
Quasigroups and Related Systems 23 (2015), 41− 90

Design of crypto primitives

based on quasigroups

Smile Markovski

Abstract. Today, the security of the modern world is undoubtedly dependent on the crypto-

graphic primitives built into the various protocols used for secure communication. Let us mention

here the most important, like block ciphers, stream ciphers, digital signatures and encryption

schemes, hash functions, pseudo random number generators, ... The design of these, and many

other crypto primitives, uses di�erent concepts from number theory, group and �nite �eld theory,

Boolean algebras, etc. In this survey article we will present how quasigroups can be used for

construction of various crypto primitives. We will discuss especially what type of quasigroups

are used and how they can be constructed. Some open research problem will be mentioned as

well.

1. Introduction

It is well known that One-time-pad is the only information theoretically secure
cryptographic product, i.e., there is a mathematical proof of its security. All other
cryptographic primitives that are massively used for di�erent purposes in commu-
nication, banking, commerce and many other today human activities, have security
based on three facts: �rst one is the believing (that some mathematical problems
are hard to be solved), the second one is the experience (some cryptographic prim-
itives cannot be broken after several years, even decades, of attacking), and the
third one is the adjusting (whenever a weakness of some used cryptographic sys-
tem is found, it is immediately repaired or changed). Thus, in the last decades no
catastrophic damage was made of breaking some cryptographic product (maybe
ENIGMA was the last one, more than seventy years ago).

Having in mind the previous, we realized that designs of new cryptographic
primitives, products, systems, algorithms, protocols etc. have as well theoretical as
practical importance. Nowadays, crypto primitives are produced mainly by using
results from number and group theory, �nite �eld theory, Boolean algebras and
functions, and all of them are associative structures. We think that broadening the
set of used theories with non-associative mathematical structures, like quasigroup

2010 Mathematics Subject Classi�cation: 20N05, 94A60, 68P25
Keywords: Quasigroups (left, right, n-ary, huge, orthogonal, MQQ, MQLQ), cryptographic
primitives, quasigroup transformations, cryptographic S-boxes, block ciphers, stream ciphers,
PRNGs, hush functions, signatures, public encryptions schemes.

42 S. Markovski

theory, that can be used for making suitable cryptographic primitives, is also
important. In such a way cryptographic primitives with di�erent properties of the
existing ones can be obtained, hence the domain of the crypto primitives will be
enlarged.

In this paper we show how the quasigroups can be used for building di�erent
type of cryptographic primitives. For that aim we de�ne some type of quasigroups
that are suitable for that purpose (Section 2), we give the de�nitions of several
kinds of quasigroup transformations (Section 3), and we explain the constructions
of some types of cryptographic primitives obtained by quasigroup transformations
(Section 4). The last section contains discussion and conclusion.

2. Quasigroups

We start by giving a brief overview of the quasigroup theory that we will use in
the sequel.

De�nition 1. A quasigroup (Q, ∗) is a groupoid, i.e., a set Q with binary operation

∗ : Q2 → Q, satisfying the law

(∀u, v ∈ Q)(∃! x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

The de�nition is equivalent to the statements that ∗ is a cancellative operation
(x∗y = x∗z ⇒ y = z, y ∗x = z ∗x⇒ y = z) and the equations a∗x = b, y ∗a = b
have solutions x, y for each a, b ∈ Q.

In this paper we need only �nite quasigroups, i.e., the order |Q| of a quasigroup
Q is a �nite positive integer. Closely related combinatorial structures to �nite
quasigroups are the so called Latin squares:

De�nition 2. A Latin square L on a �nite set Q of cardinality |Q| = n is an

n × n-matrix with elements from Q such that each row and each column of the

matrix is a permutation of Q.

To any �nite quasigroup (Q, ∗), given by its multiplication table, there can be
associated a Latin square L consisting of the matrix formed by the main body of
the table, and each Latin square L on a set Q de�nes at most |Q|!2 quasigroups
(Q, ∗) (obtained by all possible bordering).

A relation of isotopism and between two quasigroups are de�ned as follows.

De�nition 3. A quasigroup (K, ∗) is said to be isotopic to a quasigroup (Q, •)
if and only if there are bijections α, β, γ from K onto Q such that γ(x ∗ y) =
α(x) •β(y) for each x, y ∈ K. Then the triple (α, β, γ) is called an isotopism from

(K, ∗) to (Q, •).
Given a quasigroup (Q, ∗) �ve new operations, so called parastrophes or adjoint

operations, denoted by \, /, •, \\, //, can be derived from the operation ∗ as
follows:

x ∗ y = z ⇔ y = x \ z ⇔ x = z/y ⇔ y • x = z ⇔ y = z \ \x ⇔ x = y//z. (2)

Design of crypto primitives based on quasigroups 43

Then the algebras (Q, ∗, \, /) and (Q, •, \\, //) satisfy the identities

x \ (x ∗ y) = y, x ∗ (x \ y) = y, (x ∗ y)/y = x, (x/y) ∗ y = x (3)

y = (x ∗ y) \\x = (y • x) \\x, x = y//(x ∗ y) = y//(y • x),

y = x ∗ (y \\x) = (y \\x) • x, x = (y//x) ∗ y = y • (y//x), (4)

and (Q, \), (Q, /), (Q, •) (Q, \\), (Q, //) are quasigroups too.

2.1. n-ary, left and right quasigroups

An n-ary quasigroup is a pair (Q, f) of a nonempty set Q and an n-ary operation
f with the property that given any n of the elements a1, a2, . . . , an+1 ∈ Q, the
n + 1-th is uniquely determined the equality f(a1, a2, . . . , an) = an+1 hold true.
A quasigroup is a binary (2-ary) quasigroup. Given n-ary quasigroup (Q, f), we
de�ne n operations f1, f2, . . . , fn by

f(a1, a2, . . . , an) = an+1 ⇔ fi(a1, . . . , ai−1, an+1, ai+1, . . . , an) = ai.

Then the following identities holds, for each i = 1, 2, . . . , n:

f(a1, . . . , ai−1, fi(a1, . . . , an), ai+1 . . . , an) = ai,

fi(a1, . . . , ai−1, f(a1, a2, . . . , an), ai+1, . . . , an) = ai. (5)

De�nition 4. A left (right) quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃! x ∈ Q) u ∗ x = v

((∀u, v ∈ Q)(∃! y ∈ Q) y ∗ u = v.)

It is clear that a groupoid is a quasigroup i� it is left and right quasigroup.
Given a left (right) quasigroup (Q, ∗) the parastrophe \ (/) can be derived from

the operation ∗ as following.
x ∗ y = z ⇔ y = x \ z (x ∗ y = z ⇔ x = z/y)

and then the algebra (Q, ∗, \) ((Q, ∗, /)) satis�es the identities
x \ (x ∗ y) = y, x ∗ (x \ y) = y, ((x ∗ y)/y = x, (x/y) ∗ y = x).

2.2. Huge quasigroups

A quasigroup can be constructed by using a Latin square, that will be the main
body of the multiplication table of the quasigroup, or analytically by some func-
tions. A quasigroup of small order is easily representable by its multiplication
table (as in Table 3). Clearly, it cannot be done for quasigroups of huge orders
216, 264, 2128, 2256, 2512, . . . (we say huge quasigroups), that are used in the
constructions of some crypto primitives. There are several known constructions of
huge quasigroups, and we describe some of them.

44 S. Markovski

2.2.1. Huge quasigroups obtained by Feistel networks

Extended Feistel networks FA,B,C are de�ned in [91] as follows.
Let (G,+) be an abelian group, let f : G→ G be a mapping and let A,B,C ∈

G be constants. The extended Feistel network FA,B,C : G2 → G2 created by f is
de�ned for every (l, r) ∈ G2 as

FA,B,C(l, r) = (r +A, l +B + f(r + C)).

When f is a bijection, FA,B,C is an orthomorphism of the group (G2,+) (i.e.,
FA,B,C and FA,B,C − I are permutations), so a quasigroup (G2, ∗FA,B,C

) can be
produced by Sade's diagonal method [122] as

X ∗FA,B,C
Y = FA,B,C(X − Y) + Y.

This construction is suitable for many applications, since the parametersA,B,C
of an extended Feistel network FA,B,C can be used for di�erent purposes. By
iterating, starting from a group of small order, we can construct a huge quasi-
group. Namely, if f is bijection on G, then f1 = FA,B,C is a bijection on G2, so
we can de�ne suitable extended Feistel network FA1,B1,C1

by choosing constants
A1, B1, C1 ∈ G2. Again, by Sade's diagonal method we can construct a quasi-
group (G4, ∗FA1,B1,C1

) of order |G|4. Hence, in such a way, after k steps, we have

a quasigroup of order |G|2k . Thus, when G = Z2, after 8 steps wee have a huge
quasigroup of order 2256. Note that only the starting bijection f has to be kept in
memory.

More constructions of quasigroups by di�erent types of Feistel networks are
given in [111].

2.2.2. Huge quasigroups obtained by T-functions

Huge quasigroups can be de�ned by so called T−functions [18] and one way how
it can be done is the following [127].

Let Q = Z2w and let represent the element of Q binary, as bit strings of length
w. (Thus, for w = 4, the integer 9 is represented as 1001.) Let xw, . . . , x1 be
Boolean variables, and let b be a constant Boolean vector. Let A1 = [fij]w×w
and A2 = [gij]w×w be upper triangular matrices of linear Boolean expressions
with variables xw, . . . , x1, such that: 1) fii = 1, gii = 1 and fiw are constants
for every i = 1, . . . , w; 2) for all i < j < w, fij can depend only on the variables
xw−j , . . . , x1 and 3) for all i < j, gij can depend only on the variables xw, . . . , x1.
Let x = (xw, . . . , x1), y = (yw, . . . , y1) be binary presentation of the variables x,y
over Q. Then, (Q, ∗) is a quasigroup of order 2w, where ∗ is de�ned by

x ∗ y = A1 · (xw, . . . , x1)T + A2 · (yw, . . . , y1)T + bT .

The parastrophe (Q, \) is de�ned by

x \ y = A−12 · ((yw, . . . , y1)T −A1 · (xw, . . . , x1)T − bT).

Design of crypto primitives based on quasigroups 45

2.2.3. Huge quasigroups obtained by simple isotopies

The compression function of the hash function Edon-R [58] uses two huge quasi-
groups of order 2256 and 2512 and their operations are de�ned by isotopies of the
Abelian group ((Z2w)8,+8), w = 32 and w = 64, respectfully. (+8 is a component-
wise addition on two 8-dimensional vectors in (Z2w)8). The quasigroup operation
∗ is de�ned by

X ∗ Y = π1(π2(X) +8 π3(Y))

where X = (X0, X1, . . . , X7), Y = (Y0, Y1, . . . , Y7) ∈ (Z2w)8 and πi : Z2w →
Z2w , 1 6 i 6 3, are permutations obtained in a suitable simple (and e�cient) way.

2.3. Quasigroups for symbolic computations

Designs of some crypto primitives (like digital signatures, public key encryptions)
need symbolic computations. (For example, for producing a public key consisting
of polynomials.) For that aim, quasigroups capable for symbolic computations are
de�ned as well.

2.3.1. Multivariate quadratic quasigroups (MQQ)

As we already mentioned, the elements of a �nite quasigroups (Q, ∗) of order 2d

can be represented binary as bit strings of d bits. Now, the binary operation ∗ can
be interpreted as a vector valued operation ∗vv : {0, 1}2d → {0, 1}d de�ned as:

x ∗ y = z⇐⇒ ∗vv(x1, . . . , xd, y1, . . . , yd) = (z1, . . . , zd),

where x1 . . . xd, y1 . . . yd, z1 . . . zd are binary representations of x,y, z. Each zi de-
pends of the bits x1, x2, . . . , xd, y1, y2, . . . , yd and is uniquely determined by them.
So, each zi can be seen as a 2d-ary Boolean function zi = fi(x1, . . . , xd, y1, . . . , yd),
where fi : {0, 1}2d → {0, 1} strictly depends on, and is uniquely determined by, ∗.

A k-ary Boolean function f(x1, . . . , xk) can be represented in a unique way by
its algebraic normal form (ANF) as a sum of products in the �eld GF (2):

ANF (f) =
∑

I⊆{1,2,...,k}
αIx

I ,

where αI ∈ {0, 1} and xI is the product of all variables xi such that i ∈ I.
The ANFs of the functions fi give us information about the complexity of the
quasigroup (Q, ∗) via the degrees of the Boolean functions fi. It can be observed
that the degrees of the polynomials ANF (fi) rise with the order of the quasigroup.
In general, for a randomly generated quasigroup of order 2d, d > 4, the degrees
are higher than 2.

The MQQ are de�ned in [51]. A quasigroup (Q, ∗) of order 2d is called Mul-
tivariate Quadratic Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of

46 S. Markovski

its Boolean polynomials fi are of degree 2 (i.e., they are quadratic) and k of them
are of degree 1 (i.e., they are linear), where 0 6 k < d.

Theorem 1 below gives us su�cient conditions for a quasigroup (Q, ∗) to be
MQQ.

Theorem 1. Let A1 = [fij]d×d and A2 = [gij]d×d be two d× d matrices of linear

Boolean expressions, and let b1 = [ui]d×1 and b2 = [vi]d×1 be two d× 1 vectors of

linear or quadratic Boolean expressions. Let the functions fij and ui depend only

on variables x1, . . . , xd, and let the functions gij and vi depend only on variables

xd+1, . . . , x2d. If

Det(A1) = Det(A2) = 1 in GF (2) (6)

and if

A1 · (xd+1, . . . , x2d)
T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (7)

then the vector valued operation

∗vv(x1, . . . , x2d) = A1 · (xd+1, . . . , x2d)
T + b1

de�nes a quasigroup (Q, ∗) of order 2d that is MQQ.

Similarly as in Theorem 1, a construction of so called Mutually Quadratic Left
Quasigroups (MQLQ) is given in [124].

Theorem 2. Let x1, . . . , xw, y1, . . . , yw be Boolean variables, w > 1. Let A1 =
[fij]w×w and A2 = [gij]w×w be two w × w nonsingular upper triangular matrices

of random a�ne Boolean expressions, such that for every i = 1, . . . , w, fii = 1
and gii = 1, and for all i, j, i < j 6 w, fij and gij depend only on the variables

x1, . . . , xw, yi+1, . . . , yw. Let D1 = [dij]w×w, D2 = [dij]w×w and D = [dij]w×w be

nonsingular Boolean matrices and let b = [bi]w×1, c1 = [ci]w×1, c2 = [ci]w×1 and

c = [ci]w×1 be Boolean vectors.

Then the vector valued operations

∗1(x1, . . . , xw, y1, . . . , yw) = A1 · (x1, . . . , xw)⊕A2 · (y1, . . . , yw)⊕ b (8)

and

∗2(x1, . . . , xw, y1, . . . , yw) = D(∗1(D1(x1, . . . , xw)⊕ c1,D2(y1, . . . , yw)⊕ c2))⊕ c
(9)

de�ne left quasigroups (Q, ∗1) and (Q, ∗2) of order 2w that are MQLQ, where

Q = {0, 1, , 2w − 1}.

