережном регионе в категории источников 1A4b «Жилой сектор» за 2009÷2016 гг.

	2009	2010	2011	2012	2013	2014	2015	2016
Древесина, .тысяч плотных м ³	10.1793	10.8175	9.2527	5.5379	4.8690	7.6844	10.9011	6,8596
Древесина, ТДж	91.55	91.57	89.51	48.37	42.17	69.11	98.00	62

Указанные объемы потребленной биомассы были задействованы в расчетах эмиссий всех парниковых газов по секторам. Вклад Левобережного региона в суммарные выбросы CO_2 для 2009-2016 составил от 0.4-3.1%, таблица 3-215.

Таблица 3-215: Долевое соотношение выбросов СО₂ от сжигания биомассы в регионах,%

	2009	2010	2011	2012	2013	2014	2015	2016
Правобережье, %	97,2	96,9	97,4	98,7	98,9	99,4	99,3	99,6
Левобережье, %	2,8	3,1	2,6	1,3	1,1	0,6	0,7	0,4

3.9.3. Оценка неопределенности

Основные факторы, влияющие на неопределенности, связаны с методологией оценки, коэффициентами выбросов для CO_2 и достоверностью имеющихся данных о деятельности. Они рассчитаны по стандартной методологии, применяемой согласно МГЭИК-2006.

Неопределенности, связанные с *коэффициентами выбросов*, оцениваются в 80%, а неопределенности, связанные *с данными о деятельности*, - в 20%.

Суммарные неопределенности в данных о деятельности и по коэффициентам выбросов от категории источников «Выбросы СО₂ от сжигания биомассы» были оценены в 82,5%.

3.9.4. Обеспечение качества и контроль качества

Для проверки и контроля качества были выполнены стандартные процедуры, которые включили:

- 1. Сбор, систематизацию и *перепроверку первичных данных* в натуральных единицах и ТДж по ТЭБ для всех секторов, в которых используется биомасса: 1A1, 1A2, 1A4, 1A5;
- 2. *Коэффициенты* эмиссий, принятые по умолчанию, *систематизированы* в виде таблиц: для газов прямого действия по руководству МГЭИК-2006, косвенного действия по ЕМЕР-2016; для облегчения проверки в расчетном файле приведены фотоизображения таблиц прямо из руководств;
- 3. Для минимизации ошибок в расчетах использованы автоматические «линки» для оценки каждого газа;
- 4. Выполнена проверка согласованности для первичных значений в применении метода расчета;

- 5. Учет данных по Левобережному региону в бытовом секторе для 2008-2016гг. позволил расширить географический *охват* территории страны;
- 6. Выполнена визуализация данных по количеству использованной биомассы и эмиссиям от ее сжигания;
- 7. Выполнено *архивирование и документирование* информации в электронной форме и на бумажных носителях.

3.9.5. Перерасчеты

В текущем цикле инвентаризации был проведен ряд мер по улучшению качества национального кадастра парниковых газов, в результате чего выполнены пересчеты выбросов по категории «Выбросы СО₂ от сжигание биомассы».

Причины перерасчета в текущем цикле были следующими:

- в 1996 году для категории 1А5 была упущено значение «1» для «Других видов топлива»;
- для 2001 года был удален двойной учет значения «29» в категории источников 1А4а;
- для 1990 года было обновлено значение коэффициента выбросов (112 000) для древесины в категориях источников 1A2 и 1A4b; для древесных отходов использовался коэффициент 100 000 (как и для «другой» биомассы), хотя должен был быть использован коэффициент 112 000 («древесина/древесные отходы»);
- для газов CH_4 , N_2O , NO_x , CO, NMVOC была устранена механическая ошибка в формуле деления на значение 2 000 000 вместо 1 000 000;
- для периода 2010-2015 гг. в категории 1А1 был исправлен временной ряд из-за сдвига строк;
- Для 1991-1992 были восстановлены значения по методу интерполяции.

Выполненные перерасчеты для всех лет не привели к значительным изменениям (в пределах 1-2%). Исключение составили точки для 1991-1992, для которых объемы эмиссий от сжигания биомассы значительно снизились и составили более адекватные величины, лучше согласующиеся с другими значениями в ряду. В период с 1990 по 2016 год эмиссии ПГ увеличились на 570,9% (Таблица 3-216).

Таблица 3-216: Сравнительные результаты инвентаризации выбросов CO_2 от категории источников "Выбросы CO_2 от сжигания биомассы" в BUR1 и BUR2, тыс. тонн

							,		
	1990	1991	1992	1993	1994	1995	1996	1997	1998
BUR1	229,30	427,73	531,15	143,24	157,46	230,05	295,44	291,03	269,01
BUR2	232,81	201,20	169,59	143,24	157,46	230,05	294,03	291,13	269,01
Разница, %	1,5	-112,6	-213,2	0,0	0,0	0,0	-0,5	0,0	0,0
	1999	2000	2001	2002	2003	2004	2005	2006	2007
BUR1	266,11	272,37	282,23	324,90	373,58	307,68	307,39	361,44	304,66
BUR2	266,11	272,37	282,23	322,08	373,58	307,68	307,39	361,44	304,66
Разница, %	0,0	0,0	0,0	-0,9	0,0	0,0	0,0	0,0	0,0
	2008	2009	2010	2011	2012	2013	2014	2015	2016
BUR1	352,45	362,10	343,34	386,22	404,31	431,46	1 317,17	1 439,80	
BUR2	352,45	362,10	341,048	384,64	403,38	429,28	1314,49	1439,52	1561,97
Разница, %	0.0	0.0	-0.7	-0.4	-0.2	-0.5	-0.2	0.0	

3.9.6. Планируемые улучшения

В Правобережном регионе улучшен учет потребления биомассы статистическими органами для ряда последних лет. Улучшение временного ряда за предыдущий период можно осуществить, продолжив анализ тенденций использования биомассы по секторам, и применения методов восстановления при необходимости.

Для Левобережного региона улучшения могут быть сделаны только с появлением данных о потреблении биомассы для имеющихся пропусков во временном ряду. Эти значения также можно определить с помощью методов интерполяции и экстраполяции.

Для Левобережного региона также планируется восстановление значений потребления биомассы не только древесины, но и других видов, по косвенному методу с использованием тех же удельных величин расхода биомассы каждого вида на 1 жителя, что и для Правобережного региона.

ИСТОРИЧЕСКИЙ ОБЗОР РАБОТ ПО ОЦЕНКЕ ЭМИССИЙ ОТ ЭНЕРГЕТИЧЕСКИХ ИСТОЧНИКОВ МОЛДОВЫ ПО МЕТОДОЛОГИИ МГЭИК

Быкова Е.В.

Начало работ в области инвентаризации эмиссий парниковых газов было осуществлено в 1998 году. Первые материалы в виде разрозненных страниц Руководства МГЭИК-1995 были принесены Сергеем Дмитриевым Постолатию В.М. в Департамент по энергетике и топливным ресурсам.

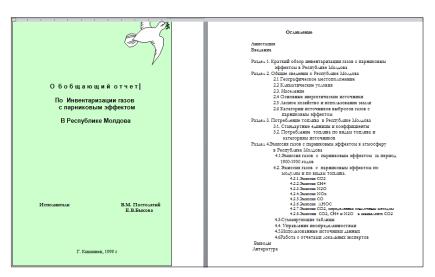
К этому времени уже были выполнены работы по сбору информации по энергетическому сектору Молдовы, подготовлена и опубликована (1992) Стратегия развития энергетики Молдовы до 2010 года. Стратегия включала описание структуры энергокомплекса, текущие показатели его деятельности, данные по потреблению топлив, прогнозируемые показатели развития энергетики. Такая основа позволила увидеть возможности выполнения работ по оценке эмиссий парниковых газов в модуле «Энергетика» и подготовки Национальных Сообщений (НС) по изменению климата и Инвентарей (Кадастров) выбросов парниковых газов.

Руководителем работ в проекте по подготовке Первого Национального Сообщения в рамках РКИК ООН был назначен Валентин Чеботарь. Офис проекта располагался в здании по ул. Штефана чел Маре,73.

Группу исполнителей работ по оценке эмиссий парниковых газов по сектору энергетики составили: Постолатий Виталий Михайлович и Быкова Елена Витальевна (сектор 1A1), Филатов Константин Константинович (сектор 1A2), Суворкина Светлана Георгиевна (сектор 1A3), Еременков Николай Григорьевич (секторы 1A4 и 1A5). Секторы по международной авиации и 1B2 не рассматривались. По другим модулям были приглашены команды также из нескольких человек. Они составили базовый коллектив, который на текущий момент, спустя 20 лет, значительно расширился.

В 2000 году менеджерами проекта стали Скорпан Василий Георгиевич (общее руководство проекта в целом) и Царану Мариус Харлампиевич (подготовка Национальных Сообщений и Инвентарей парниковых газов).

Первое Национальное Сообщение (1HC) было выпущено в двух версиях - в 2000 и 2001 г и охватывало период 1990-1998 г. Были колебания, с какой периодичностью представлять результаты: 1 раз в 5 лет; 1 раз в 4 года или за каждый год. В итоге был выбран формат с представлением каждого года в отдельности.


1НС было сделано по Руководству МГЭИК-1995 года и сразу же последовавшей версии МГЭИК-1996 года. Усилия потребовались для освоения специального софта «Электронные таблицы МГЭИК-1996», который был в пользовании до 2015 года включительно.

Промежуточные результаты работ по 1HC были представлены на нескольких семинарах в период 1998-1999. В семинарах принимали участие эксперты из других стран, в которых аналогичные работы уже выполнялись. Они давали рекомендации по секторам прямо после заслушивания докладов исполнителей.

Большую роль сыграл эксперт из Армении Мартирос Царукян. Он был приглашен на первый семинар. Он привез и показал Национальное Сообщение Армении, рассказал о работе, прочитал первые отчеты молдавских экспертов, подтвердил правильность в выполнении работы, дал ряд полезных рекомендаций.

Первые работы по модулям и секторам продолжались около года. Затем была выполнена работа по суммированию количеств выбросов парниковых газов по всем модулям (Е. Быковой по собственной инициативе).

При этом была получена полная картина по эмиссиям и определена доля энергетического сектора в суммарных выбросах по стране. Отчет был представлен на одном из семинаров (1999), рисунок 1.

Рисунок 1. Фотоизображения титульных страниц отчета по оценке эмиссий, в котором впервые были обобщены результаты выбросов по стране, 1999

Надо заметить, что в период 1990-1999 только стали доступными персональные компьютеры, работать в Excel все только учились. Провести полный цикл расчетов было гораздо труднее, чем с использованием современной техники и навыков. Первые расчеты эмиссий по энергетике были сделаны вручную для всех 7 газов с 6 знаками после запятой. Освоение методологии по расчету эмиссий и приобретение компьютерных навыков происходило самостоятельно и параллельно, никаких системных обучающих курсов не было.

