Synthesis of New Potential Biologically Active Tetra- and Pentanorlabdane Compounds with 1,3-Thiazole Units

Lidia Lungu, Aculina Aricu, Svetlana Blaja, Alexandru Ciocarlan, Alic Barba

Institute of Chemistry, Academy of Sciences of Moldova, Academiei str. 3, MD-2028 Chisinau, Republic of Moldova e-mail: lidialungu@ymail.com

The 1,3-thiazole derivatives are considered heterocycles of special interest since they possess important pharmacological activities^{1,2}. The results of investigations devoted to the synthesis of new tetra- and pentanorlabdane compounds containing thiazole structural units/core are reported.

The key strengths of this research are: accessible and natural starting material, labdane diterpenoid (-)-sclareol (1), which can be easily extracted from renewable resources; high probability of biological activities and low toxicity, due to their natural origin. The reported tetra- and pentanorlabdane hybrid derivatives 8-11 were prepared by interaction of thiosemicarbazones 4-7 with 2-bromoacetophenone under depicted conditions². In turn, the intermediates 4-7 derived from known ketoester 2 and drimenone 3, can be prepared from sclareol 1 in three and four steps, respectively (Scheme 1).

Reagents: a. KOH, EtOH, 98%; b. NH₂NHCSNH₂ or NH₂NHCSNHC₆H₅, EtOH, 71-85%; c. C₆H₅COCH₂Br, EtOH, 75-83%.

Scheme 1

The structures of reported compounds **4-11** have been fully confirmed by mean of ¹H, ¹³C and ¹⁵N RMN analysis, and MS spectrometry.

References:

- 1. A. I. El-Shenawy. Russ. J. Bioorg. Chem, 2016, 42(1), 100–105.
- R. M. Mohareb, W. W. Wardakhan, G. A. Elmegeed, R. M. S. Ashour. Steroids, 2012, 77, 1560-1569.