The de�nition of the quasigroup (Q, ∗) implies immediately that symbolic com-
putations can be performed with linear polynomials on the �eld GF (2).

More information for MQQ can be found in [125] and [17].

Design of crypto primitives based on quasigroups 47

2.3.2. Matrix representation

All quasigroup operations on the set Q = {0, 1, 2, 3} have so called matrix repre-
sentations in the following form, given in the next theorem [137]:

Theorem 3. Each quasigroup (Q, ∗) of order 4 has a matrix representation of

form

x ∗ y = m
T +AxT +ByT + CAxT ◦ CByT , (10)

where x = (x1, x2), y = (y1, y2) ∈ Q (xi, yi denotes bit variables), m = (m1,m2)
is some constant from Q, A and B are nonsingular 2-dimensional matrices of

bits, C is one of the matrices

[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 1
1 1

]
, and ◦ denotes the

component-wise multiplication of vectors. (Note: The addition and multiplication
are in the �eld GF (2).)

The matrix presentation of the parastrophe operation \ of the quasigroup op-
eration ∗ given by (10) is the following:

x \ z = B−1mT +B−1(I + C)AxT +B−1(CmT ◦ CAxT)+

+B−1zT +B−1(CAxT ◦ CzT),
(11)

where I denotes the identity matrix.
The variables x and y may vary over the polynomial ring Z[X], not only over

Q.
Matrix representation for some types of quasigroups of order 8 are also inves-

tigated.
Here we note that for any order 2n we have matrix representations of the so

called linear quasigroups of order 2n as follows. Let denote x = (x1, . . . , xn), where
xi are bit variables.

Theorem 4. Let A and B be nonsingular binary n × n−matrices and m ∈ Q =
{0, 1, 2, . . . , 2n − 1} be a constant. Then (Q, ∗) is a quasigroup (called linear

quasigroup), where
x ∗ y = m

T +AxT +ByT . (12)

By Theorem 4, we can take m to be 1 × n matrix and A and B to be
n × n−matrices with entries that are Boolean expressions such that det(A) 6= 0,
det(B) 6= 0, and then x ∗ y will be a Boolean expression too. So, we can use this
matrix presentation for symbolic computations.

We can extended the previous result for k-ary case as well.

Theorem 5. Let Ai, i = 1, 2, . . . , k, be nonsingular binary n × n−matrices and
m ∈ Q = {0, 1, 2, . . . , 2n − 1} be a constant. Then (Q, f) is a k-ary quasigroup

(called linear k−quasigroup), where

f(x1,x2, . . . ,xk) = m
T +A1x

T
1 +A2x

T
2 + · · ·+Akx

T
k . (13)

48 S. Markovski

2.3.3. Polynomial quasigroups

Quasigroups of order 2n can be de�ned by using bivariate polynomials P (x, y) over
the ring (Z2n ,+, ·), n > 2 ([123], [121], [95]), when the polynomials satisfy the
following condition: each of the functions P (x, 0), P (x, 1), P (0, y) and P (1, y) is a
permutation on Z2n . Then the quasigroup (Z2n , ∗), called polynomial quasigroup,
is de�ned by x ∗ y = P (x, y).

If only the univariate polynomials P (x, 0), P (x, 1) (P (0, y), P (1, y)) are per-
mutations, (Z2n , ∗) is right quasigroup (left quasigroup), and vice versa.

Polynomial quasigroups can be of huge order and, since de�ned by polynomials,
they can be used for symbolic computations as well.

We note that there are e�ective algorithms for computing the parastrophic
operations of the polynomial quasigroups.

3. Quasigroup string transformations

Quasigroup String Transformations were introduced in [84] and were investigated
in several other papers ([85], [89], [90], [81], [80]).

Consider an alphabet (i.e., a �nite set) Q, and denote by Q+ = {a1a2 . . .
. . . an| ai ∈ Q} the set of all nonempty words (i.e., �nite strings) formed by
the elements of Q. (If there is no misunderstanding, we identify a1a2 . . . an and
(a1, a2, . . . , an).) Let ∗ be a quasigroup operation on the set Q, i.e., consider a
quasigroup (Q, ∗). For each a ∈ Q we de�ne two functions

ea,∗, da,∗ : Q+ −→ Q+

as follows. Let ai ∈ Q, α = a1a2 . . . an. Then

ea,∗(α) = b1b2 . . . bn ⇐⇒ b1 = a ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an

and

da,∗(α) = c1c2 . . . cn ⇐⇒ c1 = a ∗ a1, c2 = a1 ∗ a2, . . . , cn = an−1 ∗ an.

The functions ea,∗, da,∗ are called e- and d-transformation of Q+ based on the
operation ∗ with leader a, and their graphical representation is shown on Fig. 1
and Fig. 2.

a1 a2 . . . an−1 an

a b1 b2 . . . bn−1 bn
�
���

�
���

�
���

�
���

�
���? ? ? ?

Figure 1: Graphical representation of ea,∗ function

Design of crypto primitives based on quasigroups 49

a a1 a2 . . . an−1 an

b1 b2 . . . bn−1 bn

- - - - -

? ? ? ?

Figure 2: Graphical representation of da,∗ function

• 0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1

\ 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 1 2
3 0 3 2 1

/ 0 1 2 3
0 3 1 0 2
1 2 0 1 3
2 0 2 3 1
3 1 3 2 0

Figure 3: A quasigroup (Q, •) and its parastrophes (Q, \) and (Q, /)

Example 1. Take Q = {0, 1, 2, 3} and let the quasigroup (Q, •) and its parastro-
phes (Q, \) and (Q, /) be given by the multiplication schemes in Figure 3.

Consider the string α = 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0
and choose the leader 0. Then by the transformations e0,• and d0,• we will obtain
the following transformed strings e0,•(α) and d0,•(α):

e0,•(α) = 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0,
d0,•(α) = 1 3 0 2 3 2 2 2 2 2 2 2 2 1 0 1 2 3 0 3 1 1 3 1 3 3 0 2.
We present four consecutive applications of the e-transformation on Table 1.

After that we apply four times the transformation d0,\ on the last obtained
string β = e0,•4(α) (see Table 1):

Notice that we have obtained

α = d0,\
4(β) = d0,\

4(e0,•4(α)) = (d0,\
4 ◦ e0,•4)(α).

In fact, by (3), the following property is true([85]):

Theorem 6. Let (Q, ∗, \, /) be a �nite quasigroup. Then for each string α ∈ Q+

and for each leader l ∈ Q we have that el,∗ and dl,\ are mutually inverse permu-

tations of Q+, i.e., dl,\(el,∗(α)) = α = el,∗(dl,\(α)).

leader 1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = α
0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = e0,•(α)
0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = e0,•2(α)
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = e0,•3(α)
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = e0,•4(α)

Table 1: Consecutive e-transformations

50 S. Markovski

leader
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = β
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = d0,\(β)

0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = d0,\
2(β)

0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = d0,\
3(β)

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = d0,\
4(β)

Table 2: Consecutive d-transformations

By Theorem 6 we conclude that the transformations ea,∗ and da,\ can be used
for de�ning suitable functions for encryption and decryption. Much more, we can
de�ne in the similar way several pairs of quasigroup string transformations that
can be used for de�ning suitable functions for encryption and decryption. Thus,
let a, a1, a2, . . . , an ∈ Q and let de�ne the functions e′a,∗, d

′
a,∗ : Q+ −→ Q+ as

follows:

e′a,∗(α) = b1b2 . . . bn ⇐⇒ bn = an ∗ a, bn−1 = an−1 ∗ bn, . . . , b1 = a1 ∗ b2,

d′a,∗(α) = c1c2 . . . cn ⇐⇒ cn = an ∗ a cn−1 = an−1 ∗ an, . . . , c1 = a1 ∗ a2.
Then, by (4), Theorem 6 holds for the functions e′a,∗, d

′
a,\ too. Also, for encryp-

tion/decryption purposes, in a suitable way transformations with the pair of func-
tions (ea,∗, da,/), (e′a,∗, d

′
a,/), (ea,∗, da,\), (e

′
a,∗, d

′
a,\), (ea,•, da,//), (e′a,•, d

′
a,//),

(ea,•, da,\\), (e′a,•, d
′
a,\\) can be de�ned in an obvious way.

Several quasigroup operations can be de�ned on the set Q and let ∗1, ∗2,
. . . , ∗k be a sequence of (not necessarily distinct) such operations. We choose
also leaders l1, l2, . . . , lk ∈ Q (not necessarily distinct either), and let t(i) ∈
{eli,∗, dli,/, e′li,∗, d′li,/, dli,//, d

′
li,//

, da,\\, d′li,\\, . . . }. Then, the transforma-

tion T = t(1)t(2) . . . t(k) of Q+ is said to be a generalized T -transformation. It
is a permutation of Q+ with inverse T−1 = (t(k))−1(t(k−1))−1 . . . (t(1))−1, where
(t(i))−1 ∈ {eli,∗, e′li,∗, eli,•, e′li,•, dli,/, d′li,/, dli,//, d

′
li,//

, da,\\, d′li,\\, . . . }. The
generalized transformations T, T−1 can be used as encryption/decryption func-
tions.

3.1. Parastrophic quasigroup transformations

In order to exploit more completely one quasigroup, an idea for quasigroup string
transformation that will be based on all isotopes of a quasigroup is given in
[73]. Here we give a description of a slightly modi�cation of this transforma-
tion, called parastrophic quasigroup transformation, as presented in [3]. For that
aim we denote the parastrophic operation {∗, \, /, •, //, \\} of a quasigroup (Q, ∗)
respectively as f1, f2, f3, f4, f5, f6, and we write f1(x, y), f2(x, y), . . . instead of
x ∗ y, x\y, . . . Note that some of the parastrophes fi may coincides, depending of
the quasigroup.

Design of crypto primitives based on quasigroups 51

The parastrophic transformations PE is de�ned on �nite quasigroups (Q, ∗)
of integers, i.e., Q = {1, 2, . . . , t}. They are using the transformations el,fi for
transformations of block of letters, where l is a leader. Also, a positive integer p
is used.

Let p be a positive integer and x1x2 . . . xn be an input message. We de�ne a
parastrophic transformation PE = PEl,p : Q+ → Q+ by using auxiliary parame-
ters di, qi and si as follows.

To start, let d1 = p, q1 = d1, s1 = (d1 mod 6) + 1 and take a starting block
A1 = x1x2 . . . xq1 . Denote by B1 the block

B1 = y1y2 . . . yq1−1yq1 = el,fs1 (x1x2 . . . xq1−1xq1).

Further, we calculate the numbers d2 = 4yq1−1 + yq1 (that determines the length
of the next block), q2 = q1 + d2 and s2 = (d2 mod 6) + 1. We denote A2 =
xq1+1 . . . xq2−1xq2 and

B2 = yq1+1 . . . yq2−2yq2−1yq2 = Eyq1 ,fs2 (xq1+1 . . . xq2−2xq2−1xq2).

Inductively, after getting the blocks B1, B2,. . . , Bi−1 where Bi−1 = yqi−2+1 . . .
. . . yqi−1−1yqi−1

, we calculate di = 4yqi−1−1+yqi−1
, qi = qi−1+di, si = (di mod 6)+

1, Ai = xqi−1+1 . . . xqi−1xqi and obtain the block

Bi = Eyqi−1
,fsi

(xqi−1+1 . . . xqi).

Now, the parastrophic transformation PEl,p is de�ned by concatenation of the
obtained blocks as

PEl,p(x1x2 . . . xn) = B1||B2|| . . . ||Br. (14)

(Note that the length of the last block Ar may be shorter than dr, depending on
the number of letters in input message).

3.2. Other types of transformations

For di�erent purposes other types of quasigroups transformations are de�ned else-
where. We will shortly mention some of them.

Special kind of E transformation is the quasigroup reverse string transformation
R, introduced in [42], where the leaders are the elements of the string, taken in
reverse order. Namely, a string of letters α = a1a2 . . . an is transformed to E(α),
where E = e∗,an ◦ e∗,an−1

◦ · · · ◦ e∗,a1 .
Let (Q, ∗1) and (Q, ∗2) be two orthogonal (�nite) quasigroups, i.e., the equality

{(x∗1y, x∗2y)| x, y ∈ Q} = Q2 holds. Orthogonal quasigroup string transformation
OT : Q+ → Q+ of a string x1x2 . . . xr is de�ned in [110] by the following iterative
procedure:

OT (x1) = x1, OT (x1, x2) = (x1 ∗1 x2, x1 ∗2 x2)

52 S. Markovski

and if OT (x1, x2, . . . , xt−1) = (z1, z2, , . . . , zt−1) is de�ned for t > 2, then

OT (x1, x2, , . . . , xt−1, xt) = (z1, z2, , . . . , zt−2, zt−1 ∗1 xt, zt−1 ∗2 xt).

OT is a permutation of Q.
Let Q = Z2n , let (Q, ∗) be a quasigroup and let + denote addition modulo

2n. Elementary quasigroup additive and reverse additive string transformations
A,RA : Q+ → Q+ with leader l are de�ned in [92] as follows:

A(x1x2 . . . xt) = (z1z2, . . . zt)⇐⇒ zj = (zj−1 + xj) ∗ xj , 1 6 j 6 t, z0 = l,

RA(x1x2 . . . xt) = (z1z2 . . . zt)⇐⇒ zj = xj ∗ (xj + zj + 1), 1 6 j 6 t, zt+1 = l.

These transformations are not bijective mappings. One can create composite quasi-
group transformations M by composition of di�erent A and/or RA transformations
with di�erent leaders.

Quasigroup string transformations Fi, Gi, i = 1, 2, 3, de�ned by 3-ary quasi-
group (Q, f) are given in [117]. The operations F1, F2, F3 are de�ned by f , whileGi
are de�ned by fi. By (5) all transformations are permutations and Fi has inverse
Gi. Here we present the de�nitions of F1 andG1. Let take leaders a1, a2, a3, a4 ∈ Q,
and de�ne

F1(x1x2 . . . xt) = (z1z2 . . . zt)⇔ zj =

 f(x1, a1, a2), j = 1
f(x2, a3, a4), j = 2
f(xj , zj−2, zj−1), j > 2,

G1(x1x2 . . . xt) = (z1z2 . . . zt)⇔ zj =

 f1(x1, a1, a2), j = 1
f1(x2, a3, a4), j = 2
f1(xj , xj−2, xj−1), j > 2.

4. Crypto primitives based on quasigroups

In this section we will consider several designs of cryptographic primitives based on
quasigroups, i.e., on di�erent kinds of quasigroup transformations. We emphasize
that for getting suitable cryptographic properties of the designs, we have to choose
the used quasigroups very carefully. One most desirable property of the quasigroup
is its shapelessness [55]. This means that the quasigroup (Q, ∗) should not be
associative, commutative, idempotent, have (left,right) unit, it should not have
proper subquasigroups and it should not satis�es identities of kind

(((y ∗ x) ∗ x) ∗ . . .) ∗ x︸ ︷︷ ︸
k

= y, x ∗ (x ∗ . . . (x ∗ (x︸ ︷︷ ︸
k

∗y))) = y

for some k < 2n, where n = |Q|.More complete de�nition of a shapeless quasigroup
is given in [82], and several construction of huge shapeless quasigroups are given
in [111].