Трудности были также вызваны тем, что Руководства МГЭИК были в разрозненном виде (печатные версии). Сети интернета только начинали тянуть по корпусам Академии наук, все осваивали офисные программы, электронную почту, активно и коллективно обучались новым информационным технологиям. Кстати, и сейчас в команде по энергетике действует такое правило: научился сам - научи коллегу.

После выпуска 1НС был перерыв продолжительностью несколько лет, пока снова удалось возобновить работы. Большие усилия для этого были приложены сотрудниками Офиса по изменению климата под руководством главного менеджера В. Скорпана и руководителя работ по Инвентаризации парниковых газов М. Царану.

Одной из начальных трудностей был сбор первичных данных. Базовыми были данные по письмам предприятий. Информация о необходимости использования ТЭБ для НС была сообщена международными экспертами спустя год после начала проекта, только в конце первого цикла работы. «Добывать» ТЭБ приходилось с трудом каждый год. Поначалу это были разрозненные ксерокопии отдельных страниц. На текущий момент собрана целая библиотека, состоящая из изданий топливно-энергетических балансов, статистических ежегодников и другой статистической литературы. Имеется также архив писем-запросов на предприятия, которые были необходимы при подготовке первичных данных. Они сохраняются в Офисе по изменению климата, в специальном архиве, согласно требованиям МГЭИК. Но в начале работ каждая цифра в данных была непростой.

Имеется также и библиотека Руководств МГЭИК. Их вышло несколько версий.

Руководство МГЭИК - 1995 включало 3 тома. Его обновленная версия, вышедшая в 1996 году, была ориентирована на использование софта «Электронные таблицы МГЭИК-1996». Это издание стало на долгие годы базовым документом.

В 2000 году было опубликовано Руководство МГЭИК по эффективной практике, в котором был обобщен накопленный опыт стран, даны описания тонкостей и рекомендации для каждого сектора.

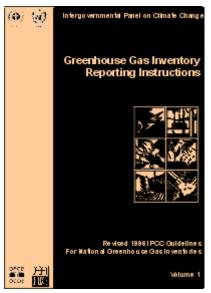
В секторе энергетики рассчитываются эмиссии 7 газов - CO_2 , CH_4 , N_2O , NOx, CO, NMVOC, SO_2 . В 2006 вышло новое руководство МГЭИК, которое было посвящено описанию методологии расчета только газов прямого действия CO_2 , CH_4 , N_2O (действует и на текущий момент). Оно имеет 5 томов. В 2019 году опубликована новая версия этого Руководства (сайт https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html).

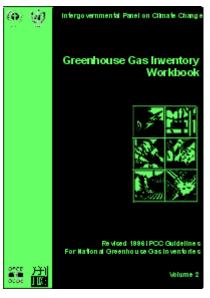
В последние годы в расчетах стало использоваться также Руководство ЕМЕР (версии 2009, 2013, 2016) для расчета эмиссий газов с косвенным парниковым эффектом (NOx, CO, NMVOC, SOx).

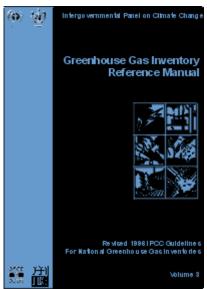
Освоение методологии расчетов по секторам исполнителями работ осуществлялось самостоятельно. В качестве примеров использовались опубликованные НС и Инвентари парниковых газов других стран. В 2015 году впервые было проведено системное обучение всей команды по энергетике. Целью первого workshop было знакомство с новым софтом МГЭИК-2006 (версия 2.14). Лекции проводил эксперт Вики из ЮАР в течение 4 дней. Фактически это было первое официальное обучение. Проводившиеся до этого семинары, большей частью, носили характер отчетов о проделанной работе. В том же году состоялась большая детальная проверка работ международным экспертом Вероникой Гинзбург, которая также прочитала курс лекций, и дала много полезных рекомендаций.

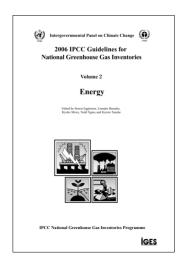
При расчете эмиссий можно использовать 3 метода, отличающиеся степенью детализации первичной информации.

Наиболее простой - метод уровня 1, основанный на количестве потребленного топлива. Методы 2 и 3 требуют более детальной информации о процессе сжигания топлива.


Для некоторых категорий метод уровня 1 является единственным методом расчета. Для ряда категорий можно применить методы более высокого уровня (при наличии необходимых первичных данных).


Первоначальной была задача рассчитать эмиссии всех газов по методу 1 согласно требованиям и классификатору категорий источников Руководства МГЭИК. Трудностью является расхождение в данных по потребленным топливам по ТЭБ, с данными, полученными по письмам от экономических агентов. Эта трудность сохраняется до сих пор, и для таких случаев в описаниях разделов главы обычно приведены оба варианта данных с пояснениями по выбору источника информации. Однако общая тенденция работы с данными - приоритет ТЭБ и постепенный отход от данных по письмам во всех категориях, где это возможно.


ТЭБ за 28 лет значительно изменился, претерпел 4 изменения формата, постепенно приближаясь к международному стандарту. С 1990 по 2014 год он был представлен в версии MS DOS. С 2005 года, параллельно с MS DOS, ТЭБ публиковался в виде отдельных книг НБС. Эти издания (pdf) имели несколько форматов, промежуточных между MS DOS и европейским стандартом.


Фотоизображения ссылок на Руководства на сайте ІРСС, титульные страницы некоторых томов Руководства МГЭИК разных версий (2006, 2000) приведены на рисунке 2.

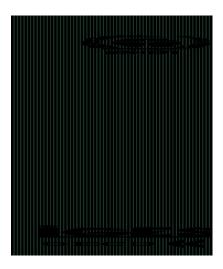
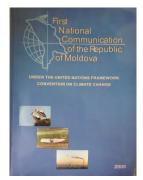
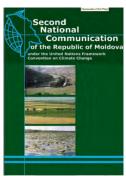


Рисунок 2. Титульные страницы томов Руководства МГЭИК-2006 и Руководства по эффективной практике 2000

Изменения, которые имеются в каждом новом ТЭБ, анализируются перед началом работы по инвентаризации. Анализ необходим для выявления отличий текущего формата ТЭБ к предыдущему, перечня категорий, видов топлив, совпадения данных, систематизации данных. Обработка данных обычно связана с анализом трендов количеств потребленных топлив,


преобразованием значений к нужному формату или единицам измерения для расчета эмиссий в категориях.


Операции по предварительной обработке данных ответственны и кропотливы, с обязательными ссылками на источники информации с номерами таблиц или страниц.

Вопрос систематизации и классификации может быть решен по-разному. Даже в этих заметках описание можно построить по-разному. Можно описывать подходы по методам, по источникам выбросов, по секторам, по циклам работ, по вкладу экспертов команды, по применению версий специализированных расчетных программ и т.д.

Основная цель этого раздела - описание выполненных работ и публикаций в виде небольшого исторического обзора. За 20-летний период было опубликовано 4 HC, 2 BUR и 5 Инвентарей (1990-2005, 1990-2010, 1990-2013, 1990-2015, 1990-2016), 2 версии шаблонов, отражающих систему инвентаризации парниковых газов в стране. Каждой публикации предшествовала работа по обновлению подходов, расширению данных, применению более сложной методологии. Такая работа получила название «цикл» работ.

Для данного обзора выбрана систематизация по циклам подготовки указанных документов, для каждого описаны подходы и особенности. Первыми изданиями были Национальные Сообщения, рисунок 3.

Рисунок 3. Обложки Национальных Сообщений (Первое, Второе, Третье) и Biennal Update Reports (BUR1, BUR2)

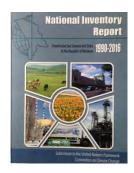

Инвентари, как отдельные книги, стали готовиться позднее. Подготовка первого из них была начата в 2003-2004 годах и шла довольно долго. Первый же выпуск показал основательность издания, которые сохраняется и на текущий момент. Общая структура Инвентарей отражает эмиссии по модулям, секторам и категориям согласно классификатору МГЭИК с максимальным охватом на момент проводимого цикла. В каждом цикле работ уделяется внимание совершенствованию описаний каждой категории, уточнению распределения топлив по категориям, добавлению новых лет, переходу к методам расчета более высокого уровня, общему улучшению качества инвентаризации, снижению неопределенностей. Издания каждого Инвентаря осуществлены на английском и молдавском языках. Фотоизображения титульных страниц нескольких изданий приведены на рисунке 4.

Рисунок 4. Обложки Национальных Инвентарей за 1990-2005, 1990-2010, 1990-2013, 1990-2015, 1990-2016

Первый цикл 1990-1998

При подготовке 1HC описания категорий источников модуля «Энергетика» были сделаны достаточно кратко, не все категории были рассчитаны, рассматривался только Правобережный регион. Исключение составила Молдавская ГРЭС - объект Левобережного региона. Систематизированные данные по использованию топлива для нее имелись (1990-1998) благодаря ранее выполненной работе по подготовке Стратегии развития энергетики до 2010 года. Это позволило сделать с самого первого цикла адекватную оценку выбросов, поскольку более 80% эмиссий по сектору энергетики на тот момент происходило от этого объекта.

При подготовке 1HC за период 1990-1998 электробалансы ГП «Молдэлектрики», по сути, были первыми систематизированными источниками данных, но в них не было данных по топливу. К топливно-энергетическим балансам и Статистическим ежегодникам, в которых был раздел «Топливно-энергетические ресурсы», обратились позднее, к концу работ первого цикла.

В первом цикле трудности были во всем. Основные усилия касались изучения общих подходов и метода уровня 1, сбору первичных данных. Как выше уже упоминалось, эмиссии сначала рассчитывались вручную, но были куплены первые компьютеры, начато освоение Excel и, одновременно, специализированного софта «Электронные таблицы МГЭИК-1996».

Работы забирали много сил, но были видны и результат, и перспектива. С 2000 по 2013 модуль «Энергетика» рассчитывался группой в составе 3 человек: Постолатий В.М., Быкова Е.В. и Суворкина С.Г.(транспорт). Проверку с аналогичными расчетами в другом файле осуществлял Мариус Царану.

В каждом цикле все тонкости в подходах и первичных данных обсуждались Быковой Е.В. и Царану М.Х. Внешние проверки осуществлялись периодически как местными, так и зарубежными экспертами. Их замечания и рекомендации учитывались в последующих циклах. Далее приведен целиком один из письменных ответов на вопросы международного эксперта при проверке 2HC- как пример, хорошо отражающий «исторический» аспект.

