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Abstract

In the paper we present based on quasigroups new deniable
encryption method, generalisation of Markovski stream cipher,
and generalisation of El-Gamal enciphering system.
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1 Deniable-encryption mode for block ciphers

This paper is the extended version of the paper [1].

Deniable encryption (DE) is a method for generating ciphertexts
that can be alternatively decrypted providing security against so called
coercive attacks [2] for which it is assumed that after ciphertext has
been sent the adversary has possibility to force both the sender and
the receiver to open the plaintext corresponding to the ciphertext and
the encryption key. In the case of block ciphering the DE can be
provided with simultaneous encryption of the secret and fake messages
using the secret and fake keys, correspondingly. While being coerced
the sender and receiver of the ciphertext open the fake key and fake
message and declare they have used the probabilistic encryption [3].
Earlier in paper [4] it had been proposed a method for simultaneous
encryption of two messages based on solving a system of two linear
equations. In this section we propose design of the DE mode for using
block ciphers, which is based on the mentioned method.

Definition 1. Binary groupoid (G, o) is an isotopic image of a binary
groupoid (G, -), if there exist permutations «, 3,7 of the set G such that
zoy=v""(azBy) [5].
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Suppose Ey be a block encryption algorithm with n-bit input data
block and the value used as encryption key. All existing n-bit data
blocks can be considered as elements of some quasigroup with the op-
eration * defined as follows:

Kx1= Ev(K @ EV(Z')),

where @ is the XOR operation; K and ¢ are n-bit vectors. This quasi-

group is an isotope of the group (G, @), where G is the set of all n-bit

vectors. Here Ey, is a permutation of the symmetric group Sg.
Evidently, for all possible values ¢ and @) # K we have

Ev(Q © By (i) # Ev(K @ By (i)). (1)

Using this property of the quasigroup and two different keys K
and @ # K one can define simultaneous encryption of two different
messages T' = (t1,ta,...,t;, ..., t,) and M = (my,ma,...,m4,...,m;),
where z < 2™; t; and m; are n-bit data blocks, as generation of the sin-
gle ciphertext C' = (¢, ¢2,...,¢, ..., ;) containing (2n)-bit ciphertext
blocks ¢; = (¢}, c), where ¢; and ¢ are n-bit values, computed from

the following system of equations in the field GF'(2"):

i

¢+ Gid! = H; + t; mod n(z), (2)

{ d + Aid! = B; + m; mod n(z)
where 7(x) is some specified irreducible binary polynomial of the degree
n; the n-bit values A;, B;, G;, and H; are computed using the random
n-bit initialization vector V' (this value is not secret) as follows:

A; = Ev(K @ Ev(i);G; = Ev(Q ® Ev(i));

B; = Ex(4;); Hi = Eg(G;). (3)

While solving (2) the values A;, B;, G;, and H; are considered as
binary polynomials of the degree s < n. Due to condition (1) it holds
the unequality A; # G;, therefore the system (2) always has the single
solution, i.e. the proposed deniable-encryption procedure is defined
correctly.
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Let us agree that the secret message (key) is the value T' (@) and
the fake message (key) is the value M (K). If the coercer forces the
sender and receiver of the secret message T' to open the ciphertext C
and the encryption key, then they open the fake key K and the fake
message M and declare using the probabilistic block-encryption mode
implemented with the block cipher E. In terms of paper [3] the declared
encryption algorithm is called the associated encryption algorithm.

In the case of the proposed deniable-encryption method the last
algorithm is described as consecutive probabilistic encryption of the
data blocks m; for each value ¢ = 1,2,..., 2z performing the following
steps:

1. Generate a random initialization vector V and compute the
values A; = By (K & Ey (i) and B; = Ex(4;).

2. Generate a random binary polynomial p;(x) # A; of the degree
s < n.

3. Compute the unknowns ¢, and ¢/ from the following system of
equations in GF(2"):

(4)

" —

¢+ Aid! = B; + m; mod n)(x)
{ ¢ + pic] =1 mod n(z),

Evidently, for some sequence of the values p1(z), p2(x),..., p.(x) the
message M is transformed with the key K into the given ciphertext C'.