Design of crypto primitives based on quasigroups 53

According to the properties satis�ed by quasigroups, the set of quasigroups Qn

of �x order n is classi�ed in several classes. Thus, Qn may consists of two disjoint
classes, the class of fractal and the class of non-fractal quasigroups ([34],[82]). By
considering growing the periods of the strings el,∗t(α) of a periodic string α, Qn

can be classi�ed again in two disjoint classes, the class of exponential and the class
of linear quasigroups. A quasigroup is said to be exponential if the period of the
string el,∗t(α) is down bounded by an exponential function const ·2at, where const
and a are positive constant ([33],[80],[87]). We note that for some quasigroups the
constant a is enough big, so they can be used to produce suitable crypto primitives.

In the subsequent section we discus constructions based on quasigroups of
several crypto primitives.

4.1. S-boxes de�ned by quaisgroups

The main point of security in symmetric cryptography in almost all modern block
ciphers are the substitution boxes (S-boxes). S-boxes have to confuse the input
data into the cipher. Since S-boxes contain a small amount of data, the construc-
tion of an S-box should be made very carefully in order the needed cryptographic
properties to be satis�ed. It is especially important when ultra-lightweight block
cipher are designed, like PRESENT ([14]). PRESENT S-boxes are derived as a
result of an exhaustive search of all 16! bijective 4-bit S-boxes. Then 16 di�erent
classes are obtained and all S-boxes in these classes are optimalwith respect to
linear and di�erential properties.

Instead of an exhaustive search of all 16! bijections of 16 elements as it was done
for the design of PRESENT, quasigroups of order 4 can be applied for construction
of cryptographically strong S-boxes, called Q-S-boxes [103].

There is no formal de�nition for S-boxes, they are usually de�ned as lookup
tables that are interpreted as vector valued Boolean functions or Boolean maps
f : Fn2 → Fq2, where F2 is a Galois �eld with two elements. De�ned as mappings,
for S-boxes so called linearity and di�erential potential can be computed and
correspondingly resistance against linear and di�erential attacks can be measured.

We already mentioned that quasigroups of order 2n have vector valued repre-
sentation. For example, the next quasigroup of order 4

∗ 0 1 2 3
0 0 1 3 2
1 1 0 2 3
2 2 3 0 1
3 3 2 1 0

has representation with the following pair of Boolean functions

f(x0, x1, y0, y1) = (x0 + y0, x1 + y0 + y1 + x0y0).

The algebraic degree of this quasigroup is 2, since the Boolean function f2(x0, x1,
y0, y1) = x1 + y0 + y1 + x0y0 has degree 2. Generally, the quasigroups of order

54 S. Markovski

4 can have algebraic degree 1 (144 of them, so called linear) and 2 (432 of them,
so called nonlinear), [44]. Only nonlinear quasigroups are used for construction of
suitable S-boxes, i.e., Q-S-boxes. Note that quasigroups of order 4 are 4 × 2-bit
S-boxes.

We want to generate 4×4-bit cryptographically strong S-boxes by using quasi-
groups of order 4. One criterion for good S-box is to have highest possible algebraic
degree, so we search for 4×4-bit S-boxes that have algebraic degree 3 for all output
bits. For obtaining 4 × 4-bit S-boxes, e-transformations will be used to raise the
algebraic degree of the produced �nal bijections. As it is shown in Figure 4, one
non-linear quasigroup of order 4 and at least 4 e-transformations will be used to
reach the desired degree of 3 for all the bits in �nal output block.

a0 a1

l0 b0 b1

c0 c1 l1

l2 d0 d1

e0 e1 l3

�
���
�
���

�
���
�
���

@
@I

@
@I

@
@I

@
@I

? ?

? ?

? ?

? ?

Figure 4: Four e-transformations that bijectively transforms 4 bits into 4 bits by
a quasigroup of order 4.

So we can get a Q-S-box that satisfy one condition, to be of degree 3 for all
output bits. If the other conditions are satis�ed (linearity, di�erential potential, ...)
we will put it in the set of optimal Q-S-boxes. The algorithm for this methodology
is given in Table 3. We mention that the minimum number of rounds (iterations)
is 4, and using the described methodology we can generate Q-S-boxes in di�erent
ways depending on the number of rounds and the number of leaders that we can
choose. In our investigation we choose to work with 2, 4 and 8 di�erent leaders
and 4 and 8 rounds, respectively. We found all the Q-S-boxes that ful�ll the
predetermined criteria to be optimal.

Many experiments were made with 2, 4 and 8 di�erent leaders and 4 and 8
rounds, respectively. The obtained results are given in the Table 4.

Some representative of optimal Q-S-boxes are given in Table 5.

Design of crypto primitives based on quasigroups 55

An iterative method for construction of Q-S-boxes

Step 1 Take one quasigroup of order 4 from the class
of non-linear;

Step 2 Input the number of rounds;

Step 3 Input the leaders. Usually, their number is the same
as the number of rounds;

Step 4 Generate all possible input blocks of 4 bits in the
lexicographic ordering (they are 24);

Step 5 Take input blocks one by one, and for each of them:

Step 5.1 Apply e-transformation with leader l
on the input block;

Step 5.2 Reverse the result from above and apply
e-transformation with other leader l again;

Step 5.3 Continue this routine as many times as
there is a number of rounds;

Step 5.4 Save the 4-bit result from the last round;

Step 6 At the end concatenate all saved results which generate
permutation of order 16 or 4× 4-bit Q-S-box;

Step 7 Investigate predetermined criteria;

Step 7.1 If the Q-S-box satis�es criteria, put it in the set of
optimal S-boxes;

Step 7.2 If not, go to Step 3;

Step 8 Analyze the optimal set of newly obtained Q-S-boxes;

Table 3: Construction of one Q-S-box

Number of Leaders Number of Rounds Number of Optimal boxes
2 4 1 152
4 4 9 216
8 8 331 264

Table 4: The number of optimal Q-S-boxes under di�erent parameters

4.2. Block ciphers

Block cipher is an enciphering method that encrypt a block M of plaintext of
length n into a block C of ciphertext of length n, by using a secret key K. It uses
an encryption function E : P ×K → C and a decryption function D : C ×K → P,
where P, C and K are the spaces of plaintext, ciphertext and keys; usually P =
C = {0, 1}n, K = {0, 1}k. The functions E(M,K) and D(C,K) are permutation
for �xed K and D(E(M,K),K) = M , and there are no di�erent keys K1,K2 such
that E(M,K1) = E(M,K2). Note that when P = C = K = {0, 1}n, then E is a
quasigroup operation with parastrophe D. Besides the last property, there are no
many block ciphers based on quasigroup. Here we show the design of the block

56 S. Markovski

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 1 2 E F 9 3 4 8 0 A B 7 D 6 5

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) D 9 F C B 5 7 6 3 8 E 2 0 1 4 A

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) D 9 F C B 5 7 6 3 8 E 2 0 1 4 A

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 5 E 6 D 7 4 2 A 8 C 0 9 1 B F 3

Table 5: Examples of optimal Q-S-boxes given in its hexadecimal notation

cipher BCMPQ (Block Cipher De�ned by Matrix Presentation of Quasigroups),
[83].

The design of BCDMPQ uses matrix presentation of quasigroups of order 4.
Thus, given a quasigroup (Q, ∗) of order 4, for all x, y ∈ Q, x = (x1, x2), y =
(y1, y2), xi, yi are bits:

x ∗ y = mT +AxT +ByT + CAxT ◦ CByT (15)

where A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
are nonsingular Boolean matrices,

m = [m1,m2] is a Boolean vector and C =

[
1 1
1 1

]
. The operation "◦" denotes

the component wise product of two vectors.

There are 144 quasigroups of form (15). Out of them, a list of 128 is chosen
and stored in memory as follows:

seq_num m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 (16)

where seq_num is a seven bit number (the number of the quasigroup in the list)
while m1,m2, a11, a12, a21, a22, b11, b12, b21, b22 are the bits appearing in the matrix
form (15) of the quasigroup operation. (Note that a quasigroup of order 4 is given
by using only ten bits, while 32 bits are needed for its Latin square.)

The encryption and decryption algorithms use 16 quasigroups: Q1, Q2, . . . , Q8,
T1, . . . , T8 in di�erent steps. These matrices are determined by using the round
key key, which is generated out of the secret key K and consists of 128 bits.

The key length of 128 bits is distributed in the following way:

• 16 bits for the leaders l1, l2, ..., l8 (two bits per each leader)

• 56 bits for the quasigroupsQ1, Q2, ..., Q8 (7 bits per each quasigroup, actually
the value of sequence_number)

• 56 bits for the quasigroups T1, T2, ..., T8 (7 bits per each quasigroup)

Design of crypto primitives based on quasigroups 57

The design of this block cipher is based on three algorithms: round key gener-
ation, encryption and decryption.

Denote by K the secret symmetric key of 128 bits. In order to generate a
round (working) key k out of the secret key, we �rst determine a �xed shapeless
quasigroup Q and a �xed leader l = 0 = [0, 0]. The round key is obtained by
e-transformations. The procedure for generation a round key is described in the
RoundKeyGeneration Algorithm. (There, and in the next two algorithms, auxil-
iary variables are used, tmp is two bits variable and ltmp is one bit variable.)

RoundKeyGeneration Algorithm

Input: The secret key K = K1K2 . . .K128, Ki are bits.
Output: The round key key = k1k2 . . . k128, ki are bits.
Initialization: (Q, ∗) is a �xed matrix quasigroup of order 4
such that a ∗ a 6= a for each a ∈ Q, l = (0, 0) is a two bit leader.

for i = 1 to 128 do
ki ← Ki;
for i = 1 to 4 do

ltmp ← l;
for j = 1 to 127 step 2 do

tmp← (kj , kj+1);
(kj , kj+1) = mT +AlTtmp +BtmpT + CAlTtmp ◦ CBtmpT ;
ltmp ← (kj , kj+1);

ltmp ← l;
for j = 128 to 2 step 2 do

tmp← (kj−1, kj);
(kj−1, kj) = mT +AlTtmp +BtmpT + CAlTtmp ◦ CBtmpT ;
ltmp ← (kj−1, kj);

The message block length of BCDMPQ can be 8n for any n, but we take that
n = 8, i.e., we consider the light version of the cipher. So, the plaintext message
should be split into blocks of 64 bits. Afterwards, the Encryption Algorithm
should be applied on each block. (If the message length is not devided by 64, a
suitable padding will be applied). The encryption algorithm consists of two steps.
In the �rst step we use the matrices Q1, Q2, ..., Q8 and in the second the matrices
T1, T2, ..., T8.

Brie�y, in the �rst step we split the 64 bit block into 8 smaller blocks (mini-
blocks) of 8 bits. We apply e-transformation on each of these mini-blocks with a
di�erent leader and a di�erent quasigroup. Actually, we use the leader li and the
quasigroup Qi for the i-th mini-blocks. The resulting string is used as input in the
next step.

58 S. Markovski

In the second step, we apply e-transformations on each resulting string, re-
peating 8 times with alternately changing direction. In the i-th transformation we
use the quasigroup Ti and the leader li. The detailed and formalized algorithm is
presented in the Encryption Algorithm.

Encryption Algorithm

Input: The round key key = k1k2 . . . k128, ki are bits,
the plaintext message a = a1a2 . . . a64, ai are bits.
Output: The ciphertext message c = c1c2 . . . c64.
Initialization: Put li = (k2i−1, k2i) for i = 1, 2, . . . , 8.

Lookup the quasigroup Qi using the sequence number binary
presented as (k7i−6, k7i−5, ..., k7i) where i = 1, 2, ..., 8. Initialize
the matrices AQi

and BQi
, as well as the vector mQi

for i = 1, 2, ..., 8.

Lookup the quasigroup Ti using the sequence number binary
presented as (k7(i+8)−6, k7(i+8)−5, ..., k7(i+8)). Initialize the
matrices ATi

and BTi
, as well as the vector mTi

for i = 1, 2, ..., 8.

for i = 1 to 8 do
ltmp ← li;
for j = 1 to 7 step 2 do

tmp← (aj , aj+1);
(cj , cj+1) = mT

Qi
+AQi l

T
tmp +BQI

tmpT

+CAQi l
T
tmp ◦ CBQitmp

T ;
ltmp ← (cj , cj+1);

for i = 1 to 4 do
ltmp ← li;
for j = 1 to 63 step 2 do

tmp← (cj , cj+1);
(cj , cj+1) = mT

Ti
+ATi

lTtmp +BTi
tmpT + CATi

lTtmp ◦ CBTi
tmpT ;

ltmp ← (cj , cj+1);
ltmp ← li+4;
for j = 64 to 2 step 2 do

tmp← (cj−1, cj);
(cj−1, cj) = mT

Ti+4
+ ATi+4 l

T
tmp +BTi+4tmp

T+

CATi+4
lTtmp ◦ CBTi+4

tmpT ;
ltmp ← (cj−1, cj);

For decryption purposes we use parastrophe (Q, \) of quasigroup (Q, ∗). If
x ∗ y = z, then recall that y = x\z has matrix representation

Design of crypto primitives based on quasigroups 59

Decryption Algorithm
Input: The round key key = k1k2 . . . k128, ki are bits,
the ciphertext message c = c1c2 . . . c64, ci are bits.
Output: The plaintext message a = a1a2 . . . a64.
Initialization: Put li = (k2i−1, k2i) for i = 1, 2, . . . , 8.

Lookup the quasigroup Qi using the sequence number binary
presented as (k7i−6, k7i−5, ..., k7i) where i = 1, 2, ..., 8. Initialize
the matrices AQi

and BQi
, as well as the vector mQi

for i = 1, ..., 8.

Lookup the quasigroup Ti using the sequence number binary
presented as (k7(i+8)−6, k7(i+8)−5, ..., k7(i+8)). Initialize
the matrices ATi and BTi , as well as the vector mTi for i = 1, 2, ..., 8.
for i = 1 to 64 do ai ← ci;
for i = 1 to 4 do

ltmp ← li+4;
for j = 64 to 2 step 2 do

tmp← (aj−1, aj);
(aj−1, aj) = B−1Ti+4

mT
Ti+4

+B−1Ti+4
(I + C)ATi+4 l

T
tmp+

B−1Ti+4
(CmT

Ti+4
◦ CATi+4

lTtmp) +B−1Ti+4
tmpT+

B−1Ti+4
(CATi+4

lTtmp ◦ CtmpT);

ltmp ← (aj−1, aj);
ltmp ← li;
for j = 1 to 63 step 2 do

tmp← (aj , aj+1);
(aj−1, aj) = B−1Ti

mT
Ti

+B−1Ti
(I + C)ATi l

T
tmp+

B−1Ti
(CmT

Ti
◦ CATi l

T
tmp) +B−1Ti

tmpT+

B−1Ti
(CATi

lTtmp ◦ CtmpT);
ltmp ← (aj , aj+1);

for i = 1 to 8 do
ltmp ← li;
for j = 1 to 7 step 2 do

tmp← (aj , aj+1);
(aj−1, aj) = B−1Qi

mT
Qi

+B−1Qi
(I + C)AQi

lTtmp+

B−1Qi
(CmT

Qi
◦ CAQi

lTtmp) +B−1Qi
tmpT +B−1Qi

(CAQi
lTtmp ◦ CtmpT);

ltmp ← (aj , aj+1);

x\z = B−1mT+B−1(I+C)AxT+B−1(CmT ◦CAxT)+B−1zT+B−1(CAxT ◦CzT).