Письменные ответы на вопросы эксперта

1. Участие в конференциях

а) Общее курирование проекта осуществлялось Министерством окружающей среды. Рабочие группы с самого начала были созданы отдельные по каждому модулю; внутри модулей тоже было разделение работы по отдельным секторам. Требования к отчетности были строгие, все отчеты проверялись. Итоговые документы представлялись руководителями групп менеджеру проекта согласно срокам контрактов, в электронном и бумажном виде. Обязательными являлись доклады и сообщения о результатах работы на семинарах, которые проводились обычно в течение каждой фазы (этапа) проекта. На семинарах присутствовали обычно представители либо вышестоящих организаций, либо эксперты из других стран, имевшие опыт по составлению НС.

- б) Трудности, которые были на этапе 1 НС:
- практически полное отсутствие общей информации по Киотскому Соглашению;
- -отсутствие свободного доступа к Руководству МГЭИК-1995, наличие только ксерокопированных отдельных фрагментов, без титульных листов, без начала и конца, только на английском языке;
 - общее слабое владение компьютером практически всех членов первой команды экспертов;
- первичная работа шла очень трудно, примерно 3 месяца, до первого семинара, на котором состоялись доклады более опытных экспертов, приехавших из других стран, после чего стало понятнее, как собирать исходные данные;
- трудности со сбором первичной информации. Расчеты проводились по информации из ведомств, данные были разрозненными, и их было трудно верифицировать;
- рекомендации по использованию ТЭБ поступили уже практически в конце периода подготовки 1 НС. Была начата работа по поиску ТЭБ, «добыванию». Первые ТЭБ также были в фрагментарном виде, но их наличие уже

позволило их использовать, чтобы завершить работу по 1 HC и сделать оба метода «снизу – вверх» и «сверху – вниз»:

- затраты времени на выполнение 1 HC были просто огромные на изучение методологии, сбор первичных материалов, освоение последовательности заполнения таблиц софта «Электронные таблицы МГЭИК-1996». Пересчеты для всего модуля были проведены несколько раз из-за неверно взятых коэффициентов, уточнявшихся данных по деятельности.

2. Рабочие соглашения и методология

А) Были рабочие соглашения эффективными или вы хотели бы что-либо изменить?

Для подготовки 1 HC (руководитель В. Чеботарь) с самого начала имелось отдельное помещение, компьютерная поддержка, внимательное отношение руководителей. Описание заданий, распределение по срокам видов работ, рабочие встречи и другая вспомогательная работа – все было корректно подготовлено, консультации можно было получить по всем вопросам.

При подготовке 2 HC работа менеджмента была поставлена отлично, с учетом накопленного опыта (руководитель В. Скорпан). Сроки выполнения работ – адекватные, разделение по трехмесячным фазам – удачное решение. Необходимые консультации оказывались своевременно. Большая помощь была в организации доступа к первичным данным. Переписку с организациями взяли на себя менеджеры, это очень помогло эффективнее распределять время.

Были использованы рекомендуемые методики из Руководств (версии МГЭИК 1995, 1996, Руководство по эффективной практике – 2000, Руководство – 2006). Выполнялось сравнение предлагаемых методик, и для каждого сектора были применены методики с использованием деревьев решений, рекомендаций, коэффициентов выбросов по умолчанию, были определены национальные величин теплотворных способностей. Другие методики, отличные от Руководств МГЭИК, не применялись.

Публикация НС каждый раз имела резонанс. Издания предоставляли солидный обзор ситуации по выбросам парниковых газов в секторах экономики, и анализ воздействия на окружающую среду. На 1 НС и 2 НС много ссылались при подготовке государственных документов, других проектов, они упоминаются во документах, связанных с экологией, в качестве основополагающих. На текущий момент, наличие Национальных Сообщений в стране — это высокий уровень деятельности государственных экологических организаций, уровень проводимого мониторинга в стране, наличие подготовленных кадров для проведения работ по гармонизации законодательства страны в области экологии, согласно с принятыми в ЕС стандартами, и современный уровень понимания проблем окружающей среды, способности их анализа.

Б) Какие средства обучения имеются ввиду?

Примеры обучения:

- Свободное владение методиками разных уровней по модулю «Энергетика» для разных секторов от производства электроэнергии до авиации и фугитивных выбросов;
- Свободная ориентация в том, какие данные необходимы, в каких источниках их можно найти, периодичность выхода источников данных (публикаций);
- Методы верификации первичных данных по разным источникам, выбор основных, знание расхождений в данных, т.е. свободная ориентация по информации, которую можно и нужно собрать в стране, и систематизация данных;
- Значительно лучшее владение компьютером, т.е. повышение компьютерной грамотности;
- Изучение законодательства по экологии в стране, ориентация в тенденциях экологической, энергетической, экономической политики.

3. Устойчивое развитие и интеграция

- а) Во 2 НС: были выполнены перерасчеты, т.к. расширились источники данных, появилась возможность верификации данных:
- Были систематизированы все ТЭБ и другая полезная информация, было принято решение использовать национальные коэффициенты теплотворных способностей. Использованы: Руководство МГЭИК-1996, Руководство по эффективной практике МГЭИК-2000. В них были уточнены методы и подходы, описана эффективная практика, приведены коэффициенты эмиссий. В частности, была рекомендация использовать одинаковый для всех видов топлив коэффициент оксидирования при расчетах СО2. Это несколько упростило расчеты.
- Выработался определенный порядок работы над первичными документами по сбору данных по деятельности, по заполнению софта «Электронные таблицы МГЭИК-1996», по обработке результатов;
- В софте по модулю «Энергетика» было выявлено порядка 10 недоработок, связанных с link (связями) между таблицами, нехваткой строк для топлив и других (описаны в 2 НС). Они были устранены в рабочих файлах для всех лет. Это позволило значительно уменьшить объем информации, вводимой вручную, и, тем самым, снизить количество механических ошибок;

- Была выполнена предварительная работа по сравнению рекомендаций Руководств МГЭИК версий 1996 и 1996 года и Руководства по эффективной практике 2000;
- б) На текущий момент (в момент проверки 2HC международным экспертом в 2012 году) выполняются работы по подготовке 3HC, для него также имеется ряд особенностей:
- 1) Временной ряд составляет 20 лет, а это период, для которого уже можно использовать регрессионный анализ для построения описывающих кривых, например, или другой статистический анализ;
- 2) Добавлены данные по ПМР, найдены и систематизированы данные по ПМР, они добавлены к данным по ПБ;
 - 3) Сделаны расчеты по методу 2 (2а и 2б) для авиации;
- 4) Подробно изучены вопросы фугитивных выбросов и сделаны расчеты для 4 газов. Трудности представление в Руководстве МГЭИК коэффициентов выбросов в одних единицах измерения, в ТЭБ данные приведены в других. Для подстановки в таблицы софта необходимо предварительное преобразование данных. Это приводит к ошибкам;
- 5) Продолжены попытки использовать метод более высокого уровня по сектору 1А1, для этого продолжен сбор первичной информации, но пока эта работа не завершена;
- 6)Для 1А3b в дальнейшем можно будет сделать попытки расчетов с применением более детального метода. Освоена специализированная программа расчета эмиссий для автотранспорта СОРЕRT, пройдено обучение на семинаре (2012), выполнены первичные расчеты для 2009, 2010, 2011 с использованием доступных данных. Для данной категории сделан обзор и сравнение выбросов по разным методам и количеств эмиссий, которые публикуются разными организациями, например, Экологической инспекцией, Национальным Бюро статистики (Экологические обзоры, Статистический ежегодник, Resurse naturale и др.). Таким образом, созданы предпосылки для применения этой программы и в будущем.

4. Поддержка и роль UNEP

- а) UNEP был эффективным партнером? Была ли поддержка адекватной?
- b) Было ли обучение и техническая поддержка адекватными?
- Да, проводимые мероприятия, презентации, семинары все было полезным, включая сравнение количеств эмиссий по другим странам (Национальные Сообщения):
 - в) были ли примеры обмена информацией с другими странами?
- Да, есть НС других стран, презентации, изучался опыт составления инвентарей и подготовки данных. Это дало много полезного.
- 5. Общая эффективность и извлеченные уроки
 - а) хотели бы вы что-то сделать иначе?
- В каждом последующем НС предоставляется возможность провести перерасчеты, если это необходимо. Это хорошая практика. Каждое новое НС готовилось на более высоком уровне с учетом приобретенного опыта, на каждом этапе работа выполнялась как можно более старательно и аккуратно.
 - б) Какие уроки были извлечены?
 - 1) Была воспитана аккуратность работы с первичными документами;
- 2) Была воспитана внимательность при работе с электронной базой, появились навыки пошаговой проверки, минимизации ошибок разного типа.
- 3) В софте были найдены недостатки. В целом он удобен и доступен, освоен, и при устранении недочетов им можно и дальше пользоваться.
- 4) Книги Руководства желательно печатать чуть более крупным шрифтом. (Ответы вопросника завершены)_____

С 1990 по 2015 год расчеты эмиссий были на основе данных в натуральных единицах измерения. Международным экспертом Вероникой Гинзбург при проверке в 2015 году была высказана рекомендация об использовании данных в ТДж. Рекомендация внедрена в расчетах в цикле 1990-2015. Но данные в ТДж имеются не для всех категорий и регионов. По Левобережному региону их нет, по некоторым категориям – тоже. Поэтому полностью отказаться от пересчетов с применением низшей теплотворной способности (НТС) не удается.

Проблема НТС возникает по двум причинам: округление данных в ТЭБ до целых величин и отсутствие таблицы НТС в изданиях Национального Бюро статистики. Проблему решить в принципе возможно, осуществив представление данных в ТЭБ хотя бы с 1 знаком после запятой и добавив таблицу НТС в издания ТЭБ. Но на текущий момент она не решена.

Кроме того, по-прежнему существуют трудности с данными по Левобережному региону. ТЭБ для этой территории не составляется. Следует отметить, что статистические издания этого региона постепенно становятся более доступными, но ТЭБ по-прежнему нет, к сожалению.

Изменения в подходах при расчете эмиссий произошли значительные - по степени охвата категорий, по охвату регионов, по детализации методов, по совершенствованию и улучшению систематизации первичных данных, по улучшению расчетных инструментов, по строгости отражения результатов, по описанию результатов. В связи с этим, объем работ при проведении инвентаризации сильно увеличился. С 2014 года по энергетике работает команда, которая включила 4 человека, а с 2017 года - 5 человек (Быкова Елена, Кириллова Татьяна, Бурцев Сергей, Морару Лариса, Васильева Ирина). Каждый эксперт в команде рассчитывает эмиссии, анализирует и описывает 1-2 сектора.

