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Let R be an associative ring with identity and z be a pretorsion, the filter of which consist 

from the essentially left ideals of a ring R. 

Description of rings R over which all pretorsions (or only some of them) possess some properties, 

presents a considerable interest. 

Typical examples: 

(1) All pretorsions 𝑟 ≥ 𝑧 are torsions if and only if R is a left strongly semiprime ring ([4], 

Theorem, p.80). 

(2) All pretorsions 𝑟 ≥ 𝑧 are superhereditary if and only if R is essentially artinian ring 

([5], Theorem, p.110). 

In this paper is proved that ring R is nonsingurlar (𝑧(𝑅) =0) and all pretorsions 𝑟 > 𝑧 are 

cohereditary if and only if R is completely reducible. 

First of all, we present some preliminary notions and definitions. 

 

1. A preradical r of R-Mod is a subfunctor of the identity functor of R-Mod ([1-3]). 

Every preradical r of R-Mod defines two class of modules: 

𝑅(𝑟) = {𝑀 ∈ 𝑅 −𝑀𝑜𝑑 | 𝑟(𝑀) = 𝑀} and 𝑃(𝑟) = {𝑀 ∈ 𝑅 −𝑀𝑜𝑑 |𝑟(𝑀) = 0}. 

https://doi.org/10.53486/cike2023.68
mailto:bunu@ase.md
mailto:chicu.olga@ase.md


ANNUAL INTERNATIONAL SCIENTIFIC CONFERENCE “COMPETITIVENESS AND 

INNOVATION IN THE KNOWLEDGE ECONOMY” 

September 22nd-23th, 2023, Chisinau, Republic of Moldova 

 

 

638 
 

Modules of the class (r) are called r-torsion, and of the class P(r) are called r-torsionfree. 

Preradicals ο and ε for which 𝑃(𝑜) = 𝑅 −𝑀𝑜𝑑 and 𝑅(𝜀) = 𝑅 −𝑀𝑜𝑑 are called zero and 

identity respectively. 

If r and t are preradicals then 𝑟 ≤ 𝑡 means 𝑟(𝑀) ⊆ 𝑡(𝑀) for every 𝑀 ∈ 𝑅 −𝑀𝑜𝑑. 

2. A preradical r is called: 

- a pretorsion (or hereditary) if 𝑟(𝑁) = 𝑁 ∩ 𝑟(𝑀) for any submodule N of an arbitrary 

module 𝑀 ∈ 𝑅 −𝑀𝑜𝑑; 

- torsion, if r is a pretorsion and 𝑟(𝑀|𝑟(𝑀)) = 0 for every 𝑀 ∈ 𝑅 −𝑀𝑜𝑑; 

- superhereditary if it is hereditary and the class (r) is closed under direct products; 

- cohereditary if 𝑟(𝑀|𝑁) = (𝑁 + 𝑟(𝑀)|𝑁)  for every 𝑀 ∈ 𝑅 −𝑀𝑜𝑑  and every 

submodule N of M. 

3. (a) For any pretorsion r and every module M of R-Mod the following equality is true: 

𝑟(𝑅) =∑{𝑀𝛼 ⊆ 𝑀|𝑀𝛼 ∈ 𝑅(𝑟)}

𝛼

 

(b) For any torsion r and every module 𝑀 ∈ 𝑅 −𝑀𝑜𝑑 the following equality is true: 

𝑟(𝑀) =⋂{𝑀𝛼 ⊆ 𝑀|  𝑀|𝑀𝛼 ∈ 𝑃(𝑟)}

𝛼

 

It follows directly from the Proposition 1.5 [1]. 

4. The intersection of pretorsions r1 and r2 is the pretorsion 𝑟1⋀𝑟2 determined by the rule: 

 (𝑟1⋀𝑟2)(𝑀) = 𝑟1(𝑀) ∩ 𝑟2(𝑀)  for any 𝑀 ∈ 𝑅 −𝑀𝑜𝑑. 

The sum of pretorsion r1 and r2 is the preradical 𝑟1 + 𝑟2 defined by the relation: 

(𝑟1 + 𝑟2)(𝑀) = 𝑟1(𝑀) + 𝑟2(𝑀)  for any 𝑀 ∈ 𝑅 −𝑀𝑜𝑑. 

5. The Goldie pretorsion z is a torsion if and only if 𝑧(𝑅) = 0 ([2], Prop. I.10.2). 

6. A ring R is called strongly semiprime (SSP), if every essential left ideal P is cofaithful, 

i.e.  