So, what we actually need to do to decrypt is to start from the ciphertext and
reverse the e-transformation, using the quasigroups T8, T7, ..., T1 sequentially at
�rst, and then reverse the e-transformations of the mini-blocks (from the encryp-
tion algorithm) using the quasigroups Q8, Q7, ..., Q1. This can be done using the
inverse operation we mentioned shortly before. The decryption of a ciphertext
c1c2 . . . c64 is done by the Decryption Algoritam.

60 S. Markovski

Period q = 2.66 Period q = 2.48 Period q = 2.43 Period q = 2.37
•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Table 6: Quaigroups used in the design of Edon80

For the cipher BCDMPQ only preliminary security investigations were done.
The avalanche e�ect and propagation of one bit and two bits changes were con-
sidered and satisfactory results were obtained. It is an open research problem to
check the resistance on the other block cipher attacks.

4.3. Stream ciphers

Stream ciphers are classi�ed mainly as synchronous (when the keystream is gen-
erated independently of plaintext and cyphertext) and asynchronous (when the
keystream is generated by the key and a �xed number of previous ciphertext sym-
bols). A synchronous stream cipher is binary additive when the alphabet consists
of binary digits and the output function is the XORing of the keystream and the
plaintext. Also, totally asynchronous stream cipher is de�ned (when the keystream
is generated by the key and all previous ciphertext symbols). There are several
designs of stream cipher based on quasigroups, and here we will consider two of
them.

4.3.1. Edon80

Edon80 is a binary additive stream cipher that is an unbroken eSTREAM �nalists
[53]. Schematic and behavioral description of Edon80 is given on the Figure 5.
Edon80 works in three possible modes:

1) KeySetup,
2) IVSetup and
3) Keystream mode.
For its proper work Edon80 beside the core (that will be described later) has

the following additional resources:
1. One register Key of 80 bits to store the actual secret key,
2. One register IV of 80 bits to store padded initialization vector,
3. One internal 2-bit counter Counter as a feeder of Edon80 Core in Keystream

mode,
4. One 7 bit SetupCounter that is used in IVSetup mode,
5. One 4× 4 = 16 bytes ROM bank where 4 quasigroups (i.e., Latin squares)

of order 4, indexed from (Q, •0) to (Q, •3), are stored.
Those 4 prede�ned quasigroups are described in Table 6.

Design of crypto primitives based on quasigroups 61

Key : 80 bits

IV : 64 + 16 = 80 bits

ROM: 16 bytes

4 Quasigroups of order 4

Edon80 Core

?

-

-

Counter : 2 bits

SetupCounter
7 bits

Keystream : 2 bits-

in KeySetup mode

in Keystream mode

in IVSetup

mode

in IVSetup mode

in Keystream

mode
-

-

?�

6

�

6

Figure 5: Edon80 components and their relations.

The structure of the Edon80 Core is described in the next two �gures. The
internal structure of Edon80 can be seen as pipelined architecture of 80 simple 2-bit
transformers called e-transformers. The schematic view of a single e-transformer
is shown on Figure 6.

The structure that performs the operation ∗i in e-transformers is a quasigroup
operation of order 4. We refer an e-transformer by its quasigroup operation ∗i. So,
in Edon80 we have 80 of this e-transformers, cascaded in a pipeline, one feeding
another. The Figure 7 shows the pipelined core of Edon80.

We will not discuss in all details Edon80. What we want to emphasize is
that the chosen quasigroups have enough big periods of growths. Thus, if any
of the quasigroups is used k times in an e-transformations, the period of the
obtained string will be correspondingly 2.66k, 2.48k, 2.43k, 2.37k. (Note that
2.4880 ≈ 2104.8.) We have to state that 64 out of 576 quasigroups of order 4 have
so big periods of growth, any 4 of them could be taken in the construction of
Edon80.

Edon80 shows that, when adequately designed, the quasigroups of very small
order can produce crypto primitives of high quality.

4.3.2. Edon X, Y, Z

Here we present a design of three di�erent kinds of stream ciphers: the synchronous
stream cipher EdonX, the asynchronous stream cipher EdonY and the totaly
asynchronous stream cipher EdonZ.

62 S. Markovski

∗i 0 1 2 3

0 ? ? ? ?

1 ? ? ? ?

2 ? ? ? ?

3 ? ? ? ?

Core i-th e-transformer

pi is 2 bit register - PreviousState

ai is 2-bit register - InternalState

Ti is 1-bit register - TAG

--In

-In

-In

Out If Ti = 1

Operation:

{
ai ← ai ∗i pi , If Ti = 1
NONE , If Ti = 0

-Out

Figure 6: Schematic representation of a single e-transformer of Edon80.

p0 p1 p79

a0 a1 a79

∗0 ∗1 ∗79

- -- - -

Edon80 core pipeline

Figure 7: Edon80 core of 80 pipelined e-transformers.

Design of crypto primitives based on quasigroups 63

All 3 ciphers EdonX,Y,Z have a same Initialization phase, and it is a very
important phase of their designs. We denote by Kin secretly shared initial key
an it is transformed in the initial phase to the working key K. The keys, as well
as the messages, consist of s-bit words of any desired length s > 4. The used
quasigroups are de�ned on the set of all s-bit words, and they have 2s elements.
The length n of the initial key (in s-bit words) can be any positive integer, larger
n for higher security. This �exibility of the choice of the key length is one of the
important performances of this Edon family.

The initialization phase of Edon family is described by following algorithm,
where from the secret key Kin and the public quasigroup (Q, •) is obtained as
output a secret working key K and a secret working quasigroup (Q, ∗), that is an
isotope of (Q, •).

Initialization of Edon X,Y,Z family of stream ciphers

Phase 1. Input of initial key

1. Input: an integer s � the length of the words, an integer n � the initial length of the
secret key, an integer m � the length of the working key, a quasigroup (Q, •) of order 2s

and the initial secret value of the key Kin = K0||K1|| · · · ||Kn−1 (Ki are s-bit words)
Phase 2. Padding the key

2. Set K := Kin||n1||n2, where n1 is the most signi�cant and n2 is the least
signi�cant s-bit word of n.

Phase 3. Expanding the key to 512 s-bit words

3. Set Kex := K||K|| · · · ||K||K′, where K′ consists of the �rst l s-bits words of K
such that the total length of Kex is 512 s-bits words.

Phase 4. Transformation of Kex with the given quasigroup (Q, •) of order 2s

4. For i = 0 to 511 do
begin
Set leader := K[i mod (n+ 2)];
Kex ← eleader,•(Kex);
Kex ← RotateLeft(Kex);

end;
Phase 5. Transformation (Q, ∗)← Isotope(Q, •)
5. (Q, ∗)← (Q, •);
For i = 0 to 511 step 8 do
begin
Set row1 := Kex[i]; Set row2 = Kex[i+ 1];
(Q, ∗)← SwapRows(Q, row1, row2);
Set column1 := Kex[i+ 2]; Set column2 = Kex[i+ 3];
(Q, ∗)← SwapColumns(Q, column1, column2);
Set γ := (Kex[i+ 4], Kex[i+ 6]);
(Q, ∗)← γ(Q, ∗);

end;
Phase 6. Setting the working key K = K0|| · · · ||Km−1 (the last m s-bits words of Kex)
6. Set K = K0||K1|| · · · ||Km−1 := Kex[512−m]|| · · · ||Kex[511]

In the above algorithm Kex means expanded key (it is an auxiliary variable)
and the symbol ||means concatenation of s-bit words. The notationKin[j] (Kex[j],
K[j]) means the j-th s-bit words of the Kin (Kex, K). Thus, K[j] and Kj have
the same meaning. The function RotateLeft(Kex) cyclicly rotates the values of
the Kex such that Kex[i]← Kex[i+ 1], i = 0, 1, 2, . . . , 510 and Kex[511]← Kex[0].
The name of the functions SwapRows and SwapColumns speaks for themselves -
they are functions by which the rows or columns of a quasigroup (i.e., the Latin
square) are swapped.

64 S. Markovski

EdonX
EdonX operates on nibbles, i.e., on 4-bit variables and consequently it uses

quasigroups Q = {0, 1, . . . , 15} of order 16 for doing quasigroup transformations
on the streams of data. The working key K is stored in m > 64 internal variables
Ki, i.e., K = K0K1 . . .Km−1 and Ki ∈ Q.

The secret key Kin = Kin[0]Kin[1] . . .Kin[n−1], Kin[j] ∈ Q of length n, 32 6
n 6 256, and an initial public quasigroup (Q, •) of order 16. The decryption func-
tion of EdonX is the same as the encryption function. The encryption/decryption
function of EdonX uses also two auxiliary 4-bit variables T and X, and one ad-
ditional integer variable Counter. The operation ⊕ is the bitwise XOR operation
on nibbles.

EdonX encryption and decryption function
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. En(De)cryption
1. Counter ← 0; p = bFracm2c;
2. X ← K[Counter mod n];
3. T ← K[Counter + p mod n];
4. For i = 0 to m− 1 do

begin
X ← Ki ∗X;
T ← T •X;
Ki ← X;

end;
Km−1 ← T ;

5. Output: X ⊕ Inputnibble;
6. Counter ← Counter + 1;
7. Go to 2;

It is shown that EdonX is resistant to chosen plaintex/ciphertext attacks. In
order to proof that theorems of this type are proved:

Theorem 7. Any quasigroup (Q, ∗) of order 16, where Q = {0, 1, 2, . . . , 15}, is a
solution of the system of functional equations

x0 = y0 ∗ yi mod m

x1 = y1 ∗ x0
x2 = y2 ∗ x1
· · ·
xm−2 = ym−2 ∗ xm−3
a = ym−1 ∗ xm−2
z = ((. . . (yi+p mod m • x0) • x1) • · · ·) • xm−2) • a

(17)

Design of crypto primitives based on quasigroups 65

with one unknown quasigroup operation ∗ and unknown variables x0, x1, . . . ,
xm−2, y0, y1, . . . , ym−1, z over Q, where • is given quasigroup operation on

Q, a ∈ Q is �xed element, i is a nonnegative integer and p = bm2 c.

EdonX can be used as secure pseudo-random number generator like any syn-
chronous stream cipher. For that aim take the message M = 000 . . . to con-
sist of zeros only and let us analyze the output string C = C0C1C2 Since
Ci = Xi ⊕ 0 = Xi (i = 0, 1, 2, . . .), the output string C in this case consists of the
values of the variable X.

From the encryption/decryption algorithm of EdonX the following system of
iterative functions can be obtained:

Kλ,0 = Kλ−1,0 ∗Kλ−1,i mod m

Kλ,1 = Kλ−1,1 ∗Kλ,0

· · · · · · · · ·
Kλ,m−2 = Kλ−1,m−2 ∗Kλ,m−3
Xλ,m−1 = Kλ−1,m−1 ∗Kλ,m−2
Kλ,m−1 = ((. . . (Kλ−1,i+p mod m •Kλ,0) •Kλ,1) · · · •Kλ,m−2) •Xλ,m−1

(18)

What we are interested for are the values of Xλ,m−1 for λ = 0, 1, . . . , since the
output string C is just the string X0,m−1X1,m−1X2,m−1X3,m−1 "What is the
period and the nature of the string C"? The answer depends on the theory of
discrete chaos systems, that is not developed yet! In several experiments with a
reduced system (18) with initial keys of length 4 and m = 16 is obtained that
either the ergodic part had length greater than 232 or the periodic part had a
period greater than 232 (or both). It is resonable to to conjecture that in the
standard version of EdonX (when m = 64 and the initial keys have length at least
32) either an ergodic part of length 2128 or a period 2128 (or both) will be obtained.

EdonY
The proof that EdonY is self-synchronized is a direct consequence of the

following theorem.

Theorem 8. Let E = el1,∗1 ◦ · · · ◦ eln,∗n and D = dln,\n ◦ · · · ◦ dl1,\1 be trans-

formations obtained with n quasigroup transformations ∗1, . . . , ∗n on Q, leaders
l1, . . . , ln and corresponding parastrophes \1, . . . , \n. Assume that E(b1b2 . . . bk) =
c1c2 . . . ck, k > n, and d 6= ci for some �xed i (bj , cj , d ∈ Q). Then, for some

d1, . . . , dn+1 ∈ Q,

D(c1 . . . ci−1dci+1 . . . ck) =

{
b1 . . . bi−1d1 . . . dn+1bi+n+1 . . . bk, k > i+ n
b1 . . . bi−1d1 . . . dk−i+1, k 6 i+ n

.

In the construction of EdonY we use a public quasigroup (Q, •) of order 32
de�ned on 5-bits letters, Q = {0, 1, 2, . . . , 31} and a secret key Kin stored in n
internal variables Ki ∈ Q, i.e., Kin = K0K1 . . .Kn−1 and n > 32.

66 S. Markovski

The EdonY encryption algorithm and decryption algorithm are precisely
de�ned by the following procedures, where M = M0M1M2M3M4 . . . (C =
C0C1C2C3C4 . . .) is the input plaintext (output ciphertext) string. The variables
X and Y in the decryption algorithm are auxiliary 5-bits variables.

EdonY encryption algorithm
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. Encryption
1. Counter ← 0; p = bFracn2c;
2. K0 ← K0 ∗ (MCounter ∗KCounter+p mod n)
3. For i = 1 to n− 1 do

begin
Ki ← Ki ∗Ki−1;

end;
4. Output: CCounter = Kn−1;
5. Counter ← Counter + 1;
6. Go to 2;

EdonY decryption algorithm
Phase 1. Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain
new working key K of length m and new quasigroup
(Q, ∗)← Isotope(Q, •).

Phase 2. Decryption
1. Counter ← 0; p = bFracn2c;
2. X ← Kn−1
Kn−1 ← CCounter;

3. For i = n− 2 down to 0 do
begin
Y ← Ki

Ki ← X \Ki+1;
X ← Y

end;
4. Output: MCounter = (X \K0)/KCounter+p mod n;
5. Counter ← Counter + 1;
6. Go to 2;

It follows from Theorem 8 that EdonY is self synchronized since one error in
the cipher-text C will propagate n + 1 errors in the recovered plaintext M ′, i.e.,

Design of crypto primitives based on quasigroups 67

Initialization
From the secret initial key Kin of length n
and the initial quasigroup (Q, •) obtain

new working key K of length 64 and new quasigroup
(Q, ∗)← Isotope(Q, •).

Encryption.
Input: Key K of
length n and message M .
Output: Message C.

Decryption.
Input: Key K of
length n and message C.
Output: Message M .