Общий принцип работы в команде – постоянное совершенствование, создание среды общения, объединение знаний, общее улучшение качества инвентаря, взаимопомощь. Это касается вопросов методологии, обработки данных, представления результатов. Усилия по созданию команды, обучению и развитию каждого эксперта позволили создать такое поле общения. Это сразу принесло видимый и полезный эффект. Стала возможной перекрестная проверка результатов расчетов несколькими членами команды, что улучшило качество работы. Получило развитие и освоение методов более высокого уровня, которые на текущий момент применены ко многим категориям.

Всему этому предшествовали годы работы над 1НС, 2НС и 3 НС, Инвентарями за 1999-2010 и 1990-2013. Был определен двухлетний период циклов работ. Но реально имеют место небольшие отклонения от двухлетней периодичности по разным причинам.

Самые первые работы 1НС в 1998-1999 гг (вплоть до выпуска 1НС в 2000 году) будем считать первым циклом. Период 2001-2005- до выпуска Инвентаря за 1990-2005 и 2НС- вторым циклом, 3НС и Инвентарь за 1990-2010 – 3 циклом, 4НС и Инвентарь за 1990-2013- 4 циклом, Инвентарь 1990-2015 и БУР 1 – 5 циклом, Инвентарь за 1990-2016- и БУР 2 – 6 циклом.

В каждом цикле осуществляются пересчеты эмиссий за весь предыдущий временной ряд, в связи с улучшениями в подходах по категориям, добавлением новых данных, новых лет, применением более детального метода, исправлением выявленных пропусков или ошибок.

Кстати сказать, механические ошибки при обработке первичных данных имеют всего несколько причин – это пропуск слагаемого в сумме, двойной учет, смещение строк. Крайне редко бывают ошибки, связанные с коэффициентами выбросов. Иногда бывают ошибки методологического плана, связанные с тонкостями и особенностями применения методологии в отдельных категориях.

Обо всех изменениях ведутся специальные записи в расчетных файлах, а также имеются описания в главе. Перечень изменений представлен и в презентациях, как правило, на отдельных слайдах.

Начиная с цикла 1990-2015, было принято решение больше не использовать софт «Электронные таблицы МГЭИК-1996», а использовать авторские расчетные таблицы. Они были разработаны для каждой категории, и имеют иерархическую структуру суммирования в секторах, и по модулю в целом. Работа по совершенствованию авторских таблиц была продолжена при подготовке инвентаря в цикле 1990-2016, и планируется в дальнейшем.

На текущий момент все секторы имеют отдельные расчетные файлы для каждой категории и сводные суммарные. Также имеется общий итоговый файл по модулю «Энергетика» в целом. На его основе заполняются таблицы «Summary», составляя фактически четырехуровневую

иерархическую структуру. Каждую категорию проверяют как минимум, четыре эксперта, количество ошибок постепенно снижается, и качество инвентаря улучшается. Часть ошибок выявляется на заключительных этапах работы, когда исправлять уже нет возможности. В таких случаях составляется их перечень, и в следующем цикле они исправляются.

Общая последовательность инвентаризации включает этапы сбора данных, выбора метода, расчета значений эмиссий всех газов, описания в тексте главы результатов по всем категориям.

Каждый цикл инвентаря проводится по правилам научного исследования - от постановки задачи, выбора метода, подготовки данных, анализа результатов до представления результатов в презентациях и публикациях. Постоянной является задача по общему улучшению инвентаря. Осуществляется переход к детализированным методам расчета для категорий, для которых имеются наработки по улучшению первичных данных, освоению методов, рекомендации внутренних и международных экспертов, использованию опыта других стран и т.д.

Изложение результатов в главах Инвентаря компактное, имеется структурное разделение на 6 разделов в каждом секторе. Несмотря на краткое отражение результатов, объем главы по энергетике превышает 120 страниц. Это связано с большим количеством категорий, объемными таблицами с результатами за весь предыдущий период, начиная с базового 1990 года. В каждом последующем цикле таблицы расширяются прибавлением столбцов или строк за 1-2 года по количеству новых лет. Издания осуществляются на молдавском и английском языках. На русском языке до настоящего времени имелись только статьи экспертов группы, которые касаются ряда исследовательских вопросов, имевших место при подготовке работ. Желательно иметь главу по энергетике также и на русском языке, чтобы увеличить число читателей и пользователей работы.

Такая цель была поставлена и выполнена. Дополнительно включены следующие материалы (далее):

- 1) перечень изданий и фотоизображений титульных страниц публикаций,
- 2) список семинаров и фото отдельных моментов,
- 3) список статей, опубликованных по данной тематике,
- 4) список нововведений по каждому циклу;
- 5) краткая историческая справка по работам за 20 лет;

Рисунок 5. Основная структура секторов и категорий модуля «Энергетика»

Второй цикл 1990-2005

Второй цикл имел целью подготовку Инвентаря за 1990-2005. Была поставлена задача использования обновленной версии софта «Электронные таблицы МГЭИК-1996».

Расчетный софт «Электронные таблицы МГЭИК-1996» включает специальные файлы для каждого модуля и обобщающий файл «OVERVIEW». Для каждого года заполнялся свой комплект. Файл «Module 1» содержит много страниц разного формата, в том числе:

- 1) 16 страниц для расчетов СО₂ для каждого сектора (1A1-1A5);
- 2) итоговую страницу суммарного потребления каждого вида топлива и суммарных эмиссий CO₂;
- 3) таблицы для расчета CH₄, N₂O, NO_x, CO, NMVOC;
- 4) таблицы для расчета SO_2 ;
- 5) таблицы для расчета летучих эмиссий (сектор 1В2);
- 6) комплект таблиц для расчета выбросов от авиации и ряд других.

Фрагменты нескольких расчетных таблиц приведены в таблице 1.

Таблица 1. Некоторые расчетных таблиц софта «Электронные таблицы МГЭИК-1996» Фрагмент 1

WORKSHEET	1-1					
SHEETS	1 OF 5					
COUNTRY	Republic of					
COUNTRY	Moldova					
YEAR	2005					
	STEP 1					
	A	В	C	D	E	F
	Production	Imports	Exports	International	Stock Change	Apparent

				Bunkers		Consumption
	FUEL	TYPES				F=(A+B -C-D-E)
Liquid Fossil	Primary Fuels	Crude Oil				0,00
		Orimulsion				0,00
		Natural Gas Liquids				0,00
	Secondary Fuels	Gasoline	168,68			168,68
		Jet Kerosene		34,159		-34,16
		Other Kerosene	0			0,00
		Shale Oil				0,00
		Gas / Diesel Oil	420,326			420,33
		Residual Fuel Oil	27,139			27,14
		LPG	74,477			74,48
		Ethane				0,00
		Naphtha				0,00
		Bitumen	0			0,00
		Lubricants	8,206			8,21
		Petroleum Coke				0,00
		Refinery Feedstocks	•		•	0,00
		Other Oil				0,00
Liquid Fos	sil Totals					

Фрагмент 2

Фрагмент	2								
MODULE F			ENERGY						
SUBMODULE			CO ₂ FROM FUEL COMBUSTION BY SOURCE CATEGORIES (TIER 1)						
		WORKSHEET	1-2 OVERVI	EW					
		SHEET	1 OF 8						
		COUNTRY	Republic of Moldova						
		YEAR	2005						
			A	B Orimul	С	D	Е	F	
			Crude Oil	sion	Natural Gas Liquids	Gasoline	Jet Kerosene	Other Kerosene	
FUEL	CONSUMPTION (TJ)								
Energy Industries			0,00		0,00	0,00	0,00	0,00	
	ring Industries and C	Construction	0,00 0,00 0,00 0,00 0,				0,00		
Transport	Domestic Aviation (a)					2,95	0,00		
	Road					7 301,24			
	Railways								
	National								
	Navigation ^(a)					0,00			
	Pipeline Transport								
Other	Commercial/Institut	ional				0,00	0,00	0,00	
Sectors Residential					0,00		0,00		
	Agriculture / Forestry /	Stationary				0,00		0,00	
	Fishing	Mobile				26,78	0,00	0,00	
specified)	Other (not elsewhere 0,00 0,00 43,72 0,00			0,00					
Total (a)			0,00	0,00	0,00	7 374,69	0,00	0,00	

Фрагмент 3

TABLE 1 SECTORAL REPORT FOR ENERGY(Sheet 2 of 3)

SECTOR	SECTORAL REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES						
	(Gg)						
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO_2	CH ₄	N_2O	NO_x	CO	NMVOC	SO_2
3 Transport	1710,0283	0,3221	0,1014	17,5761	78,9199	14,9890	2,6257
a Civil Aviation	0,2067	0,0000	0,0000	0,0007	0,0003	0,0001	
b Road Transportation	1665,4405	0,3196	0,0843	16,8552	78,3204	14,8690	
c Railways	44,1111	0,0025	0,0170	0,7147	0,5956	0,1191	
d Navigation	0,2700	0,0000	0,0000	0,0055	0,0036	0,0007	
e Other (please specify)	0,0000						
Pipeline Transport	0,0000						
4 Other Sectors	2269,1808	1,9342	0,0242	4,6456	26,9936	3,2287	5,5236
a Commercial/Institutional	780,3670	0,1765	0,0042	0,7497	4,4048	0,4759	
b Residential	1342,4213	1,7282	0,0187	1,6362	20,5410	2,3573	
c Agriculture/Forestry/Fishing	146,3925	0,0295	0,0013	2,2598	2,0477	0,3955	
5 Other (please specify)	40,4625	0,0015	0,0004	0,1136	0,0127	0,0028	0,1105
B Fugitive Emissions from Fuels	1,8765	26,0309	0,0000	0,0000	0,0000	0,9216	0,0000
1 Solid Fuels	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
a Coal Mining		0,0000					

Особенностями указанной версии является добавление отдельных таблиц для расчета SO_2 для всех секторов (до этого была одна общая таблица). Но первоначальная таблица не была улучшена, а просто размножена для 5 секторов, без устранения её недостатков, первым из которых было отсутствие связей с предыдущими листами. Вторым недостатком явилась необходимость отдельного вспомогательного суммирования количеств каждого вида топлива по секторам, имеющих разделения на подкатегории, в частности, для сектора «1A4 Малое сжигание». Такое усложнение превратили расчет SO_2 в отдельный этап работы, хотя все остальные газы, кроме CO_2 , рассчитывались автоматически в таблицах одинакового формата.