To distinguish the use of the deniable encryption with the system
(2) from the probabilistic encryption with the system (4) the poten-
tial coercive attacker should compute the key Q. The last problem is
computationally difficult, if £ is a secure block cipher, for example,
AES [6] with 128-bit key and n = 128. Restoring the secret message
from the ciphertext is performed as decryption of each ciphertext block
i =(d,d),i=1,2,...,z, as follows:

1. Using the secret key @ compute the values G; = Ey (Q @ Ey (i))
and Hi = EQ(GZ)

2. Compute the plaintext data block t; = ¢, + G;¢!/ — H; mod n(z).

The fake decryption of the ciphertext is performed as follows (i =
1,2,...,2):
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1. Using the fake key K compute the values A; = Ey (K @ Ey (i)
and Bi = EK(AZ)
2. Compute the plaintext data block m; = ¢, + A;¢ — B; mod n(x).

2 Stream deniable-encryption scheme

The method described in Section 1 can be used for constructing stream
deniable encryption algorithms. Formally, for small values n (for ex-
ample n = 8) that method represents consecutive deniable encryption
of the pairs of symbols of two different input texts. The sequence of
the pairs (A;, B;) represents the key stream used for encrypting the
message M. Respectively, the sequence of the pairs (G;, H;) represents
the key stream used for encrypting the message 1. However one should
take into account that for small values n these key streams contain too
short periods, therefore such encryption method is not secure. To over-
come this problem one can propose the following modification of the
formulas for computing the values A;, B;, G;, and H;:

Ai = Bvyji(kj), Gi = Evyji(g5),

5

B; = Ex(A;), H; = Eq(G;), 5)
where || denotes concatenation operation; V is 64-bit initialization
vector; 4 is 64-bit counter; k; are 8-bit subkeys of the key K =
(ko,k1,...,k7); q; are 8-bit subkeys of the key @ = (qo,q1,---,q7),
j = (i—1)mod 8. In the last formulas the block encryption function
E operates with 8-bit data block and 128-bit key.

While generating the keys K and @ it is to be fulfilled the condition
k;j #q; for j =0,1,...,7.

It should be mentioned that the value V||i is used as variable key
for computing the values A; and B;, i.e. the key is to be reset for
each transformed pair of the 8-bit symbols of the texts M and T.
This feature makes preferable to use block ciphers E with simple key
scheduling in order to get higher performance of the stream deniable
encryption [7]. In the case of hardware implementation of the function
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F one can use, for example, the design based on controlled substitution-
permutation networks [8].

3 Stream cipher based on binary quasigroups

Here we give more detailed description of algorithm which was pro-
posed in [9]. This algorithm simultaneously uses two cryptographical
procedures: enciphering using generalisation of Markovski stream al-
gorithm [10] and enciphering using a system of orthogonal operations.

We also give some realisation of this algorithm based on T-
quasigroups, more precise, on medial quasigroups. Necessary infor-
mation about quasigroups and some its applications in cryptography
can be found in [5],[9], [11].

Below we denote the action of the left (right, middle) translation
in the power a of a binary quasigroup (Q, ¢g1) on the element u; by the
symbol 4,777 (u1). And soon. Here l; means leader element. See [9]-[11]
for details.

Algorithm 1. Enciphering. Initially we have plaintext uq,us, . .., ug.
Step 1.
g 1y (u1) = vy
62T (uz) = vy
Fi(v1,v2) = (vf, )
Step 2.
93T5l’1 (u3) = vs
g1 Ty (ug) = va

Ff (v3,v1) = (v},0))

Step 3.

g5T{?’3 (us) = vs

gﬁT;Z (ug) = ve
F3(vs,v6) = (v, vg)-
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We obtain ciphertext v}, v}, ..., vg.
Deciphering. Initially we have ciphertext v, v}, ... vg.
Step 1.
Fl_c(vll’ Ué) = (Ul’ U2)

gy (1) =w

ngz;b(W) = u2

Step 2.