1) X ← InputNibble;
2) T ← 0;
3) For i = 0 to n− 1 do

X ← Ki ∗X];
T ← T ⊕X;
Ki ← X;

4) Kn−1 ← T ;
5) Output X;
6) Go to 1;

1) X,T ← InputNibble;
2) temp← Kn−1;
3) For i = n− 1 downto 0 do

X ← temp \X;
T ← T ⊕X;
temp← Ki−1;
Ki−1 ← X;

4) Kn−1 ← T ;
5) Output X;
6) Go to 1;

Table 7: Totaly Asynchronous Stream Cipher

the original message M and M ′ will di�er in n + 1 consecutive letters. If there
will be a string of errors in C of length r, then the recovered plaintext will have
r + n errors.

There are proofs that EdonY is resistent to dictionary and to chosen plain-
text/ciphertext attacks. Considering only the known ciphertext attacks, the resis-
tance follows from the next theorem.

Theorem 9. Given a ciphertext C, for each quasigroup operation ∗ on Q =
{0, 1, . . . , 31} and each key K = K0K1 . . .Kn−1 there is a plaintext M such that

C is its ciphertext.

EdonZ
EdonZ operates on nibbles, so it uses a quasigroup (Q, •), Q = {0, . . . , 15}, of

order 16. The secret key Kin is stored in n = 64 internal variables Ki, that have
values in the range Q = {0, 1, . . . , 15}.

EdonZ encryption and decryption algorithms use also temporal 4-bit variables
T,X, and temp. EdonZ di�ers from the synchronous EdonX in the way how the
initial value of the variables X and T are set and how the �nal computation of X is
done. However, in decrypting algorithm EdonX does not use the left parastrophe
of the (Q, ∗) since it is binary additive stream cipher, but EdonZ needs (Q, \).

Next we will give an example that will work on the principles of EdonZ, but
for the simplicity of the explanation, quasigroup of order 4 will be used and the

68 S. Markovski

working key will be of length 4. We take that the working key is K = 2 3 2 3, the
message is M = {0, 0, 1, 0, 2, 3, 0, . . . } and the quasigroup and its parastrophe are
the following.

∗ 0 1 2 3
0 3 0 2 1
1 1 2 0 3
2 0 3 1 2
3 2 1 3 0

\ 0 1 2 3
0 1 3 2 0
1 2 0 1 3
2 0 2 3 1
3 3 1 0 2

Several steps of EdonZ encryption are as following.

M0 M1 M2 M3

K X T K X T K X T K X T · · ·
i 0 0 0 0 1 0 0 0 · · ·
0 2 0 0 0 3 3 3 1 1 1 1 1
1 3 2 2 2 2 1 2 3 2 3 1 0
2 2 1 3 1 0 1 0 1 3 1 2 2
3 3 1 2 2 0 1 1 2 1 1 0 2

Output C = X 1 0 2 0

We emphasize that EdonZ is used in the de�nition of the random error-correcting
code RCBQ with cryptograpic properties ([55], [119]).

4.4. Pseudo random number generators

A truly random sequence can be obtained only by theory. Namely, if we take that
a sequence is random only if it passes all of the statistical test for randomness, then
we can never check if a sequence is random until all of the tests, in�nitely many, are
passed. So, sequences that look randomly are used in many applications were ran-
dom sequences are needed. They are produced by some deterministic algorithms
or physical phenomenas and are called Pseudo Random Sequences (PRS). PRS
have to pass all known approved battery o statistical tests for randomness (like
Diehard, NIST, ...) The algorithms for producing PRS are called Pseudo Random
Sequence Generator (PRSG), i.e., PRNG when we have number sequences.

Many PRNG that are used for many purposes are biased, for example the next
produced bit (or symbol) can be predictable with probability greater than 1/2.
Then, the obtained sequence of such a generator should be unbiased. By using
quasigroup transformations several type of PRNG can be designed. In fact, all of
the previous stream ciphers can be used as PRNG, and they are cryptographically
secure, since a key is used. What is a problem with those PRNG is their e�ciency,
since they are designed for other purposes.

Very simple PRNG can be obtained by the following procedure.
QPRNG can produce pseudo random sequences from very biased sequences,

even from periodical sequences as well. We emphasize that in QPRNG the choice
of the quasigroup is very important, it should be shapeless and exponential with

Design of crypto primitives based on quasigroups 69

Quasigroup PRNG (QPRNG)

Phase I. Initialization
1. Choose a positive integer s > 4;
2. Choose a quasigroup (A, ∗) of order s;
3. Set a positive integer k;
4. Set a leader l, a �xed element of A such that l ∗ l 6= l;
Phase II. Transformations of the random

string b0b1b2b3 . . . , bj ∈ A
5. For i = 1 to k do Li ← l;
6. j ← 0;
7. do

b← bj ;
L1 ← L1 ∗ b;
For i = 2 to k do Li ← Li ∗ Li−1;
Output: Lk;
j ← j + 1;

loop;

Table 8: Algorithm for simple QPRNG

as higher period of growth as possible. In fact, for quasigroups of order 4 one
can compute the period of growth of all 576 quasigroups. The Table 9 shows that
suitable quasigroups of order 16 can be �nd enough easily too.

As an example of the capacity of QPRNG we consider the PRNG used in GNU
C v2.03 that do not passed all of the statistical tests in the Diehard Battery v0.2
beta [30], but after using QPRNG on the obtained sequence from GNU with a
quasigroup of order 256 and for k = 1 (only one application of an e-transformation)
all tests of Diehard were passed ([87]).

***** TEST SUMMARY FOR GNU C (v2.03) PRNG *****

All p-values:
0.2929,0.8731,0.9113,0.8755,0.4637,0.5503,0.9435,0.7618,0.9990,0.0106,1.0000,0.0430,
1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,
1.0000,1.0000,1.0000,0.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,1.0000,
.
0.7921,0.4110,0.3050,0.8859,0.4783,0.3283,0.4073,0.2646,0.0929,0.6029,0.4634,0.8462,
0.2385,0.6137,0.1815,0.4001,0.1116,0.2328,0.0544,0.4320,0.0000,0.0000,0.0000,0.0000,
.
0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,
0.0753,0.0010,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0233,0.0585,0.0000,0.0000,
0.0000,0.0000,0.0000,0.2195,0.0321,0.0000,0.0000,0.9948,0.0006,0.0000,0.0000,0.0688,
.
0.2303,0.1190,0.8802,0.0377,0.6887,0.4175,0.0803,0.3687,0.7010,0.7425,0.1003,0.0400,
0.9488,0.3209,0.5965,0.0676,0.0021,0.2337,0.5204,0.5343,0.0630,0.2008,0.6496,0.4157,
0.9746,0.1388,0.4657,0.5793,0.6455,0.8441,0.5248,0.7962,0.8870

Overall p-value after applying KStest on 269 p-values = 0.000000

70 S. Markovski

Number of Number of
Value of c quasigroups with Value of c quasigroups with

period growth 2c k period growth 2c k

0.00 6 c < 0.25 4 2.00 6 c < 2.25 79834
0.25 6 c < 0.50 23 2.25 6 c < 2.50 128836
0.50 6 c < 0.75 194 2.50 6 c < 2.75 174974
0.75 6 c < 1.00 686 2.75 6 c < 3.00 199040
1.00 6 c < 1.25 2517 3.00 6 c < 3.25 175848
1.25 6 c < 1.50 7918 3.25 6 c < 3.50 119279
1.50 6 c < 1.75 18530 3.50 6 c < 3.75 45103
1.75 6 c < 2.00 42687 3.75 6 c 6 4.00 4527

Table 9: Period growth of 106 randomly chosen quasigroups of order 16 after 5
applications of e-transformations (k=5 in QPRNG)

*** TEST SUMMARY FOR GNU C v2.03 + QUASIGROUP PRNG IMPROVER ***

All p-values:

0.5804,0.3010,0.1509,0.5027,0.3103,0.5479,0.3730,0.9342,0.4373,0.5079,0.0089,0.3715

0.0584,0.1884,0.1148,0.0662,0.8664,0.5070,0.7752,0.1939,0.9568,0.4948,0.1114,0.2042,

0.4883,0.4537,0.0281,0.0503,0.0346,0.6085,0.1596,0.1545,0.0855,0.5665,0.0941,0.7693,

.

0.6544,0.9673,0.8787,0.9520,0.8339,0.4397,0.3687,0.0044,0.7146,0.9782,0.7440,0.3042,

0.8465,0.7123,0.8752,0.8775,0.7552,0.5711,0.3768,0.1390,0.9870,0.9444,0.6101,0.1090,

.

0.8538,0.6871,0.8785,0.9159,0.4128,0.4513,0.1512,0.8808,0.7079,0.2278,0.1400,0.6461,

0.3353,0.1064,0.6739,0.2066,0.5119,0.0558,0.5748,0.5064,0.8982,0.6422,0.7512,0.8633,

0.4625,0.0843,0.0903,0.7641,0.6253,0.8523,0.7768,0.8041,0.5360,0.0826,0.0378,0.8710,

.

0.2115,0.8156,0.8468,0.9429,0.8382,0.1463,0.4212,0.6948,0.4816,0.3454,0.2114,0.3493,

0.3448,0.0413,0.2422,0.6363,0.2340,0.8404,0.0065,0.7319,0.8781,0.2751,0.5197,0.4105,

0.0832,0.1503,0.1148,0.3008,0.0121,0.0029,0.4423,0.6239,0.0651,0.3838,0.0165,0.2770,

0.2074,0.0004,0.7962,0.4750,0.4839,0.9152,0.1681,0.0822,0.0518

Overall p-value after applying KStest on 269 p-values = 0.018449

4.5. Hash functions

Hash functions on a set A are mappings h : A+ → An that take a variable-
size input messages and map them into �xed-size output, known as hash result,
message digest, hash-code etc. They are used in checking data integrity, digital
signature schemes, commitment schemes, password based identi�cation systems,
digital timestamping schemes, pseudo-random string generation, key derivation,

Design of crypto primitives based on quasigroups 71

one-time passwords etc.
The �rst attempts for using quasigroup transformations for creating crypto-

graphic hash functions do not have actual implementations ([37], [38], [86], [47]).
In [140] is proposed a hash function as one elementary e-transformation on the
message x1x2 . . . xt:

H(x1x2 . . . xt) = (((a • x1) • x2) · · · • xt = ea,•(x1x2 . . . xt).
The huge working quasigroup (Q, •) is obtained from the modular subtraction

quasigroup (Q, ∗) de�ned by x ∗ y = x+ (r − y) mod r, |Q| = r, and three secret
permutations π,w, ρ as x • y = π−1(w(x) + (r−ρ(y)) mod r). The leader a is used
as initialization vector.

A generic hash function with quasigroup reverse string transformation R has
been described in [54], with �rst implementation named Edon-R(256, 384, 512)
given in [46]. Another interesting application of quasigroups is the quasigroup
folding, a 2 time slower security �x of the MD4 family of hash functions [48],
with shapeless randomly generated quasigroup of order 16. Similar technique has
been used in [49] , where new hash function SHA-1Q2 has been constructed from
SHA-1 by message expansion part with quasigroup folding and has only 8 internal
iterative steps (and it is 3% faster than SHA-1).

Further on we will consider the candidate of NIST SHA-3 competition, Edon-R
and NaSHA, whose designs were based on huge quasigroup transformations.

Edon-R
Edon-R [58] is wide-pipe iterative hash function with standard MD-straiten-

ing. It was the fastest First round candidate of NIST SHA-3 competition.
The chaining valueHi and the message inputMi for the ith round are composed

of two q-bits blocks, q = 256, 512, i.e., Hi = (H1
i , H

2
i) and Mi = (M1

i ,M
2
i), and

the new chaining value Hi+1 is produced as follows
Hi+1 = (H1

i+1, H
2
i+1) = R(H1

i , H
2
i ,M

1
i ,M

2
i),

R is little bit modi�ed reverse string transformation, in a sense that two parts
from the message are taken reversed when are used like a leaders, and the or-
der of leaders is M̄2

i , H
1
i , H

2
i , M̄

1
i . The compression function R uses two huge

quasigroups of order 2256 and 2512. Algorithmic description of the quasigroup of
order 2256 is given in the Table . There Xi, Yi and Zi are 32-bit variables, so
X = (X0, X1, . . . , X7), Y = (Y0, Y1, . . . , Y7) and Z = (Z0, Z1, . . . , Z7) are 256-bits
variables. (Note that the operation is X ∗Y = Z.) Operation �+" denotes addition
modulo 232 , operation ⊕ is the logical operation of bitwise exclusive or and the
operation ROTLr(Xi) is the operation of bit rotation of the 32-bit Xi, to the left
for r positions.

NaSHA
NaSHA [92] is another First round candidate to the NIST SHA-3 competition

based on quasigroups . It is also wide-pipe iterative hash function with standard
MD-straitening. NaSHA-(m, k, r) has three parameters m, k, r, where m denotes
message length, k is the number of elementary quasigroup string transformations

72 S. Markovski

Quasigroup operation of order 2256

Input: X = (X0, X1, . . . , X7) and Y = (Y0, Y1, . . . , Y7),
where Xi and Yi are 32-bit variables.
Output: Z = (Z0, Z1, . . . , Z7) where Zi are 32-bit variables.
Temporary 32-bit variables: T0, . . . , T15.

T0 ← ROTL0(0xAAAAAAAA+X0 +X1 +X2 +X4 +X7);
T1 ← ROTL4(X0 +X1 +X3 +X4 +X7);
T2 ← ROTL8(X0 +X1 +X4 +X6 +X7);

1. T3 ← ROTL13(X2 +X3 +X5 +X6 +X7);
T4 ← ROTL17(X1 +X2 +X3 +X5 +X6);
T5 ← ROTL22(X0 +X2 +X3 +X4 +X5);
T6 ← ROTL24(X0 +X1 +X5 +X6 +X7);
T7 ← ROTL29(X2 +X3 +X4 +X5 +X6);

T8 ← T3 ⊕ T5 ⊕ T6;
T9 ← T2 ⊕ T5 ⊕ T6;
T10 ← T2 ⊕ T3 ⊕ T5;

2. T11 ← T0 ⊕ T1 ⊕ T4;
T12 ← T0 ⊕ T4 ⊕ T7;
T13 ← T1 ⊕ T6 ⊕ T7;
T14 ← T2 ⊕ T3 ⊕ T4;
T15 ← T0 ⊕ T1 ⊕ T7;

T0 ← ROTL0(0x55555555 + Y0 + Y1 + Y2 + Y5 + Y7);
T1 ← ROTL5(Y0 + Y1 + Y3 + Y4 + Y6);
T2 ← ROTL9(Y0 + Y1 + Y2 + Y3 + Y5);

3. T3 ← ROTL11(Y2 + Y3 + Y4 + Y6 + Y7);
T4 ← ROTL15(Y0 + Y1 + Y3 + Y4 + Y5);
T5 ← ROTL20(Y2 + Y4 + Y5 + Y6 + Y7);
T6 ← ROTL25(Y1 + Y2 + Y5 + Y6 + Y7);
T7 ← ROTL27(Y0 + Y3 + Y4 + Y6 + Y7);

Z5 ← T8 + (T3 ⊕ T4 ⊕ T6);
Z6 ← T9 + (T2 ⊕ T5 ⊕ T7);
Z7 ← T10 + (T4 ⊕ T6 ⊕ T7);

4. Z0 ← T11 + (T0 ⊕ T1 ⊕ T5);
Z1 ← T12 + (T2 ⊕ T6 ⊕ T7);
Z2 ← T13 + (T0 ⊕ T1 ⊕ T3);
Z3 ← T14 + (T0 ⊕ T3 ⊕ T4);
Z4 ← T15 + (T1 ⊕ T2 ⊕ T5);

Table 10: An algorithmic description of a quasigroup of order 2256.