Заполнение софта первичными данными и расчеты эмиссий с его помощью - это отдельная дополнительная часть работы. Она осуществлялась после расчетов в авторских таблицах и фактически дублировала их. Если результаты не сходились, то поиск ошибок осуществлялся в обоих вариантах расчетов. Это своего рода перекрестная проверка, но выявление таких ошибок иногда являлось просто ювелирной работой, как по тонкости, та и по затратам времени.

Начиная с цикла 1990-2015, расчеты эмиссий осуществляются только в авторских таблицах. Расчеты эмиссий нужны в 2 вариантах: для всего временного ряда (все категории и все годы на 1 листе, каждый газ на отдельном листе); для каждого года отдельно (все категории, все газы на одном листе). Обе формы представления используются параллельно и представлены как CRF Summary.

Таблицы софта «Электронные таблицы МГЭИК-1996» давали результат только для одного года, не позволяя видеть весь временной ряд сразу. Возможно, это была одна из причин неудобства работы с ним. В новом софте МГЭИК-2006, версия 2.14, этот недостаток устранен, но имеются другие. В частности, можно отметить ручной ввод первичных данных по каждому топливу отдельно, что требует больших затрат времени. Недостаток можно устранить путем разработки промежуточного специального файла – «шарика» для импортирования в софт из авторских расчетных таблиц.

Работа с софтом МГЭИК-2006, версия 2.14, - это также отдельный этап работы, требующий времени. Это время можно употребить на развитие методологии, освоение новых источников информации, подходов и т.д. То есть на усилия, направленные на улучшение инвентаря, а не отображение результатов в определенной версии софта (к слову, который тоже постоянно совершенствуется). Поэтому на текущий момент не ставится задача представления результатов с его помощью.

Во втором цикле 1990-2005 проведенные перерасчеты вызваны следующими причинами:

- 1.Использованием национальных коэффициентов преобразования в энергетические единицы взамен ранее применявшихся по умолчанию из Руководства МГЭИК-1996;
 - 2. Использованием ТЭБ в качестве базового источника данных;
 - 3. Исправлениями недочетов в категории «транспорт»;
- 4. Использованием усовершенствованной версии софта «Электронные таблицы МГЭИК-1996» с выделением новой подкатегории автогенерации;
 - 5. Недостатки, имевшиеся в предыдущем софте, к сожалению, сохранились и в новом, а именно:
 - Отсутствовала связь между ячейками, в которых помещены величины топлив в ТДж для CO₂ и не-CO₂ газов;
 - Отсутствовали дополнительные свободные строки для записи видов топлива вне стандартного списка;
 - Несовершенная таблица расчета SO₂;
 - Недостаточный формат ячеек (по числу знаков после запятой) в таблицах для не-CO₂ газов и в итоговых суммирующих таблицах файла «Overview»;
 - Двойное суммирование CO₂ по категории «трубопроводы» в транспортном секторе в таблицах файла «Overview»;
 - 6. Добавление новых лет 1999-2005;

Третий цикл Инвентаря 1990-2010

Нововведения и перерасчеты для третьего цикла Инвентаризации и обобщение особенностей 1НС и 2НС были связаны с переходом на использование Руководства МГЭИК-2006, добавлением категорий по внутренней авиации и некоторых других, расчетом 4 новых лет (2006-2010), таблица 2.

Таблица 2 Основные нововведения, которые были в 2НС и 3НС в сравнении с 1НС

1 HC	2 HC	3 HC
1990÷1998	1990÷1998	1990÷2005
Новые годы: 1990-1998.	Новые годы 1999÷2005	Новые годы 2006÷2010
	Была значительно улучшена первичная	
Первые работы в области	информация. ТЭБ начали использоваться	Была улучшена база исходных данных,
инвентаризации парниковых газов и	систематически, наряду с данными от организаций.	добавились данные по Левобережью в ряде
изменения климата.	Были приняты национальные коэффициенты	категорий, но пока не по всем.
Трудности касались исходной	преобразования в энергетические единицы.	Были учтены рекомендации нового
информации, освоения методологии,	Изучался Гид (Руководство) МГЭИК по	Руководства МГЭИК 2006 года. Для авиации
компьютерной грамотностью,	эффективной практике 2000 года Информация	и фугитивных эмиссий были выполнены
отсутствием полной версии	стала документироваться не только у экспертов, но	расчеты методам 1, 2, сравнивались
Руководства МГЭИК-1995 и 1996.	и централизованно в Офисе по изменению климата.	результаты.
Все коэффициенты были приняты по	Были освоены трудные разделы по авиации и по	Продолжалась работа по накоплению
умолчанию.	фугитивным выбросам, и выбран курс на	навыков и знаний, освоена программа
Первичная информация собиралась	применение в дальнейшем методов более высокого	«COPERT» для детальных расчетов по
от организаций, ТЭБ начали	уровня, были освоены расчеты неопределенностей,	сектору автотранспорта.
использоваться только в конце	уточнены формулы по бензину и дизельному	Был введен сектор внутренней авиации
работы, по советам координаторов.	топливу для автотранспорта.	

Четвертый цикл 1990-2013

Нововведения и перерасчеты данного цикла:

- Дополнение данными по потреблению топлива Левобережного региона и обновление данных для 1A1, 1A2, 1A3a, 1A3b, 1A3c, 1A3d, 1A4b;
- Обновление данных по сектору 1В2 для 2000-2005;
- Общее улучшение информационной базы, выполнение процедур контроля качества;
- Сбор данных и расчеты для трех новых лет 2011-2013, расширение охвата временного ряда до 1990-2013 (23 года).

Рисунок 6. Представление Национального Инвентаря за 1990-2013 на итоговом семинаре 20 июня 2013

Пятый цикл 1990-2015

Нововведения и перерасчеты

В цикле инвентаризации применен *метод уровня* 1 для всех категорий, за исключением международной авиации - метод 26.

- Во время работы по данному циклу выполнена работа по освоению метода 3 для 1A1 разработаны таблицы необходимых первичных данных, разработаны таблицы- запросы на предприятия (для ПБ), обработаны полученные ответы и первичные данные. Сравнение с результатами по методу 1 показали для ПБ, что метод 3 можно использовать. Трудность в отсутствии таких же данных по ЛБ региона, в котором находится самый крупный источник выбросов по 1A1;
- Во время работы по данному циклу выполнена работа по освоению метода 3 для международной авиации. Изучен метод 3 по Руководству ЕМЕР-2013 и его Приложению для «Международной Авиации». Подготовлены ряды первичных данных, разработаны специальные расчетные таблицы, проведены контрольные расчеты для одного типа самолета, работа трудоемкая и длительная; Сравнение с результатами по методу 26 показали, что метод дает меньшие величины выбросов на 27-40% для разных газов, то есть более точен. Трудность большой объем работы, необходимость разработки специальных расчетных таблиц для ускорения работы. Данная категория не является ключевой, поэтому вопрос о применении достаточно сложного метода является открытым.

Шестой шикл 1990-2016

Нововведения и перерасчеты, проведенные в цикле, коснулись следующих моментов:

- 1. Учет регионов: Левобережье выделено полностью отдельно во всем цикле расчетов: газы рассчитаны отдельно для обоих регионов и Молдовы в целом. Для Левобережного региона имеются данные не для всех категорий. В связи с этим, составлена специальная таблица учета категорий и видов топлив по регионам.
- 2. Топлива дополнительно учтены *по группам* твердые, жидкие, газообразные, биотоплива;
- 3. Для *природного газа* для всех категорий использована ежегодная низшая теплотворная способность по сведениям от АО «Молдовагаз» для 1997-2016. Значения НТС для 1990-1996 восстановлены;
 - 4. Освоены и использованы методы восстановления данных.
- 5. Применены коэффициенты выбросов для газов прямого действия по МГЭИК-2006, для остальных газов по ЕМЕР-2016 (версии этого Руководства указаны в категориях).

Для SO_x в некоторых категориях нет коэффициентов эмиссий, в таких случаях рассчитано старым способом SO_2 (по таблице из софта «Электронные таблицы МГЭИК-1996»).

- 6. Данные составлены в ТДж во всех случаях, когда такие данные имеются. Количество топлив по Левобережью рассчитано с применением НТС. Для некоторых категорий в отдельных годах нет значений в ТДж, для них также рассчитаны количества с использованием НТС пометки об этом имеются в категориях.
- 7. *Масла* выделены и исключены из расчетов по модулю «Энергетика» и полностью перенесены в модуль «Промышленные процессы».
 - 8. Для категории 1A3b выполнены расчеты для 3 лет с помощью программы COPERT.
- 9. Для сектора 1A2 расчеты выполнены для каждой отрасли промышленности (12) в Правобережье, и для Левобережного региона в целом по потребленным топливам. Распределение по 12 отраслям для Левобережья выполнено путем восстановления значений на основе косвенных данных.
- 10. Впервые рассчитаны две новые категории 1A16 и 1A1c. Временные ряды для них неполные.

Дополнительные исследовательские работы проводились практически в каждом цикле инвентаризации и касались различных методологических тонкостей или анализа данных. Можно отметить следующие работы:

Цикл 2008- международная авиация - освоение метода уровня 2;

Цикл 1990-2015:

- А) Освоение метода 3 для категорий «Производство электро- и теплоэнергии» сектора 1А1;
- Б) Освоение метода 3 для международной авиации с использованием измеренных величин эмиссий из Приложения к Руководству ЕМЕР-2013;
- В) Исследование тонкостей низшей теплотворной способности сжиженного нефтяного газа в связи с отсутствием для него отдельной строки при расчетах не-CO2 газов в софте «Электронные таблицы МГЭИК-1996»;
- Г) Анализ и сравнение данных по письмам АГА и от авиапредприятий и выбор окончательного источника информации;
- Д) Разработка авторских расчетных таблиц для оценки эмиссий парниковых газов по модулю «Энергетика»;

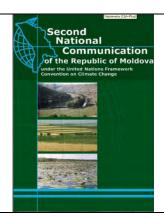
Цикл 1990-2016:

- Обобщение нововведений для текущего цикла;
- Изучение методов восстановления данных по Руководству МГЭИК-2006 и Руководству ЕМЕР-2013, 2016;
- Анализ ряда значений ежегодных НТС по природному газу, восстановление недостающих величин в ряду;
- Сравнение данных по потреблению природного газа по двум источникам данных и выбор источника информации;
- Выполнение детализированных процедур контроля для секторов 1А2, 1А4, биомассы;
- Освоение специальной программы COPERT тремя экспертами, работа по подготовке первичных массивов данных для COPERT и расчеты для 3 лет;
- Анализ данных по теплоэнергии для 1А1аіі, 1А1аііі;
- Анализ новых источников для 1А1а ЛБ (Пресс-релизы);
- Описание расчетных файлов;
- Совершенствование комплекта авторских расчетных таблиц для оценки эмиссий парниковых газов по модулю «Энергетика»;
- Исторический обзор по работам по модулю «Энергетика» Инвентарей за прошедший период, подходам, методологии и развитию работ.