(𝑂: 𝑃) =⋂(𝑂: 𝑝𝛼) = 0

𝑛

𝛼=1

 

for some elements 𝑝𝛼𝜖𝑃. 

The following conditions are equivalent: 

(1) R is a left SSP-ring. 

(2) All pretorsion 𝑟 ≥ 𝑧 are torsions. 

(3) Z(R)=0 and the lattice [z,ε] is complemented. 

Passing to the presentation of the basic material we formulate first of all the criterion of 

coheredity of any pretorsion. 

Proposition 1. For any pretorsion r the following statements are equivalent:  

(1) r is cohereditary; 

(2) 𝑟(𝑀) = 𝑟(𝑅) ∙ 𝑀 for any 𝑀 ∈ 𝑅 −𝑀𝑜𝑑; 

(3) r is a torsion and the class P(r) is closed under homomorphic images. 

Proof.  Equivalence of statement (1) and (2) follows from Lemma 3.b [1] or from the 

Proposition 1.2.8 [2]. 
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Implication (1) (3) results directly from the definition of the cohereditary pretorsion. 

(3) (1). Let r be a torsion and class P(r) is closed under homomorphic images. We will show 

that for any module M and for any its submodule N the equality 𝑟(𝑀|𝑁) = [𝑁 + 𝑟(𝑀)]|𝑁 is true. 

Indeed, since [𝑁 + 𝑟(𝑀)]|𝑁 is an r-torsion submodule of the module M|N then by the statement 3(a) 

we have [𝑁 + 𝑟(𝑀)]|𝑁 ⊆ 𝑟(𝑀|𝑁). Conversely, since r is a torsion, then by the definition 𝑟(𝑀|[𝑁 +

𝑟(𝑀)] for any module  𝑀 ∈ 𝑅 −𝑀𝑜𝑑. But P(r) is closed under homomorphic images the module 

𝑀|[𝑁 + 𝑟(𝑀)] is also r-torsion free. Then from the isomorphism [𝑀|𝑁]|([𝑁 + 𝑟(𝑀)]|𝑁) ≈ 𝑀|[𝑁 +

𝑟(𝑀)] we obtain that 

 [𝑁 + 𝑟(𝑀)]|𝑁 ⊆ 𝑟(𝑀|𝑁) ⊆ [𝑁 + 𝑟(𝑀)]|𝑁  imply the equality 𝑟(𝑀|𝑁) = [𝑁 + 𝑟(𝑀)]|𝑁 . 

Therefore, by the definitions r is a cohereditary pretorsion.  

 

In this work, we will show applications of this result. 

 

Proposition 2. For arbitrary pretorsions r and t, the following statements are equivalent: 

(1) 𝑅 = 𝑟(𝑅)𝑡(𝑅) where r and t are choereditary; 

(2) 𝑀 = 𝑟(𝑀)𝑡(𝑀) for any module 𝑀 ∈ 𝑅 −𝑀𝑜𝑑. 

Proof. (1)(2). From the relation 𝑅 = 𝑟(𝑅)𝑡(𝑅) we obtain that for any module 𝑀 ∈ 𝑅 −

𝑀𝑜𝑑 the equality 𝑀 = 𝑟(𝑀)𝑡(𝑀) is true. Since pretorsions r and t are cohereditary according to 

the Proposition 1 we have that 𝑟(𝑅) ∙ 𝑀 = 𝑟(𝑀) and 𝑡(𝑅)𝑀 = 𝑡(𝑀). Therefore 𝑀 = 𝑟(𝑀)𝑡(𝑀). 

(2)(1). Suppose that for any module 𝑀 ∈ 𝑅 −𝑀𝑜𝑑 the equality 𝑀 = 𝑟(𝑀)𝑡(𝑀) is true. 

Then, particularly,  𝑅 = 𝑟(𝑅)𝑡(𝑅). It remains to prove that pretorsions r and t are cohereditary. 

Indeed, from the equality 𝑀 = 𝑟(𝑀)𝑡(𝑀)  we obtain 𝑀|𝑟(𝑀) ≈ 𝑡(𝑀) , so 𝑟(𝑀|𝑟(𝑀)) =

𝑟(𝑡(𝑀)) = 𝑡(𝑀) ∩ 𝑟(𝑀) = 0. Therefore, pretosrion r is a torsion. Identically they show that t is a 

torsion. 