Fy ! (v, vl) = (v3,04)

gaTde(’Ui%) =u3 (7)
g1 Ty (V1) = u

Step 3.

Py (v, vf) = (v5,v)
gsTtgg(US) = Us
O CORET

We obtain plaintext uq,us, ..., ug.

From Algorithm 1 we obtain classical Markovski algorithm, if we
take only one quasigroup, one kind of quasigroup translations (left
translations) any of which is taken in power = 1, and, finally, if sys-
tem of orthogonal operations (crypto-procedure F') is not used. Some
generalisations of Algorithm 1 are given in [12].

4 T-quasigroup based stream cipher

We give a numerical example of encryption Algorithm 1 based on T-
quasigroups (more exactly, on medial quasigroups) [12]. Notice that
the number 257 is prime. The form of parastrophes of T-quasigroups,

13
for example, of quasigroup (A, (*)) can be found in [12], [13, p. 39].
Example 1. Take the cyclic group (Zos7,+) = (A, +).
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1. Define T-quasigroup (A, ) by the form xxy = 2-x+131-y+3 with
a leader element [, say, | = 17. Denote the mapping x +— x x1[ by
the letter g1, i.e. g1(x) =z *1 for all x € A.

In order to find the mapping 91_1 we find the form of operation

(13) (13) 1 (13)
x . Wehaer x y=129-24+63-y+127, f~x =2 = . Then

_ _ (13)
91 Ygi(z)) = 91 Yexl)=(xxl) * I=zx.
13
In some sense quastgroup (A,(*)) is the "right inverse quasi-
group” to quasigroup (A,x). Notice that from results of arti-

13
cle [13, Theorem 16] it follows that (A,*)J_(A,(*)).

2. Define T-quasigroup (A,o) by the form xoy =102+ 81 -y + 53
with a leader element 1, say, | = T1. Denote the mapping x — lxx
by the letter go, i.e. go(x) =lox for all z € A.

In order to find the mapping 92_1 we find the form of operation

(23) (23)
o'. We have x o y =149 -x + 165 - y + 250.

3. Define a system of two parastroph orthogonal T-quasigroups (A, -)

and (A, (2'3)) in the following way

ry=3-x+5-y+6
(23)
x - y=205 24103y + 153.
. (23)
Denote quasigroup system (A,-, )
18 a function of two variables.

by F(x,y), since this system

In order to find the mapping F~1(z,y) we solve the system of
linear equations

3-x4+5-y+6=a
205 -+ 103 -y + 153 = b.

We have A =55, 1/A =243, x = 100-a+70-b+255, y = 43-a+
215 - b. Therefore we have, if F(x,y) = (a,b), then F~'(a,b) =
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(100 - a+ 70 - b+ 255,43 - a + 215 - b), i.e.

2 =100-a+70-b+ 255
y=143-a+215-b.

We have defined the mappings g1, g2, F' and now we can use them
i Algorithm 1.

Let 212; 17; 65; 117 be a plaintext. We take the following values in
formula (6): a=b=d=e= f=1;c= 2. Below we use Gothic font
to distinguish leader elements, i.e., the numbers 17 and 71 are leader
elements. Then

Step 1.

g1(212) = 21217 =2-212 + 131 - 17+ 3 = 84

g2(17) =71017=10-71+81-17+ 53 = 84

F(84;84) = (3-84+5- 84+ 6;205 - 84 + 103 - 84 + 153) = (164; 68)
F(164;68) = (3:-164+5-68+6;205-164+4103-68+153) = (67; 171)

Step 2.

g1(65) =65 %67 =2-65+131-67+3 =172

g2(117) = 1710117 =10-171 4+ 81 - 117 + 53 = 189

F(172;189) = (3-172 +5- 189 + 6;205 - 172 + 103 - 189 + 153) =
(182; 139)

We obtain the following ciphertext 67; 171; 182; 139.

For deciphering we use formula (7).

Step 1.
F=Y67;171) = (100-67+70-171+255,43-67+215-171) = (164;68)
F~1(164;68) = (100- 164+ 70-68 +255,43-164 +215-68) = (84;84)

13
g7 (84) = 80 17 = 12084 4 6317 1 127 = 212
23
g5 1 (84) =71 ) 84— 149 . 71 4+ 165 - 84 + 250 — 17
Step 2.