Архивирование документации

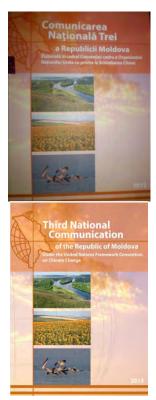
Выполнение работ по Инвентаризации сопровождается ведением электронного архива всей документации, и объемы хранимых данных постепенно растут, таблица 3.

Таблица 3. Электронное архивирование документации по расчету парниковых газов в каждом цикле

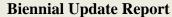

Папка	Объем	Цикл	Номер цикла
Экология 2017-2018	1,8 ГБ	1990-2016	6
Экология 2017 Экология 2016	0,5 ГБ 1,6 ГБ	1990-2015	5
Экология 2015	0,5 ГБ	1990-2013	4
Экология 2014	0,36 ГБ	1990-2012	4
Экология 2013 Экология 2012	0,58ГБ 0,81 ГБ	1990-2010	3
Экология 2011 Экология 2008	0,41 ГБ 0,21 ГБ	1990-2005	
Экология 2007 Экология 2006	1,04 ГБ 0,4 ГБ	1990-2005	2
Экология 2004-2005	0,446 ГБ	1990-2002	
Экология 1998-1999	0,5 ГБ	1990-1998	1

Перечень изданий и краткие выходные данные

Издания осуществлены в двух версия - на молдавском и английском языках. Краткие выходные данные и фото обложек систематизированы в следующей таблице 4.


Таблица 4. Перечень опубликованных изданий в области инвентаризации парниковых газов и изменения климата РМ

Национальные Сообщения				
First National Communication Of the Republic Of Moldova UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE	Prima comunicare Naţională a Republicii Moldova. Elaborarea în cadrul Convenţiei Naţiunilor Unite privind Schimbarea Climei. V. Bobeică и др., V. Postolati, E. Bîcova (в числе авторов). Монографическое издание. Ministerul Mediului şi Amenajării Teritoriului, PNUD Moldova, 2000, 74 р.			
	Second National Communication of the Republic of Moldova under the United Nations Framework. Convention on Climate Change / United Nations Environment Progr.; coord. Violeta Ivanov, George Manful. Synthesis Team: Vasile Scorpan, Marius Taranu, Petru Todos, Ilie Boian Institute of Energy of the ASM Vitalii Postolatii, Elena Bîcova şi alt, Ch.: "Bons Offices" SRL, 2009. – 316 p.ISBN 978-9975-80-313-7 500 copies. This document is available at: http://www.clima.md/public/458/en/SNC_			


ENG_Web.pdf Institute of Energy of the ASM Vitalii Postolatii, Elena Bîcova şi alt,... Ch.: "Bons Offices" SRL, 2009. – 316 p.ISBN 978-9975-80-313-7 500 copies. This document is available at:

http://www.clima.md,http://www.clima.md/public/458/en/SNC ENG Web.pdf

Third National Communication of the Republic of Moldova under the United Nations Framework Convention on Climate Change. / Ministry of Environment of the Republic of Moldova / United Nations Environment Programme; Coord.: Gheorghe Salaru, George Manful; Project staff: Vasile Scorpan, Aliona Solomon; Synthesis Team: Marius Taranu, Ion Comendant, Lilia Taranu, Ala Druta, Lidia Trescilo, Daniel Voda. - Chisinau: "Imprint Plus" SRL, 2013 - 397 p. 100ex. ISBN 978-9975-4385-7-5 504.38.06(478)+551:58

Comunicarea Naţională Trei a Republicii Moldova elaborată în cadrul Convenţiei-cadru a Organizaţiei Naţiunilor Unite privind schimbarea climei. / Ministerul Mediului al Republicii Moldova / Programul Naţiunilor Unite pentru Mediu; Coord.: Gheorghe Şalaru, George Manful; Echipa proiectului: Vasile Scorpan, Aliona Solomon; Grupul de sinteză: Marius Țăranu, Ion Comendant, Lilia Țăranu, Ala Druţă, Lidia Treşcilo, Daniel Vodă. - Ch.:,,Imprint Plus" SRL, 2013 – 411 p.120ex. ISBN 978-9975-4385-6-8. 504.38.06(478)+551.58

First Biennial Update Report of the Republic of Moldova under the United Nations Framework Convention on Climate Change / Min. of Environment (MoEN), United Nations Environment Progr.(UNEP); Coord.: Valeriu Munteanu, Suzanne Lekoyiet; Synthesis Team: Vasile Scorpan, Marius Țăranu, Ion Comendant, Lilia Țăranu. - Chisinău: S.n., 2016 (Tipogr. "Bons Offices"). Contributors in Chapter 2, Energy sector, Grup of energy sector; include E.Bicova, V.Postolaty, T.Kirillova, L.Moraru, 220 Bibliographical p. references in footer. - Published with financial support of the Global Environment Facility (GEF).- 50 cop. ISBN 978-9975-87-078-8. www.clima.md

Primul Raport Bienal Actualizat al Republicii Moldova : Elaborat pentru a fi raportat către Convenția-cadru a Organizației Națiunilor Unite cu privire la Schimbarea climei / Min. Mediului al Rep. Moldova / Progr. Națiunilor Unite pentru Mediu (UNEP); aut.: Vasile Scorpan, Marius Țăranu, Ion Comendant; coord.: Valeriu Munteanu, Suzanne Lekoyiet. Chisinau : S. n.,

2016 (Tipogr. "Bons Offices"). - 200 p. Apare cu sprijinul financiar al Fondului Global de Mediu (GEF). Bibliogr.: p. 141-147 (179 tit.) și in subsol. - 75 ex. ISBN 978-9975-87-080-1. 551.583:502/504(478)(047) P 92 (Contributors in Chapter 2, Energy sector , Grup of energy sector; include E.Bicova, V.Postolati, T.Kirillova, L.Moraru). www.clima.md

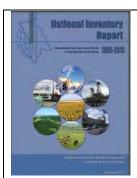
Raportul Bienal Actualizat Doi al Republicii Moldova elaborat pentru a fi raportat către Convenția-cadru a Organizației

Națiunilor Unite cu privire la schimbarea climei. / Ministerul Agriculturii, Dezvoltării Regionale și Mediului al Republicii Moldova, Programul Națiunilor Unite pentru Mediu; Coord.: Valentina Țapiș, Suzanne Lekoyiet; Grupul de sinteză: Vasile Scorpan, Marius Țăranu, Ion Comendant. - Chișinău : S. n., 2018 (Tipogr. "Bons Offices"). – 220 p. : fig., tab.

Bibliogr.: p. 207-220 (397 tit.). – Referințe bibliogr. în subsol. Apare cu suportul financiar al Fondului Global de Mediu. – 50 ex.

ISBN 978-9975-87-445-8. 551.583:502/504(478)(047)

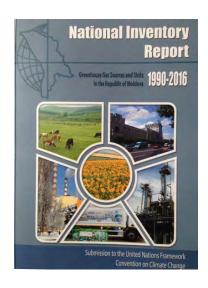
Инвентари эмиссий парниковых газов



Raport Naţional de Inventariere.Surse de emisii şi sechestare a gaselor cu efect de seră în Republicii Moldova,1990-2005 Царану М.Х.,Быкова Е.В. и др. Chisinau, 2009, mold. şi angl var.UNEP, GEF, Chisinau,2009. Ch. Continental Grup,SRL,ISBN 978-9975-9650-8-8351 p-angl364 p-mold

Raportul Național de Inventariere, Surse de emisii și sechestrare a gazelor cu efect de seră in Republica Moldova 1990-2010, Chișinău, 2013. Ch.:,,Imprint" SRL, 2013 - 381 p.CZU 551.583 (049.1) (478) F 59, ISBN 978-9975-9650-8-8 Chapter 3. Elena Bicova, Vitalii Postolatii, Marius Taranu

National Inventory Report, Greenhouse Gas Sources and Sinks in the Republic of Moldova, **1990-20***10*, Chisinau, 2013. Ch.: "IMPRINT PLUS" SRL, 2013-379 p.



National Inventory Report Greenhouse Gas Sources and Sinks in the Republic of Moldova 1990-2013 Submission to the United Nations Framework Convention on Climate Change. Chapter 3 Elena Bicova and etc. Chisinau: S. n., 2015 (Tipogr. "Bons Offices"). – 419 p.: fig., tab. color. ISBN 978-9975-87-028-3.

Raportul Național de Inventariere: 1990-2015. Surse de sechestrare și emisii ale gazelor cu efect de seră în Republica Moldova/ Ministerul Agriculturii, Dezvoltării Regionale și Mediului/ Programul Națiunilor Unite pentru Mediu. Coord.: Ion Apostol, Suzanne Lekoyiet. Echipa proiectului: Vasile Scorpan, Aliona Solomon. Autori: Marius Țăranu, Elena Bîcova, Tatiana Kirillova, Larisa Moraru, Serghei Burțev, Vladimir Brega, Anatolie Tărîță, Sergiu Coșman, Lilia Țăranu, Ion Talmaci, Aliona Miron, Victor Sfeclă, Tatiana Țugui, Natalia Efros, Tamara Leah, Valerian Cerbari. - Chișinău.: SRL "Bons Offices", 2017 - 682 p. Bibliogr.: p. 430-443 (271 tit.). - Referințe bibliogr. în subsol. - Apare cu suportul financiar al Fondului Global pentru Mediu (GEF). - 50 ex. ISBN 978-9975-87-319-2. 551.588.74+504.06(478)(047) R 25

Raportul Național de Inventariere: 1990-2016

National Inventory Report: 1990-2016. Greenhouse Gas Sources and Sinks in the Republic of Moldova. Submission to the United Nations Framework Convention on Climate Change / aut.: Marius Taranu, Elena Bicova, Irina Vasilev [et al.]; coord.: Valentina Tapis [et al.]; project team: Vasile Scorpan, Aliona Solomon; Min. of Agriculture, Regional Development and Environment (MARDE), United Nations Environment Programme (UNEP). – Chişinău: Ministry of Agriculture, Regional Development and Environment (MARDE): United Nations Environment Programme, 2018

(Tipogr. "Bons Offices"). – 676 p.: tab. Aut. sunt indicaţi pe vs. f. de tit. – Bibliogr.: p. 447-461 (285 tit.). – Referinţe bibliogr. in subsol. – Apare cu sprijinul financiar al Global Environment Facility (GEF). – 10 ex. ISBN 978-9975-87-447-2. 504.05/.06+551.583(478)(047)

Report on National Greenhouse Gas Inventory System

Raport privind **Sistemul naţional de inventariere** a emisiilor de gaze cu efect de seră în Republica Moldova / aut.-coord.: Marius Țăranu ; aut.-contribuitori : Elena Bîcova, Vladimir Brega, Anatol Tărîţă [et al.] coord.: Valeriu Munteanu, Silvia Pană-Carp ; Progr. Naţiunilor Unite pentru Dezvoltare. – Chişinău : Bons Offices, **2016**. – 188 p. 100 ex ISBN 978-9975-87-049-8 CZU 351.777.6:504.054(478)(047) www.clima.md

Report on National Greenhouse **Gas Inventory Syste**m in the Republic of Moldova / aut.-coord.: Marius Taranu; aut.-contributors: Elena Bicova, Vladimir Brega, Anatol Tarita [et al.]; coord.: Valeriu Munteanu, Silvia Pana-Carp; United Nations Development Progr. (UNDP). - Chisinau: Bons Offices, **2016**. - 176 p.15 ex. ISBN 978-9975-87-050-4. 351.777.6:504.054(478)(047). www.clima.md

Список семинаров

Перечень семинаров, которые проводились в течение всего периода работ, и в которых участвовали эксперты группы по энергетике, приведены в таблице 5.