Design of crypto primitives based on quasigroups 73

of type A and RA, and r is from the order 22
r

of used quasigroups. To the com-
petition was sent NaSHA-(m, 2, 6), m = 224, 256, 384, 512. Every round consists
of one linear transformation obtained from an LFSR, followed by MT quasigroup
string transformation, that is a composition of k alternate quasigroup string trans-
formations A and RA. NaSHA uses novel design principle: the quasigroups used
in every iteration in compression function are di�erent, and depend on the pro-
cessed message block. Even in one iteration, di�erent quasigroups are used for
two quasigroup transformations. Quasigroups in NaSHA are obtained by using
Extended Feistel Networks as orthomorphisms and complete mappings on the
groups (Z216 ,⊕), (Z232 ,⊕) and (Z264 ,⊕). NaSHA is of order 264 and is produced
from known starting bijection of order 28 by using xoring, addition modulo 264

and table lookups.

The MQQ (Multivarite Quadratic Quasigroups) family of crytptosystems was
�rst de�ned in 2007 [51]. Subsequently, a signature [57], and an improved encryp-
tion variant was proposed [59]. As the name suggests, the cryptosystems from this
family are based on multivariate quadratic quasigroups � MQQs, de�ned over a
�nite �eld. It belongs to the broader family of multivariate public key cryptosys-
tems (MQ) whose security relies on the hardness of solving quadratic polynomial
systems of equations over �nite �elds, known to be NP-hard problem.

A typical (MQ) public key cryptosystem relies on the knowledge of a trapdoor
for a particular system of polynomials over a �nite �eld Fq. The public key of the
cryptosystem is usually given by a multivariate quadratic map P : Fnq → Fmq , i.e.,

P(x1, . . . , xn) =


p1(x1, . . . , xn) =

∑
16i6j6ñ

γ
(1)
ij xixj +

n∑
i=1

β̃
(1)
i xi + α̃(1)

...

pm(x1, . . . , xn) =
∑

16i6j6ñ

γ
(m)
ij xixj +

n∑
i=1

β̃
(m)
i xi + α̃(m)


for some coe�cients γ̃

(s)
ij , β̃

(s)
i , α̃(s) ∈ Fq. It is obtained by obfuscating a structured

central map

F : (x1, . . . , xn) ∈ Fnq →
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
∈ Fmq ,

using two bijective a�ne mappings S, T over Fnq that serve as a sort of mask to
hide the structure of F . The public key is de�ned as

P = T ◦ F ◦ S.

The mappings S and T are part of the private key s. Besides them, the private
key may also contain other secret parameters that allow creation, but also easy
inversion of the transformation F . Without loss of generality, we can assume that
the private key is s = (F ,S, T).

74 S. Markovski

input x

x = (x1, . . . , xn)

x′

y′

output y

private: S

private: F

private: T

public:
P = (p1, . . . , pn)

Figure 8: A generalMQ trapdoor

Graphically, the trapdoor of anMQ scheme can be depicted as in Figure 8.

MQQ-SIG is a signature scheme that has excellent performance in signing.
In particular, it is the fastest signature scheme in the ECRYPT benchmarking
of cryptographic systems (eBACS) [13]. It is de�ned over F2 and has the minus
modi�er applied because of the possibility for direct algebraic attack and MinRank
attack otherwise.

The length of the messages that can be signed is n/2, and the signing process
is performed by prepending a random string of length n/2.

A high-level schematic presentation of the signing and veri�cation process is
given in Figure 9 and the corresponding algorithmic description in Algorithm 1.

The central mapping F of MQQ-SIG is a quasigroup string transformation
using one quasigroup q. Both F and the inverse F−1 are depicted in Figure 10
and Figure 11. Algorithm 2 gives a detailed description of the construction of the
central map F .

The MQQs used are of relatively small order 28 that allows storing them in a
lookup table, used for the signing process.

The algorithm used for construction of the MQQ is presented in Algorithm 3.

Design of crypto primitives based on quasigroups 75

m
———
———
———
———

h = h0||h1

y0 = r0||h1 y1 = r1||h1

x0 = D(y0) x1 = D(y1)

Signature = (x0, x1)

H(m)

h = h0||h1

H(m)

E(x0) || E(x1)

h0 h1||

Signature

Compare

m
———
———
———
———

Figure 9: The signing and veri�cation process of MQQ-SIG

X1 X2 X3 · · · Xn
8−1 Xn

8

Y1 Y2 Y3 · · · Yn
8−1 Yn

8

∗ ∗ ∗ ∗ ∗

Figure 10: Graphical representation of the central map F in MQQ-SIG.

Y1 Y2 Y3
. . . Yn/8−1 Yn/8

X1 X2 X3
. . . Xn/8−1 Xn/8

q\ q/ q\ q/ q\

Figure 11: Graphical representation of the inverse map F−1 in MQQ-SIG, using the
right and left parastrophes.

76 S. Markovski

Algorithm 1 MQQ-SIG

Key Generation

1. Use Algorithm 2 to construct the central map F .
2. Construct the a�ne mappings S and S ′ as de�ned in [57].

3. Pick a hash function H : {0, 1}∗ → {0, 1}n.
4. Construct the mapping P ′ = S ◦ F ◦ S ′ and de�ne the public key P as the

last n
2 coordinates of P ′. Denote by P ′−1 the inverse of P ′. Algorithm 4 is

used to compute P ′−1.
Output: The public key P and the private key (F ,S,S ′).
Signature Generation
Input: A message m ∈ {0, 1}∗ to be signed.

1. Compute h = h0||h1 ← H(m), where h0 and h1 are both n
2 bits long.

2. Generate two random n
2 -bit values, r0 and r1, and set y0 = r0||h0 and

y1 = r1||h1.

3. Compute x0 = P ′−1(y0) and x1 = P ′−1(y1).

Output: The digital signature (x0,x1).

Signature Veri�cation
Input: A message-signature pair (m, (x0,x1)).

1. Compute h = h0||h1 ← H(m).

2. Compute z0 ← P(x0) and z1 ← P(x1).

Accept the signature if z0 = h0 and z1 = h1, otherwise reject.

Design of crypto primitives based on quasigroups 77

Algorithm 2 ConstructF

Input: A vector x = (x1, . . . , xn) , where n is a multiple of 8.

1. Represent the vector x as a string X = X1X2 . . . Xk, where k = n
8 , and

Xi = (x8(i−1)+1, . . . , x8i) for every i ∈ {1, . . . , k}.

2. Use Algorithm 3 to construct an MQQ (F8
2, q).

3. Compute the string Y = Y1Y2 . . . Yk, where

Yi =


X1 if i = 1,

q(Xi−1, Xi) if i = 2, 4, . . . , k,

q(Xi, Xi−1) if i = 3, 5, . . . , k − 1.

(19)

4. Represent Y as a vector y = (y1, . . . , yn).

Output: The vector y.

Algorithm 3 ConstructMQQ

Repeat

1. Construct d × d upper triangular Boolean matrices Ui, i ∈ {1, . . . d − 1}
that have all elements 0 except the elements in the rows from {1, . . . , i} that
are strictly above the main diagonal. Choose these elements uniformly at
random from F2.

2. Choose randomly three nonsingular d × d matrices A1, A2 and B over F2

and a vector c ∈ Fd2.

3. Form the d× d block matrix

U(x) = Id+

 0 U1 ·A1 · x U2 ·A1 · x . . . Ud−1 ·A1 · x

 .
4. Construct the mapping q(x,y) = B ·U(x) ·A2 ·y+B ·A1 ·x+c, that de�nes

an MQQ of order 2d.

Until the following conditions about the matrices Q(i) of the coordinates qi are
satis�ed:

∀i ∈ {1, . . . , d} , Rank(Q(i)) > 2d− 4, (20a)

∃j ∈ {1, . . . , d} , Rank(Q(j)) = 2d− 2, (20b)

Output: The MQQ q(x,y).

78 S. Markovski

An important feature of the MQQs used, as it can be seen from Algorithm 3, is
their bilinear nature, i.e., the variables from the two operands are only mixed with
each other quadratically, and there is no quadratic mixing of variables from one
operand. This property makes the private key smaller, in particular, the bilinear
MQQs only require 81 bytes of memory. Further, it also enables fast signing even
in constrained environments by solving systems of linear equations.

The Algorithm used for computing the inverse of F is given in Algorithm 4.

Algorithm 4 ComputeInverseF
Input: A vector y = (y1, . . . , yn) ∈ Fn2 , where n is a multiple of 8.

1. Represent the vector y as a string Y = Y1Y2 . . . Yk, where k = n
8 , and Yi ∈ F8

2

for every i ∈ {1, . . . , k}.

2. Compute the string X = X1X2 . . . Xk, where

Xi =


Y1, if i = 1

the solution of Yi = q(Xi−1, Xi), if i = 2, 4, . . . , k

the solution of Yi = q(Xi, Xi−1), if i = 3, 5, . . . , k − 1

3. Represent X as a vector x ∈ Fn2 .

Output: The vector x.

In [125], the authors propose a natural interpretation of the private key, in
particular the secret quasigroup q. Instead of storing q, the holder of the private
key can store the isotopic q0(x,y) = U(A−11 · x) · y + x + c0, and the invertible
A1,A2,B. In this case, the bilinear quasigroup can be stored in 50.5 bytes, rather
than 81 bytes using the naive approach from the original paper.

In MQQ-SIG, as much as half of the public polynomials are removed in order
to defend from Gröbner bases attacks. While this is not a problem for a signature
scheme, an encryption scheme can not be build with such a heavy use of the minus
modi�er. Therefore, in the subsequent proposal MQQ-ENC for an encryption
scheme [59], the authors propose to use left quasigroups instead.

Let (Q, q) be a left quasigroup of order pkd. We say that (Q, q) is a Left
Multivariate Quadratic Quasigroup (LMQQ) if q can be represented as a func-
tion q = (q(1), q(2), . . . , q(d)) : F2d

pk → Fdpk , where for every s = 1, . . . , d, q(s) is a

quadratic polynomial over Fpk . For simplicity, we take that Q = Fdpk .

The following theorem provides su�cient conditions for a multivariate mapping
to de�ne a quasigroup.

Design of crypto primitives based on quasigroups 79

Theorem 10. The function q0 = (q(1), q(2), . . . , q(d)) : F2d
pk → Fdpk such that for

every s = 1, . . . , d, the component q
(s)
0 is of the form

q
(s)
0 (x1, . . . , xd, y1, . . . , yd) = p(s)(ys) +

∑
16i,j6d

α
(s)
i,j xixj +

∑
s<i,j6d

β
(s)
i,j yiyj +

+
∑

16i6d,s<j6d

γ
(s)
i,j xiyj +

∑
16i6d

δ
(s)
i xi +

∑
s<i6d

ε
(s)
i yi + η(s), (21)

where p(s)(x) = ax, a 6= 0, or p(s)(x) = ax2, a 6= 0, p = 2, de�nes an LMQQ

(Fdpk , q0) of order pkd.

For the purpose of MQQ-ENC, and using the form from Theorem 10 the
LMQQs can be constructed using Algorithm 5.

Algorithm 5 CreateLMQQ(d, p, k)

Input d, p, k ∈ N, where p is prime.

1. For all s ∈ {1, . . . , d} generate at random from Fpk the coe�cients:

• α(s)
i,j , δ

(s)
i , for all i, j, 1 6 i, j 6 d, and β

(s)
i,j , ε

(s)
i , for all i, j, s < i, j 6 d,

• γ(s)i,j , for all i, j, 1 6 i 6 d, s < j 6 d, and the constant term η(s).

2. For all s ∈ {1, . . . , d}

• If p = 2 generate at random a bit r ∈ F2, otherwise set r = 0.

• Choose at random a(s) ∈ Fpk \ {0}. If r = 0 set p(s) = a(s)xs, otherwise

set p(s) = a(s)x2s.

3. For all s ∈ {1, . . . , d} construct q
(s)
0 (x,y) given by (21), and the LMQQ

q0 = (q
(1)
0 , q

(2)
0 , . . . , q

(d)
0).

4. Generate at random over Fpk , d×d nonsingular matrices D,Dy, and vectors
c, cy of dimension d.

Output the quintet (q0,D
−1,D−1y , c, cy) and the LMQQ of order pkd:

q(x,y) = D · q0(x,Dy · y + cy) + c.

As in MQQ-SIG, an e�cient algorithm for inverting the central mapping is
based on e�ciently computing the parastrophe q\ of q at a given point. In other

80 S. Markovski

words, the problem is reduced to to solving the system of d quadratic equations
in d variables y1, y2, . . . , yd over Fpk

q(u,y) = v (22)

Even though this is a non trivial problem in general, the speci�c structure of the
LMQQs in use, allows this system to be solved in polynomial time, very e�ciently
and fast.

The MQQ-ENC cryptosystem is de�ned as a triplet of probabilistic algorithms
MQQ-ENC= (GMQQ, EMQQ,DMQQ), associated to a message spaceMspace(nk) =
{0, 1}nk/2, and random coins Coins(nk) = {0, 1}nk/4, given by Algorithms 6, 7
and 8 as follows.

Algorithm 6 Key-Generation algorithm GMQQ

Input: 1nk,

1. Run CreateST(n, 2, k, r1, r2, rem) to obtain

(σ1, σ2,M0, (a
(1)
i)r1+1, (a

(2)
i)r2+1) and the a�ne mappings S and T .

2. Run CreateLMQQ(8, 2, k) to obtain (q0,D,Dy, c, cy) and q.

3. Represent the vector (x1, x2, . . . , xn) of variables over F2k as a vector
(x1,x2, . . . ,xn/8) of variables over F8

2k , where xi = (x8i−7, x8i−6, . . . , x8i).

4. De�ne a mapping F : Fn2k → Fn2k (a quasigroup string transformation) by:

(y1, . . . , yn) = F(x1, . . . , xn)⇔
(y1,y2, . . . ,yn/8) = (q(11 . . . 1,x1), q(x1,x2), . . . , q(xn/8−1,xn/8)) (23)

5. Construct the mapping Pfull : Fn2k → Fn2k as Pfull = T ◦ F ◦ S. We use the
notation Pfull = (p1, p2, . . . , pn), where pi(x1, . . . , xn), 1 6 i 6 n.

6. The vector of polynomials P : Fn2k → Fn−rem
2k

is obtained by removing the
last rem coordinates from Pfull, i.e., P = (p1, p2, . . . , pn−rem).