Continuing let’s show that the classes P(r) and P(t) are closed under homomorphic images. It 

is sufficient to verify for the class P(r). Let M be an arbitrary r-torsionfree module (r(M)=0). By the 

assumption, 𝑀 = 𝑟(𝑀)𝑡(𝑀) = 𝑡(𝑀). Then 

𝑟(𝑀|𝑁) = 𝑟[𝑡(𝑀)|𝑁] ⊆ 𝑡(𝑀)|𝑁 ∩ 𝑟(𝑀|𝑁) ⊆ 𝑡(𝑀|𝑁) ∩ 𝑟(𝑀|𝑁) = 0 (statement 3(a)).  

Therefore, class P(r) is closed under homomorphic images. By the Proposition 1 the pretorsion 

r is cohereditary. Similarly, they show that pretorsion t is also cohereditary.  

 

Proposition 3. For the pretorsion 𝑟 ≥ 𝑧 the following statements are equivalent: 

(1) The class P(r) is closed under homomorphic images. 

(2) Any r-torsionfree module is injective. 

(3) Any r-torsionfree module in completely reducible. 

 Proof. (1)(2). Suppose that class P(r) is closed under homomorphic images and M is 

arbitrary r-torsionfree module. For the injective hull �̂� of a module M we have that 𝑟(�̂�) = 0 and 

𝑟(�̂�|𝑀) = 0. 

From the inclusion 𝑀 ⊆ �̂� we obtain that 𝑧(�̂�|𝑀) = �̂�|𝑀, while from inequality 𝑧 ≤ 𝑟 we 

obtain  𝑧(�̂�|𝑀) = 0. But equalities �̂�|𝑀 = 𝑧(�̂�|𝑀) = 0 imply 𝑀 = �̂�. Therefore, M is injective. 
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(2)(3) is obvious. 

(3)(1). Suppose that the module M is r-torsionfree and completely reducible. Then for any 

its submodule N we have 𝑀 = 𝑁𝐶 . Since 𝑟(𝐶) = 0 , therefore the isomorphism 𝐶 ≅ 𝑀|𝑁  we 

obtain that 𝑟(𝑀|𝑁) = 0. Because modules M an N were chosen arbitrarily we have that class P(r) is 

closed under homomorphic images.  

 

Theoreme 4. The following statements are equivalent: 

(1) All pretorsions 𝑟 ≥ 𝑧 are cohereditary. 

(2) 𝑧(𝑅) = 0 and all pretorsion 𝑟 > 𝑧 are cohereditary. 

(3) R is a completely reducible ring. 

(4) Z is cohereditary. 

Proof. Implication (1)(2) is trivial, since z is torsion if 𝑧(𝑅) = 0. The equivalence of the 

statement (3) and (4) results directly from Proposition 3 (see Theorem I.10.7 [2]). 

(2)(3). Suppose that 𝑧(𝑅) = 0 and all pretorsion 𝑟 > 𝑧 are cohereditary. By the Proposition 

1 all pretorsion 𝑟 > 𝑧 are torsion. Since the pretorsion z is a torsion (𝑧(𝑅) = 0)) we have that all 

pretorsions 𝑟 ≥ 𝑧  are torsion, whence we obtain that the ring R is strongly semiprime. By the 

statement 6 the lattice [z,ε] is complemented. Therefore, for any pretorsion 𝑟 > 𝑧 there exists the 

pretorion 𝑡 > 𝑧  such that 𝑧 = 𝑟 ∩ 𝑡 . Then 𝑧(𝑅) = 𝑟(𝑅) ∩ 𝑡(𝑅) = 0 . Since modules 𝑅|𝑟(𝑅)  and 

R|t(R) are respectively r-torsionfree and t-torsionfree (r, t-torsions) and r and t are cohereditary, by 

the Proposition 3 modules  𝑅|𝑟(𝑅)  and R|t(R) are completely reducible. The from relation 𝑅 =

𝑅|[𝑟(𝑅) ∩ 𝑡(𝑅)] ⊆ 𝑅|𝑟(𝑅)𝑅|𝑡(𝑅) it follows that the ring R is completely reducible. 

(3)(1). Over any completely reducible ring all pretorsion r are torsion and class P(r) is closed 

under homomorphical images. Bu the Proposition 1 every pretorsion are cohereditary, particularly 

and all pretorsion 𝑟 ≥ 𝑧 too.  
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