Таблица 5. Семинары, проводившиеся в рамках работ по инвентаризации парниковых газов за 1998-2019 гг

1998-2019 11	
March 25-27, 2019	Climate and Clean Air Coalition SNAP Initiative Moldova Institutional Strengthening Project Launch and Workshop on Developing Emission Inventories using LEAP-IBC 25-28 March, Chisinau, Moldova
March 26, 2019	Proiectul "Republica Moldova: activități privind pregătirea celui de al doilea raport bienal actualizat către Convenția-cadru a Organizației Națiunilor Unite cu privire la schimbarea climei"
March 28, 2019	Coaliția pentru Climă și Aerul Curat (CCAC), Inițiativa SNAP Lansarea proiectului "Suport pentru planificarea acțiunilor la nivel național în vederea reducerii poluanților climatici de scurtă durată" Proiectului I grant "suport pentru planificarea acfiunilor la nivel nalional in vederea reducerii poluanfilor climatici de scurtd durat6".
30 October – 1 November 2018	Training session on gridded inventories for Moldovan experts Chisinau.
15-19 October 2018	Subregional workshop on the GAINS model International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria
10-11 July 2018	SEMINARUL 'PROMOVAREA MOBILITDLII NEPOLUANTE QI EFICIENTE IN REPUBLICA MOLDOVA". EVENIMENTUL ESTE ORGANIZAT IN CADRUL PROIECTULUI DE ASISTENLD TEHNICB PRIVIND PROMOVAREA VEHICULELOR NEPOLUANTE IN REPUBLICA MOLDOVA, SUSLINUT DE PROGRAMUL NALIUNILOR UNITE PENTRU MEDIU QI COALILIA CLIMD EI AER CURAT.
18 May 2018	Семинар «Тестирование расчетных таблиц по PRTR» в EPPO по энергетике и металлургической отрасли
23 May 2018	Семинар «Тестирование расчетных таблиц по PRTR по разделам 2 и 9» в EPPO (в конференц-зале «Флоаре Карпет»)
27 December 2017	Proiectul "Republica Moldova: activități privind pregătirea celei de a patra comunicări naționale și primului raport bienal actualizat către Convenția-cadru a Organizației Națiunilor Unite cu privire la schimbarea climei". SEMINAR "INVENTARIEREA EMISIILOR DE GAZE CU EFECT DE SERĂ ÎN REPUBLICA MOLDOVA PENTRU PERIOADA 1990-2015»
20-22 June 2016	IN-COUNTRY TRAINING WORKSHOP ON THE 2006 INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) GUIDELINES AND SOFTWARE.
23-24 November 2015	TRAINING OF THE NATIONAL EXPERTS INVOLVED IN THE DEVELOPMENT OF GHG INVENTORY – ENERGY SECTOR Tentative training program
5 June 2015	Conferinței Internaționale "Mediul și schimbarea climei: de la viziune la acțiune".
30 June – 1 July 2015	NOGATE Regional Seminar on Energy Planning "From Energy Statistics to Energy Policies" Helping INOGATE Partner Countries adopt adequate institutional frameworks, methodologies and tools
11 June 2014	eminar. Schimbările climatice și securitatea. Atelierul de consultare de nivel național privind Schimbările climatice și securitatea în Moldova

20 June 2013	SEMINAR RESULTS: PROJECT: ENABLING ACTIVITIES FOR THE PREPARATION OF TNC UNDER THE UNFCCC, CHISINAU, MOLDOVA
24-26 September 2012	SEMINAR AIR QUALITY ASSESSMENT, MONITORING, MANAGEMENT AND PLANNING raining Workshop by COPERT program for Transport sector
22 September 2011	SEMINAR PROJECT: ENABLING ACTIVITIES FOR THE PREPARATION OF TNC UNDER THE UNFCCC, CHISINAU, MOLDOVA
15 July 2008	irst National Workshop on Greenhouse Gas Inventory in the frame of UNEP-GEF Project "Republic of Moldova: Enabling Activities for the preparation of the SNC under the UNFCCC". Chisinau, Moldova ENERGY SECTOR —ELECTRICITY AND HEAT GENERATION, TRANSPORT SECTOR AND OTHER SUBSECTORS
10 – 14 September 2007	II International Conference "Ecological security: the problems and solving". Alusta, AR Crimea, Ucraine
18 April 2006	Pirst National Workshop on Greenhouse Gas Inventory in the frame of UNEP-GEF Project ,,Republic of Moldova: Enabling Activities for the preparation of the SNC under the UNFCCC". Chisinau, Moldova
16 December 2005	WORKSHOP ON LAUNCHING THE SECOND NATIONAL COMMUNICATION OF THE REPUBLIC OF MOLDOVA TO THE UNFCCC
20-22 April 2005	FOURTH REGIONAL WORKSHOP: "DEVELOPMENT AND IMPROVEMENT OF EMISSION FACTORS, STRATEGIES AND DOCUMENTATION" CHISINAU, MOLDOVA.
2-3 September 1999	COORDINATION AND TRAINING NATIONAL WORKSHOP ON THE THEME "ABATEMENT OF GHG EMISSIONS", UNDP/GEF PROJECT «ENABLING MOLDOVA TO PREPARE ITS FIRST NATIONAL COMMUNICATION IN RESPONSE TO THE UNFCCC», UNDP MOLDOVA.
8 June 1999	COORDINATION AND TRAINING NATIONAL WORKSHOP ON THE THEME "INVENTORY OF GHG EMISSIONS" UNDP/GEF PROJECT «ENABLING MOLDOVA TO PREPARE ITS FIRST NATIONAL COMMUNICATION IN RESPONSE TO THE UNFCCC», UNDP MOLDOVA.
29-30 April 1999	oordination and training national workshop on the theme "Inventory of GHG emissions" UNDP/GEF Project «Enabling Moldova to Prepare its First National Communication in Response to the UNFCCC», UNDP Moldova.
20 October 1998	oordination and training national workshop on the theme "Inventory of GHG emissions" UNDP/GEF Project «Enabling Moldova to Prepare its First National Communication in Response to the UNFCCC», UNDP Moldova.

Некоторые фотоматериалы

Семинар 2-5 ноября 2015

Семинар 22-24 ноября 2015

Семинар 20-22 июня 2016

Семинар 27 декабря 2017

Семинар 27 декабря 2017

Семинар 26 марта 2019

Список статей, опубликованных по данной тематике

Перечень публикаций, которые подготовлены группой по энергетике в течение всего периода работ, приведен ниже в хронологическом порядке.

2000

Быкова Е.В. Эмиссия диоксида углерода от энергетических источников в 1990-1998 г.г. Tehnologii avansate în pragul secolului XXI (Materialele conferinței științifico-practice). Octombrie, 2000. p. 78-81. 0,2.

E.В.Быкова. Выбросы CH₄,N₂O,CO,NO_x от энергетических источников в 1990-1999 г.г. Climate Change: researches, studies, solutions. Chisinau, Ministerul Mediului și Amenajării Teritoriului. PNUD. Сборник статей,2000.c.155-157. 0,2.

Е.В. Быкова. Анализ выбросов диоксида углерода в энергетическом секторе Республики Молдова. Сборник трудов II-ой Всероссийской научно-технической конференции с международным участием. 17-19 октября 2000 г. Благовещенск, Россия. с. 391-394.

2007

Быкова Е.В., Царану М.Х., Бурцев С.В. Летучие выбросы от энергетического сектора Республики Молдовы. «Problemele energeticii regionale», Научный, информационно-аналитический журнал. http://www.asm.md, №2,2007.

2012

.Air Governance in ENPI East Countries. General System Gaps Analysis.2012 update Elena Bicova, Виолетта Балан – раздел по Молдовеhttp://www.airgovernance.eu/admin/editor/uploads/files/Final%20Report%20%20%20GAP%202012%20update%20EN.pdf.

2014

BICOVA, ELENA; KIRILLOVA, TATIANA. *Informative Inventory Report of the Republic of Moldova 1990-2012*. Submission under the UNECE convention on Long Range Trans boundary Air Pollution/, Chisinau, 2014; 323 p. (§1.9,1.10, glava 3). www.unece.org

Быкова, Е.В.; Царану, М.Х.; Кириллова, Т.И. *Анализ эмиссий в атмосферу при сжигании топлива в секторе сельскохозяйственного производства Молдовы Журнал «Экология-плюс», Полтава, №2 за 2014, стр. 3-11.*

Быкова, Е.В.; Царану, М.Х.; Кириллова, Т.И.; Гуцу, В.В. *Анализ эмиссий в атмосферу при сжигании топлива в бытовом секторе Молдовы*. Москва, ВИЭСХ, Сборник трудов XI Международной ежегодной конференции «Возобновляемая и малая энергетика - 2014», «Renewable & Small Power Engineering – 2014», 27 – 28 мая 2014 года.