7. Choose a universal hash function H : {0, 1}3nk/4 → {0, 1}nk/4.

8. Set pk = (P, H),

and sk = (σ1, σ2,M0, (a
(1)
i)r1+1, (a

(2)
i)r2+1, q0,D

−1,D−1y , c, cy).

Output: Public private key pair (pk, sk).

Design of crypto primitives based on quasigroups 81

Algorithm 7 Encryption algorithm EMQQ

Input: Public key pk = (P, H) and plaintext message m = {m1,m2, . . . ,mn/2} ∈
Mspace(nk),

1. Generate a random string r = {r1, r2, . . . , rn/4} ∈ Coins(nk).

2. Evaluate (h1, . . . , hn/4) = H(m, r) = H(m1, . . . ,mn/2, r1, . . . , rn/4).

3. Evaluate P(m, r,H(m, r)) = P(m1, . . . ,mn/2, r1, . . . , rn/4, h1, . . . , hn/4).

Output: Ciphertext c = P(m, r,H(m, r)).

Algorithm 8 Decryption algorithm DMQQ

Input: Private key sk=(σ1, σ2,M0, (a
(1)
i)r1+1, (a

(2)
i)r2+1, q0,D

−1,D−1y , c, cy)

and cipher c=(c1, . . . , cn−rem) ∈ Fn−rem
2k

,
For all (cn−rem+1, cn−rem+2, . . . , cn) ∈ Frem2k do

1. Evaluate (m′1,m
′
2, . . . ,m

′
n) = S−1 ◦ F−1 ◦ T −1(c1, c2, . . . , cn), where F−1 is

evaluated by:
(u1, u2, . . . , un) = F−1(v1, v2, . . . , vn)⇔

(u1,u2, . . . ,un/8) =(q\(u0,v1),q\(u1,v2), q\(u2,v3), . . . , q\(un/8−1,vn/8)).(24)

Here, u0 = (11 . . . 1), and for every i ∈ {0, . . . , n/8− 1}, ui+1 = q\(ui,vi+1)
is evaluated by running Algorithm Q\(ui,vi+1, 8, 2, k, q0,D

−1,D−1y , c, cy).

The vector (u1, . . . , un) over F2k is represented as a vector (u1, . . . ,un/8)
over F8

2k , where ui = (u8i−7, u8i−6, . . . , u8i). Analogously, the same is done
for the vector (v1, v2, . . . , vn).

2. If H(m′1,m
′
2, . . . ,m

′
3n/4) = (m′3n/4+1,m

′
3n/4+2, . . . ,m

′
n) then break;

End for;
Output: Plaintext m′ or ⊥ if the above test failed for all (cn−rem+1, . . . , cn) ∈
Frem2k .

5. Conclusion

The aim of this article was to present how quasigroups can be exploit for build-
ing suitable cryptographic primitives. There were presented constructions of sev-
eral types of quasigroups and several types of quasigroups string transformations.
Designs with these types of quasigroups and transformations were illustrated in
constructions of S-boxes, block cipher, stream ciphers, pseudo random number
generators, hash functions and public key security and signatures. There are

82 S. Markovski

also other applications of quasigroups in cryptography (MAC, Identity encryption
schemes, Authenticated encryption, ...) but we found that what we had presented
is quite enough to conclude that, slowly but surely, quasigroups are taking there
role in cryptography. We emphasize that there are several other survey papers
where di�erent applications of quasigroups in cryptography are discussed as well:
[132], [60], [133], [134], [135], [108], etc.

We have to notice that cryptographic properties are not discussed in this pa-
per. The e�ciency and security of the crypto products based on quasigroup is
an open research problem for cryptographers and cryptanalysts. There are many
broken designs based on quasigroups, but also there are some with perfect crypto
properties.

At the end, one can notice that the presented results were mostly from Mace-
donian quasigroupists and cryptographers; that was done intentionally.

Acknowledgment. The author is grateful to Aleksandra Mileva, Vesna Dim-
itrova, Simona Samardjiska, Aleksandra Popovska-Mitrovikj and Hristina Miha-
jloska for their support and help in writing of this article.

References

[1] R. Ahlavat, K. Gupta and S.K. Pal, Fast generation of multivariate quadratic
quasigroups for cryptographic applications, IMA Conference on Mathematics in
Defence, Farnborough, UK, 2009,
http://www.ima.org.uk/_db_documents/defence09_ahlawat_v2.pdf.

[2] V. Bakeva and V. Dimitrova, Some probabilistic properties of quasigroup pro-
cessed strings useful for cryptanalysis, Proc. of ICT Innovation 2010, Springer
Berlin Heidelberg, 2010, pp. 61�70.

[3] V. Bakeva, V. Dimitrova and A. Popovska-Mitrovikj, Parastrophic quasi-
grouop string processing, Proc. of the 8th Conf. Informatics and Information Tech-
nology, Bitola, Macedonia, 2011, 19�21.

[4] V. Bakeva and N. Ilievska, A probabilistic model of error-detecting codes based
on quasigroups, Quasigroups and Related Systems 17 (2009), 151�164.

[5] V. Bakeva, A. Popovska-Mitrovikj and V. Dimitrova, Resistance of statis-
tical attacks of parastrophic quasigroup transformation, arXiv: 1404.0781v1.

[6] S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk, A message authentication
code based on Latin square, Proc. of ACISP 97, LNCS 1270 (1997), 194�203.

[7] M. Battey and A. Parakh, A quasigroup based random number generator for
resource constrained environments, IACR Cryptology ePrint Archive, Report 2012:
471.

[8] V.D. Belousov, Foundations of the theory of quasigroups and loops, (Russian),
Nauka, Moscow, 1967.

[9] V.D. Belousov, n-ary quasigroups, (Russian), �tiinµa, Kishinev, 1972.

[10] G.B. Belyavskaya, Recursively r-di�erentiable quasigroups within S-systems and
MDS-codes, Quasigroups and Related Systems 20 (2012), 157�168.

Design of crypto primitives based on quasigroups 83

[11] G.B. Belyavskaya, V.I. Izbash and G.L. Mullen, Check character systems
using quasigroups: II, Designs, Codes and Cryptography 37 (2005), 405�419.

[12] G.B. Belyavskaya, V.I. Izbash and V.A. Shcherbacov, Check character sys-
tems over quasigroups and loops, Quasigroups and Related Systems 10 (2003),
1�28.

[13] D.J. Bernstein and T. Lange (eds.), eBACS: ECRYPT Benchmarking of Cryp-
tographic Systems, 2014.

[14] A. Bogdanov, L.R. Knudsen, G. Le, C. Paar, A. Poschmann, M.J.B.
Robshaw, Y. Seurin and C. Vikkelsoe, PRESENT: An ultra-lightweight block
cipher, Proc. of CHES 2007, Springer-Verlag, pp. 450�466.

[15] G. Carter, E. Dawson and L. Nielsen, DESV: A Latin square variation of
DES, Proc. of the Workshop on Selected Areas in Cryptography, Ottawa, Canada,
1995, pp. 144�158.

[16] S. Chakrabarti, S.K. Pall and G. Gangopadhyay, An improved
3-quasigroup based encrytion scheme, Proc. of ICT Innovations 2012,
http://ictinnovations.org/2012/htmls/papers/WebProceedings2012.pdf, 2012, pp.
173�184.

[17] Y. Chen, S.J. Knapskog and D. Gligoroski, Multivariate quadratic quasi-
groups (MQQs): Construction, bounds and complexity, Inscrypt, 6th International
Conference on Information Security and Cryptology. Science Press of China, 2010.

[18] N. Courtois, A. Klimov, J. Patarin and A. Shamir, E�cient algorithms
for solving overde�ned systems of multivariate polynomial equations, LNCS 1807
(2000), 392�407.

[19] P. Cs®rg® and V. Shcherbacov, On some quasigroup cryptographical primitives,
arXiv: 1110.6591v1.

[20] J. Daemen, Cipher and hash function design. Strategies based on linear and di�er-
ential cryptanalysis, Doctoral dissertation. Katholieke Universiteit Leuven, 1995.

[21] H.M. Damm, Totally anti-symmetric quasigroups for all orders n 6= 2, 6, Discrete
Math. 307 (2007), 715�729.

[22] H.M. Damm, Half quasigroups and generalized quasigroup orthogonality, Discrete
Math. 311 (2011), 145�153.

[23] F. Dawson, D. Donowan and A. O�er, Quasigroups, isotopisms and authen-
tication schemes, Australasian J. Combin. 13 (1996), 75�88.

[24] J. Dénes and A.D. Keedwell, Latin squares and their applications, Akadémiai
Kiado, Budapest, 1974.

[25] J. Dénes and A.D. Keedwell (Eds.), Latin squares: New developments in the
theory and applications, Annals Discr. Math. 46, Elsevier, 1991.

[26] J. Dénes and A.D. Keedwell, A new authentication scheme based on Latin
squares, Discrete Math. 106/107 (1992), 157�161.

[27] J. Dénes and A.D. Keedwell, Some applications of non-associative algebraic
systems in cryptology, Pure Math. Appl. 12 (2001), 147�195.

[28] M. Dichtl, Bad and good ways of post-processing biased physical random numbers,
LNCS 4593 (2007), 137�152.

84 S. Markovski

[29] M. Dichtl and P. B®�gen, Breaking another quasigroup-based cryptographic
scheme, Cryptology ePrint Archive, Report 2012: 661.

[30] http://stat.fsu.edu/pub/diehard/, http://en.wikipedia.org/wiki/Diehard_tests

[31] V. Dimitrova, Quasigroup processed strings, their Boolean presentation and ap-
plication in cryptography and coding theory, Doctoral dissertation. University Sts.
Cyril and Methodius, Skopje, 2010.

[32] V. Dimitrova, V. Bakeva, A. Popovska-Mitrovikj and A. Krapeº, Cryp-
tographic properties of parastrophic quasigroup transformation, Advances in Intelli-
gent Systems and Computing - ICT Innovations 2012, Springer, 2013, pp. 235�243.

[33] V. Dimitrova and S. Markovski, On Quasigroup pseudo random sequence gen-
erators, Proc. of the 1st Balkan Confer. in Informatics, Thessaloniki, Greece, 2004,
pp. 235�243.

[34] V. Dimitrova and S. Markovski, Classi�cation of quasigroups by image pat-
terns, Proc. of the Fifth International Confer. for Informatics and Information
Technology, Bitola, Macedonia, 2007, pp. 152�160.

[35] H. Dobbertin, One-to-one highly nonlinear power functions on GF (2n), Appli-
cable Algebra in Engineering, Communication and Computing 9 (1998), 139�152.

[36] A. Drapal, Hamming distances of groups and quasigroups, Discrete Math. 235
(2001), 189�197.

[37] J. Dvorsky, E. Ochodkova and V. Sna²el, Hash function based on quasigroups,
(Czech), Proc. of Mikulá²ska kryptobesídká, Praha, 2001, pp. 27�36.

[38] J. Dvorsky, E. Ochodkova and V. Sna²el, Hash function based on large quasi-
groups, (Czech), Proc. of Velikonocní i kryptologie, Brno, 2002, pp. 1�8.

[39] J. Dvorsky, E. Ochodkova and V. Sna²el, Generation of large quasigroups:
an application in cryptography, Proc. of AAA (Arbeitstagung Allgemeine), 2002.

[40] J.C. Faugère, R.S. Ødegård, L. Perret and D. Gligoroski, Analysis of the
MQQ Public Key Cryptosystem, LNCS 6467, 169�183.

[41] D. Gligoroski, Stream cipher based on quasigroup string transformations in Z∗
p ,

Contributions, Sec. Math. Tech. Sci., MANU, 2004.

[42] D. Gligoroski, Candidate one-way functions and one-way permutations based on
quasigroup string transformations, IACR Cryptology ePrint Archive, Report 2005:
352.

[43] D. Gligoroski, S. Andova and S.J. Knapskog, On the importance of the key
separation principle for di�erent modes of operation, LNCS 4991 (2008), 404�418.

[44] D. Gligoroski, V. Dimitrova and S. Markovski, Quasigroups as Boolean
functions, their equation systems and Groebner bases, In M. Sala, T. Mora, L.
Perret, S. Sakata, C. Traverso (Eds.) Groebner Bases, Coding, and Cryptography,
Springer Berlin, 2009.

[45] D. Gligoroski, S.J. Knapskog, Adding MAC functionality to Edon80, Interna-
tional J. Computer Science and Network Security 7 (2007), 194�204.

[46] D. Gligoroski, S.J. Knapskog, Edon-R(256, 384, 512)-an e�cient implemen-
tation of Edon-R family of cryptographic hash functions, Comment. Math. Univ.
Carolin. 49 (2008), 219�239.

Design of crypto primitives based on quasigroups 85

[47] D. Gligoroski, S. Markovski and V. Bakeva, On in�nite class of strongly col-
lision resistant hash functions "Edon-F" with variable length of output, Proc. of 1st
International Confer. on Mathematics and Informatics for Industry, Thessaloniki,
2003, pp. 302�308.

[48] D. Gligoroski, S. Markovski and S.J. Knapskog, A �x of the MD4 family of
hash functions � quasigroup fold, NIST Cryptographic Hash Workshop, Gaithers-
burg, Maryland, USA,
http://csrc.nist.gov/groups/ST/hash/documents/Gligoroski_MD4Fix.pdf, 2005.

[49] D. Gligoroski, S. Markovski and S.J. Knapskog, A secure hash algorithm
with only 8 folded SHA− 1 steps, Intern. J. Computer Science and Network 6(10)
(2006), 194�205.

[50] D. Gligoroski, S. Markovski and S.J. Knapskog, On periods of Edon-(2m, 2k)
family of stream ciphers, SASC 2006 Conference.

[51] D. Gligoroski, S. Markovski and S.J. Knapskog, Multivariate quadratic trap-
door functions based on multivariate quadratic quasigroups, Proc. Amer. Confer.
Appl. Math., Harvard, USA, 2008, pp. 44�49.

[52] D. Gligoroski, S. Markovski and S.J. Knapskog, A pblic key block cipher
based on multivariate quadratic quasigrops, IACR Cryptology ePrint Archive, Re-
port 2008: 320.

[53] D. Gligoroski, S. Markovski and S.J. Knapskog, The stream cipher Edon80,
LNCS 4986 (2008), 152�169.

[54] D. Gligoroski, S. Markovski and Lj. Kocarev, Edon-R, an in�nite family of
cryptographic hash functions, International J. Network Security 8 (2006), 293�300.

[55] D. Gligoroski, S. Markovski and Lj. Kocarev, Error-correcting codes based
on quasigroups, Proc. of 16th International Confer. on Computer Communications
and Networks - ICCCN 2007, Honolulu, 2007, pp. 165�172.

[56] D. Gligorovski and R.S. Ødegård, On the complexity of Khovratovich et. al.
preimage attack on EDON-R, IACR Cryptology ePrint Archive, Report 2009: 120.

[57] D. Gligorovski, R.S. Ødegård, R.E. Jensen, L. Perret, J.C. Faugère,
S.J. Knapskog and S. Markovski, MQQ-SIG: An ultra-fast and provably CMA
resistant digital signature scheme, LNCS 7222 (2011), 184�203.