F~1(182;139) = (100 - 182 + 70 - 139 + 255,43 - 182 + 215 - 139) =
(172;189)

13
g (172) = 172 Y

67 =129-172+ 63 - 67 + 127 = 65
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(23)
o

95 1(189) = 171 "o 189 = 149 - 171 4 165 - 189 + 250 = 117

A program using freeware version of programming language Pascal
was developed. First experiments demonstrate that encoding-decoding
is executed sufficiently fast.

We plan to continue researches in this direction, namely we plan
to estimate time complexity of encryption and decryption for the pro-
posed algorithms, as well as give formal justification for computational
security of ones. The authors thank Referee for this suggestion.

Remark 1. Proper binary groupoids are more preferable than linear
quasigroups by construction of the mapping F(x,y) in order to make
encryption more safe, but in this case decryption may be slower than
i linear quasigroup case and definition of these groupoids needs more
computer (or some other device) memory. The same remark is true
for the choice of the function g. Maybe a golden mean in this choice
problem is to use linear quasigroups over non-abelian, especially simple,
groups.

Remark 2. In this cipher there exists a possibility of protection against
standard statistical attack. For this scope it is possible to denote more
often used letters or pair of letters by more than one integer or by more
than one pair of integers.

5 El Gamal cryptosystem

We recall El Gamal cryptosystem [14]. Let (Z,,+) be a cyclic group
of residues of big (say 200 to 300 digits) prime order relative to addi-
tion of residues, a be a generator of the group (Z,_1,-) = Aut(Z,,+)
(gcd(a,p —1) =1).

Alices keys are as follows:

Public Key p, a, and a™, m € N.

Private Key m.

Encryption

To send a message b € (Z,—1,-) Bob computes a” and a™" for a
random 7 € N (sometimes the number r is called an ephemeral key).
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The ciphertext is (a”,a™" - b).
Decryption

Alice knows m, so if she receives the ciphertext (a”,a™" - b), she
computes a~ " from a” and then she computes b from o™ - b using the
formula a="" - a™" - b =b.

6 De-symmetrisation of Markovski algorithm

We give an analogue of El Gamal encryption system based on
Markovski algorithm [1], [15].

Let (@, f) be a binary quasigroup and T = («, 3,7) be its isotopy.

Alices keys are as follows:

Public Key is (Q, f), T, T"™"%) = (o™, 5", ~*), m,n,k € N, and
Markovski algorithm.

Private Key m,n, k.

Encryption

To send a message b € (Q, f) Bob computes T(st) pimrnskt) for
a random 7, s,t € N and (T k) (Q, £)).

The ciphertext is (758 (T sk Q| £))b).

To obtain (T™"s#)(Q, £))b Bob uses Markovski algorithm which
is known to Alice.

Decryption

Alice knows m, n, k, so if she receives the ciphertext
(T(r,s,t)7 (T(mr,ns,kt) (Q; f))b),

she computes (T(mT’"S’kt)(Q, )71 using Tt and, finally, she com-
putes b.

In this algorithm there can also be used isostrophy [16] instead of
isotopy, Algorithm 1 instead of Markovski algorithm, n-ary (n > 2)
quasigroups [9], [17] instead of binary quasigroups.

Generalisation of El Gamal scheme using a Moufang loop is given
in [18]. In [19] it is proved that discrete logarithms problem in Moufang
loops can be reduced to the same problem in finite simple fields.
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Generalisation of El Gamal encryption system based on a quasiau-
tomorphism of a quasigroup is presented in [18]. In this generalisation
a generator element of the group Z,, is a quasiautomorphism (the third
component of an autotopy) of a quasigroup.

7 Conclusion

In this paper we have presented stream deniable encryption algorithm,
generalisation of quasigroup based Markovski algorithm, and based on
Markovski algorithm and concept of isotopy generalisation of El Gamal
encryption system.

Acknowledgment. The authors thank Referee for valuable sug-
gestions.
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