2015

Е.В. Быкова, Т.И. Кириллова. Анализ выбросов от сжигания топлива в коммерческом и Институциональном секторе Молдовы. Сборник трудов международной конференции «Управление, качество и эффективность использования энергоресурсов», Благовещенск, 27-29 мая 2015 г., с. 335-339. ISBN 978-5-93493-240-5

Быкова Е.В. Углубленный анализ тенденций выбросов CO₂ при сжигании угля, мазута и природного газа при производстве электроэнергии и теплоэнергии в регионах Молдовы. Сборник трудов 8 международной конференции «Энергетика: управление, качество и эффективность использования энергоресурсов», Благовещенск, 27-29 мая 2015 г. с.348-353 ISBN 978-5-93493-240-5

2016

Informativ Invertory Report, Energy sector, 1990-2014. "Air Quality Governance in ENPI East Countries Europe" Aid/129522/C/SER/Multi MWH Emission Inventory. Assessment of pollutants on based EMEP-2013 in Energy sector. E. Bicova, T. Kirillova. "Improving the national emission inventory system in the context of emissions reporting under the LRTAP Convention". "Air Quality Governance in the ENPI East Countries AIR-Q-GOV", 2016 http://ceip.at/ms/ceip_home1/ceip_home/status_reporting/2016_submissions/

БЫКОВА, Е.В, КИРИЛЛОВА, Т.И. Анализ влияния прироста потребления биомассы на общие выбросы загрязняющих веществ. Сборник трудов Юбилейной 10-ой Международной научно-технической конференции «Энергообеспечение и энергосбережение в сельском хозяйстве», ВИЭСХ, 24 - 25 мая 2016 г. Россия, г. Москва. Доклад 72. Секция 4. 6 стр.

БЫКОВА, Е.В; КИРИЛЛОВА, Т.И., ЦАРАНУ, М.Х. Анализ тенденций изменения выбросов парниковых газов в секторе малого сжигания в Молдове. Сборник трудов 3 международной конференции INTERNATIONAL CONFERENCE "ENERGY OF MOLDOVA – 2016. REGIONAL ASPECTS OF DEVELOPMENT", 29 September – 01 October, 2016 - Chisinau, Republic of Moldova, 9 стр,

2018

БЫКОВА Е. Использование программы «СОРЕRТ» для расчетов эмиссий загрязняющих веществ от автотранспорта. Вісник Харківського національного технічного університету сільського господарства імені Петра Василенка *Технічні науки Випуск 196 "Проблеми енергозабезпечення та енергозбереження в АПК України" .2018*, Харьков. стр.10-13. ISBN 5-7987-0176X.

БЫКОВА Е., КИРИЛЛОВА Т., ВАСИЛЬЕВА И., БУРЦЕВ С. Опыт использования специализированной программы по расчету эмиссий от автотранспорта COPERT. UASM, 2018 – . – ISBN 978-9975-64-271-2. Vol. 51: Inginerie Agrară și Transport Auto: materialele Simpozionului Științific Internațional "Realizări și perspective în ingineria agrară și transport auto", dedicat aniversării a 85 de ani de la fondarea Universității Agrare de Stat din Moldova. – 2018. – 463 p.: fig., tab. – ISBN 978-9975-64-300-9. c.194-199.

2019

Васильева И.В, Быкова Е.В. АНАЛИЗ УДЕЛЬНЫХ ВЫБРОСОВ ПАРНИКОВЫХ ГАЗОВ ОТ ТЭЦ В РЕСПУБЛИКЕ МОЛДОВА ЗА ПЕРИОД 1990-2016. Сборник трудов ІХ Международной научно-технической конференции «ЭНЕРГЕТИКА: ПРАВЛЕНИЕ, КАЧЕСТВО И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ЭНЕРГОРЕСУРСОВ», 11 - 12 марта 2019 года, г. Благовещенск, РФ, стр.524-531.

Быкова Е.В. Царану М.Х. МЕТОДЫ ВОССТАНОВЛЕНИЯ ПРОПУСКОВ ЗНАЧЕНИЙ В РЯДАХ ДАННЫХ ПРИ ОЦЕНКЕ ВЫБРОСОВ ПАРНИКОВЫХ ГАЗОВ. Сборник трудов IX Международной научно-технической конференции «ЭНЕРГЕТИКА: ПРАВЛЕНИЕ, КАЧЕСТВО И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ЭНЕРГОРЕСУРСОВ», 11 - 12 марта 2019 года, г. Благовещенск, РФ, стр.516-523.

Быкова Е.В., Морару Л.П. ПРИМЕНЕНИЕ МЕТОДОВ ВОССТАНОВЛЕНИЯ ЗНАЧЕНИЙ ПРИ РАСЧЕТЕ ЭМИССИЙ ПАРНИКОВЫХ ГАЗОВ ДЛЯ ПРОМЫШЛЕННОГО СЕКТОРА. Сборник трудов ІХ Международной научно-технической конференции «ЭНЕРГЕТИКА: ПРАВЛЕНИЕ, КАЧЕСТВО И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ЭНЕРГОРЕСУРСОВ», 11 - 12 марта 2019 года, г. Благовещенск, РФ, стр.532-536.

Быкова Е.В ОПЫТ ПРИМЕНЕНИЯ ТРЕХ РАСЧЕТНЫХ МЕТОДОВ ДЛЯ ОЦЕНКИ ЭМИССИЙ ПАРНИКОВЫХ ГАЗОВ ПО КАТЕГОРИИ «МЕЖДУНАРОДНЫЕ АВИАБУНКЕРА» В МОДУЛЕ «ЭНЕРГЕТИКА». Сборник трудов ІХ Международной научно-технической конференции «ЭНЕРГЕТИКА: ПРАВЛЕНИЕ, КАЧЕСТВО И ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ ЭНЕРГОРЕСУРСОВ», 11 - 12 марта 2019 года, г. Благовещенск, РФ, стр.507-515.

Краткий глоссарий

Межправительственная группа экспертов по изменению климата (МГЭИК) - учреждена в 1988 году как совместный орган ЮНЕП и Всемирной метеорологической организации с целью получения максимально достоверных и авторитетных данных, связанных с изменением климата. МГЭИК привлекает к своим работам сотни ученых со всего мира и публикует доклады с детально согласованными на межправительственном уровне рекомендациями. І доклад МГЭИК был завершен в 1990 г., ІІ - в 1995 г., ІІІ - в 2001 г. РКИК принято решение, что методические руководства по учету выбросов, оценке проектов и т. п. готовит МГЭИК (см. Руководство МГЭИК).

Методика МГЭИК - Международная методика учета - ведения кадастра (инвентаризации) выбросов и поглощения парниковых газов, изложенная в Руководствах МГЭИК.

Антропогенный - результат человеческой деятельности. В Руководстве МГЭИК антропогенные выбросы отделяются от выбросов естественных источников. Многие парниковые газы выбрасываются в атмосферу естественным образом. Антропогенными выбросами являются только те, которые связаны с деятельностью человека, они добавляются к выбросам естественных источников и нарушают естественный природный баланс.

Парниковый газ (ПГ) - газ, имеющий парниковый эффект, то есть поглощающий в атмосфере излучаемое Землей тепловое излучение. Антропогенный рост концентрации в атмосфере CO_2 и других таких газов приводит к повышению температуры и изменению климата. Шесть газов (или групп газов) контролируются Киотским протоколом: CO_2 , CH_4 , N_2O , $\Gamma\Phi Y$, $\Pi\Phi Y$ и SF. Кроме перечисленных, $\Pi\Gamma$ является водяной пар (важнейший парниковых газ атмосферы Земли), но он не рассматривается в Протоколе ввиду природного происхождения и отсутствия данных о росте его концентрации в атмосфере.

Потенциал глобального потепления (ПГП) - параметр, численно определяющий радиационное (разогревающее) воздействие молекулы определенного ПГ относительно молекулы двуокиси углерода. Для расчетов по Киотскому протоколу (в CO_2 -эквиваленте) используются ПГП со столетним сроком.

Двуокись углерода / CO_2 - главный ПГ Киотского протокола, выделяется при сжигании топлива, производстве цемента, лесных пожарах, деградации почв и т. п. Часто используется краткий термин - углерод. 1 тонна собственно углерода содержится в 3,67 тоннах CO_2 .

 $Memah / CH_4$ - второй по значимости ПГ Киотского протокола. Выделяется при утечках из трубопроводов, в сельском хозяйстве, на свалках и т. п. ПГП метана равно 25, или, по парниковому эффекту, 1 т метана равна 25 т CO_2 (ранее использовался коэффициент 21).

Закись азота / N_2O - третий по значимости ПГ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т. п. ПГП N_2O равно 298, или, по парниковому эффекту, 1 т N_2O равна 298 т CO_2 (ранее использовался коэффициент 310).

Коэффициенты эмиссии - коэффициенты, на которые умножаются данные о деятельности для расчета выбросов парниковых газов. Например, количество сожженного угля умножается на соответствующий коэффициент эмиссии. Результат умножения - объем выбросов. Коэффициенты эмиссии обычно получаются в результате детальных исследований. Их численные значения закреплены в международных и национальных методиках (Руководство МГЭИК).

Рамочная конвенция ООН об изменении климата (РКИК ООН) подписана в 1992 г. в Рио-де-Жанейро на Конференции ООН по окружающей среде и развитию. Конвенция вступила в силу в марте 1994 года. Цели РКИК ООН:

- добиться стабилизации концентрации парниковых газов в атмосфере на таком уровне, который не допускал бы опасного антропогенного воздействия на климатическую систему, и определить направления сотрудничества стран мира для сохранения климата в будущем. Все стороны конвенции приняли на себя обязательства по разработке, периодическому обновлению и передаче Конференции Сторон, высшему органу РКИК ООН, национальных кадастров антропогенных выбросов из источников и абсорбции поглотителями всех парниковых газов, используя согласованные методологии, в соответствии со ст. 4 данной конвенции:
- принимать национальные программы ограничения изменения климата и разрабатывать стратегии адаптации к этим изменениям;
- готовить и представлять национальные сообщения о деятельности по смягчению изменения климата и кадастры/инвентаризации антропогенных выбросов из источников и абсорбции поглотителями всех парниковых газов;
- сотрудничать по научно-техническим вопросам и вопросам образования и содействовать просвещению, информированию общественности и обмену информацией, связанной с изменением климата и пр.

Рамочная Конвенция определяет общие принципы международного сотрудничества по проблемам изменения климата. Она не содержит количественных обязательств стран-участниц. Они были установлены в отдельном документе, принятом как развитие положений Рамочной Конвенции и открытом для подписания ее членами - Киотском протоколе. Киотский протокол был принят в декабре 1997 г. на Третьей конференции сторон РКИК ООН в Киото в качестве механизма реализации Конвенции.

Парижское соглашение — соглашение в рамках Рамочной конвенции ООН об изменении климата, регулирующее меры по снижению содержания углекислого газа в атмосфере с 2020 года. Соглашение было подготовлено взамен Киотского протокола в ходе Конференции по климату в Париже, принято 12 декабря 2015 года, подписано 22 апреля 2016 года. Соглашение имеет целью «активизировать осуществление» Рамочной конвенции ООН по изменению климата, в частности, удержать рост глобальной средней температуры «намного ниже» 2 °С и «приложить усилия» для ограничения роста температуры величиной 1,5 °С.