[58] D. Gligorovski, R.S. Ødegård, M. Mihova, S.J. Knapskog, Lj. Ko-
carev, A. Drapal and V. Klima, Cryptographic hash function EDON-
R, from http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Edon-
RUpdate.zip, 2008.

[59] D. Gligoroski and S. Samardjiska, The multivariate probabilistic encryption
scheme MQQ-ENC. IACR Cryptology ePrint Archive, Report 2012: 328.

[60] M.M. Glukhov, On application of quasigroups in cryptology, (Russian). Appl.
Disc. Math. 2 (2008), 28�32.

[61] S. Golomb, L. Welch and J. Dénes, Encryption system based on crossed inverse
quasigroups, US patent, WO0191368, 2001.

[62] M. Hell and T. Johansson, A key recovery attack on Edon80, LNCS 4833
(2007), 568�581.

86 S. Markovski

[63] Y. Hu, Security analysis of cryptosystem based on quasigroups, Proc. of IEEE
Intern. Conf. on Progress in Informatics and Computing, 2010, pp. 431�435.

[64] L. Ji, X. Liangyu and G. Xu, Collision attack on NaSHA-512, IACR Cryptology
ePrint Archive, Report 2008: 519, 2008.

[65] D.M. Johnson, A.L. Dulmage and N.S. Mendelsohn, Orthomorphisms of
groups and orthogonal latin squares I, Canadian J. Math. 13 (1961), 356�372.

[66] A.D. Keedwell, Crossed inverse quasigroups with long inverse cycles and appli-
cations to cryptography, Australasian J. Combin. 20 (1999), 241�250.

[67] A.D. Keedwell and V.A. Shcherbacov, Construction and properties of (r, s, t)-
inverse quasigroups. I, Discrete Math. 266 (2003), 275�291.

[68] D. Khovratovich, I. Nikolic and R.P. Weinmann, Cryptanalysis of Edon-R,
http://ehash.iaik.tugraz.at/uploads/7/74/Edon.pdf, 2008.

[69] V. Klima, Multicollisions of EDON-R hash function and other observations,
http://cryptography.hyperlink.cz/BMW/EDONR_analysis_vk.pdf, 2008.

[70] C. Ko±cielny, A method of constructing quasigroup-based stream-ciphers, Appl.
Math. Computer Sci. 6 (1996), 109�121.

[71] C. Ko±cielny, Generating quasigroups for cryptographic applications, Intern. J.
Appl. Math. Computer Sci. 12 (2002), 559�569.

[72] C. Ko±cielny and G.L. Mullen, A quasigroup-based public-key cryptosystem,
Intern. J. Appl. Math. Computer Sci. 9 (1999), 955�963.

[73] A. Krapeº, An application of quasigroup in cryptology, Math. Macedonica 8
(2010), 47�52.

[74] A. Krapeº, Cryptographically suitable quasigroups via functional equations, Ad-
vances in Intelligent Systems and Computing - ICT Innovations 2012, Springer
Berlin Heidelberg, 2013, pp. 265�273.

[75] C.F. Laywine, and G.L. Mullen, Discrete mathematics using Latin squares,
New York: John Wiley Sons, Inc., 1998.

[76] G. Leander and V. Poschmann, On the classi�cation of 4 bit S-boxes, LNCS
4547 (2007), 159�176.

[77] G. Leurent, Key recovery attack against secret-pre�x Edon-R, IACR Cryptology
ePrint Archive, Report 2009: 135.

[78] Z. Li and D. Li, Collision attack on NaSHA-384/512, IACR Cryptology ePrint
Archive, Report 2009: 026.

[79] R.J.M. Maia, P.S.L. M. Barreto and B.T. de Oliveira, Implementation of
multivariate quadratic quasigroup for Wireless Sensor Network, LNCS 6480 (2010),
64�78.

[80] S. Markovski, Quasigroup string processing and applications in cryptography,
Proc. 1-st Inter. Conf. Mathematics and Informatics for industry MII 2003, 14-
16 April, Thessaloniki, 2003, pp. 278�290.

[81] S. Markovski and V. Bakeva, Quasigroup string processing: Part 4, Contribu-
tions, Sec. math. Tech.Sci., MANU, 22 (2001).

Design of crypto primitives based on quasigroups 87

[82] S. Markovski, V. Dimitrova and S. Samardziska, Identities sieves for quasi-
groups, Quasigroups and Related Systems 18 (2010), 149�164.

[83] S. Markovski, V. Dimitrova, Z. Trajcheska, M. Petkovska, M. Kostadi-
noski and D. Buhov, Block cipher de�ned by matrix presentation of quasigroups,
Proc. of the 11th Confer. on Informatics and Information Technology, CIIT 2014,
Bitola (to appear).

[84] S. Markovski, D. Gligoroski and S. Andova, Using quasigroups for one-one
secure encoding, Proc. of VIII Conf. Logic and Computer Science LIRA97, Novi
Sad, Serbia, 1997, pp. 157�162.

[85] S. Markovski, D. Gligoroski and V. Bakeva, Quasigroup string processing -
Part 1, Contributions, Sec. Math. Tech. Sci., MANU 20 (1999), 13�28.

[86] S. Markovski, D. Gligoroski and V. Bakeva, Quasigroup and hash functions,
Proc. of the 6th ICDMA, Bansko, 2001, pp. 43�50.

[87] S. Markovski, D. Gligoroski and Lj. Kocarev, Unbiased random sequences
from quasigroup string transformations, LNCS 3557 (2005), 163�180.

[88] S. Markovski, D. Gligoroski and B. Stoj£evska, Secure two-way on-line com-
munication by using quasigroup enciphering with almost public key, Novi Sad J.
Math. 30(2) (2000), 43�49.

[89] S. Markovski and V. Kusakatov, Quasigroup string processing - Part 2, Con-
tributions, Sec. Math. Tech. Sci., MANU 21 (2000), 15�32.

[90] S. Markovski and V. Kusakatov, Quasigroup string processing - Part 3, Con-
tributions, Sec. Math. Tech. Sci., MANU 23-24 (2002-2003), 7�27.

[91] S. Markovski and A. Mileva, Generating huge quasigroups from small non-
linear bijections via extended Feistel function, Quasigroups and Related Systems
17 (2009), 91�106.

[92] S. Markovski and A. Mileva, NaSHA, Submission to NIST, First Round SHA-
3 Candidate, http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/
NaSHAUpdate.zip, 2008.

[93] S. Markovski, A. Mileva, V. Dimitrova and D. Gligoroski, On a conditional
collision attack on NaSHA-512, IACR Cryptology ePrint Archive, Report 2009:
034.

[94] S. Markovski, S. Samardziska, D. Gligoroski and S.J. Knapskog, Multi-
variate Trapdoor functions based on multivariate left quasigroups and left polyno-
mial quasigroups, Proc. of the Second Intern. Confer. on Symbolic Computation
and Cryptography, Royal Holloway, University of London, Egham, UK, 2010, pp.
237�251.

[95] S. Markovski, Z. �uni¢ and D. Gligoroski, Polynomial functions on the units
of Z2n , Quasigroups and Related System 18 (2010), 11�34.

[96] S.I. Marnas, L. Angelis and G.L. Bleris, All-Or-Nothing Transform using
quasigroups, Proc. 1st Balkan Conference in Informatics, Thessaloniki, 2004, pp.
183�191.

[97] M. Matsumoto, M. Saito, T. Nishimura and M. Hagita, A fast stream
cipher with huge state space and quasigroup �lter for software, LNCS 4876 (2007),
246�263.

88 S. Markovski

[98] M. Matsumoto, M. Saito, T. Nishimura and M. Hagita, CryptMT3 stream
cipher, LNCS 4986 (2007), 7�19.

[99] T. Matsumoto and H. Imai, Public quadratic polynomial-tuples for e�cient
signature-veri�cation and message-encryption, LNCS 330 (1988), 419�453.

[100] B.D. McKay, A. Meynert and W. Myrvold, Small Latin squares, quasigroups
and loops, J. Combinatorial Designs 15 (2007), 98�119.

[101] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press, 2001.

[102] K.A. Meyer, A new message authentication code based on the non-associativity
of quasigroups, Doctoral dissertation, Iowa State University, 2006.

[103] H. Mihajloska and D. Gligoroski, Construction of optimal 4-bit S-boxes by
quasigroups of order 4, Proc. of SECURWARE 2012, Rome, Italy, 2012, pp. 163�
168.

[104] H. Mihajloska, T. Yalcin and D. Gligoroski, How lightweight is the hard-
ware implementation of quasigroup S-boxes, Advances in Intelligent Systems and
Computing - ICT Innovations 2012 207 , Springer Berlin Heidelberg, 2013, pp.
121�127.

[105] M. Mihova, M. Siljanoska and S. Markovski, Tracing bit di�erences in strings
transformed by linear quasigroups of order 4, Proc. of the 9th Confer. for Informatics
and Information Technology, Bitola, Macedonia, 2012, pp. 229�233.

[106] A. Mileva, Cryptographic primitives with quasigroup transformations, Doctoral
dissertation, University Sts. Cyril and Methodius, Skopje, 2010.

[107] A. Mileva, Analysis of some quasigroup transformations as Boolean functions,
Mathematica Balkanica 3-4 (2012).

[108] A. Mileva, New developments in quasigroup-based cryptography, Multidisciplinary
Perspectives in Cryptology and Information Security. IGI-Global, 2014, pp. 286�
317.

[109] A. Mileva and S. Markovski, Correlation matrices and prop ratio tables for
quasigroups of order 4, Proc. of the 6th Intern. Confer. for Informatics and Infor-
mation Technology, Ohrid, Macedonia, 2008, pp. 17�22.

[110] A. Mileva and S. Markovski, Quasigroups string transformations and hash
function design, ICT Innovations 2009, Springer Berlin Heidelberg, 2010, pp. 367�
376.

[111] A. Mileva and S. Markovski, Shapeless quasigroups derived by Feistel ortho-
morphisms, Glasnik Matematicki 47 (2012), 333�349.

[112] A. Mileva and S. Markovski, Quasigroup representation of some Feistel and
Generalized Feistel Ciphers, Advances in Intelligent Systems and Computing - ICT
Innovations 2012, 207, Springer, 2013, pp. 161�171.

[113] M.S. Mohamed, J. Ding, J. Buchmann and F. Werner, Algebraic attack on
the MQQ public key cryptosystem, Proc. of 8th Intern. Confer. on Cryptology and
Network Security, Springer Berlin Heidelberg, 2009, pp. 391�401.

[114] I. Nikoli¢ and D. Khovratovich, Free-start attacks on NaSHA,
http://ehash.iaik.tugraz.at/uploads/3/33/Free-start_attacks_on_Nasha.pdf, 2008.

Design of crypto primitives based on quasigroups 89

[115] P. Novotney and N. Ferguson, Detectable correlation in Edon-R. IACR Cryp-
tology ePrint Archive 2009: 378.

[116] J. Patarin, Hidden �elds equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms, LNCS 1440 (1996), 33�48.

[117] A. Petrescu, n-quasigroup cryptographic primitives: stream ciphers, Studia Univ.
Babes Bolyai, Informatica 55(2) (2010), 27�34.

[118] H.O. P�ugfelder, Quasigroups and Loops: Introduction. Heldermann Verlag,
Berlin, 1991.

[119] A. Popovska-Mitrovikj, V. Bakeva and S. Markovski, On random error
correcting codes based on quasigroups, Quasigroups and Related Systems 19 (2011),
301�316.

[120] R.L. Rivest, All-or-nothing encryption and the package transform, LNCS 1267
(1997), 210�218.

[121] R.L. Rivest, Permutation polynomials modulo 2w, Finite Fields and Their Appl.
7 (2001), 287�292

[122] A. Sade, Quasigroups automorphes par le groupe cyclique, Canadian J. Math. 9
(1957), 321�335.

[123] S. Samardziska, Polynomial n-ary quasigroups of order w, Master thesis, Uni-
versity Ss. Cyril and Methodius, Skopje, 2009.

[124] S. Samardziska, ID based identi�cation schemes using multivariate left quasi-
groups, (submitted).

[125] S. Samardziska, Y. Chen and D. Gligoroski, Algorithms for construction of
multivariate quadratic quasigroups (MQQs) and their parastrophe operations in
arbitrary Galois Fields, J. Inform. Assurance and Security 7(3) (2012), 164�172.

[126] S. Samardziska and D. Gligoroski, Identity-based identi�cation schemes using
left multivariate quasigroups, NIK-2011, Tapir Akad, Forlag, 2011, pp. 19�30.

[127] S. Samardziska, S. Markovski and D. Gligoroski, Multivariate quasigroups
de�ned by T-functions, Proc. of the Second Intern. Confer. on Symbolic Computa-
tion and Cryptography, University of London, 2010, pp. 117�127.

[128] D.G. Sarvate and J. Seberry, Encryption methods based on combinatorial de-
signs, Ars Combinatoria 21A (1986), 237�246.

[129] M.V.K. Satti, Quasi-group based crypto-system, Master thesis, Louisiana State
University, 2007.

[130] M. Satti and S. Kak, Multilevel indexed quasigroup encryption for data and
speech, IEEE Transactions on Broadcasting 55(2) (2009), 270�281.

[131] R.H. Schulz, A note on check character systems using latin squares, Discrete
Math. 97 (1991), 371�375.

[132] V.A. Shcherbacov, On some known possible applications of quasigroups in cryp-
tology, http://www.karlin.m�.cuni.cz/ drapal/krypto.pdf, 2003.

[133] V.A. Shcherbacov, Quasigroups in cryptology, Computer Sci. J. Moldova 17(2)
(2009), 193�228.

90 S. Markovski

[134] V.A. Shcherbacov, Quasigroups in cryptology, arXiv:1007.3572.

[135] V.A. Shcherbacov,Quasigroup based crypto-algorithms, arXiv:1201.3016v1.

[136] V.A. Shcherbacov, Quasigroup based hybrid of a code and a cipher,

http://ictinnovations.org/2012/htmls/papers/WebProceedings2012.pdf, p.411�417.

[137] M. Simjanovska, M. Mihova and S. Markovski, Matrix presentation of quasi-
groups of order 4, Proc. of the Tenth International Conference CIIT 2013, Bitola,
2013, pp. 192�196.

[138] I. Slaminková and M. Vojvoda, Cryptanalysis of a hash function based on
isotopy of quasigroups, Tatra Mountains Math. Publ. 45 (2010), 137�149.

[139] J.D.H. Smith, An introduction to quasigroups and their representations, Chap-
man and Hall/ CRC, 2006.

[140] V. Sná²el, A. Abraham, J. Dvorsky, P. Kr®mer and J. Plato², Hash
function based on large quasigroups, LNCS 5544 (2009), 521�529.

[141] V. Sná²el, J. Dvorsky, E. Ochodkova, P. Kr®mer, J. Plato² and A. Abra-
ham, Evolving quasigroups by genetic algorithms, Proc. of DATESO 2010, 2010,
pp. 108�117.

[142] D.R. Stinson, Cryptography: Theory and practice, Second edition. Chapman and
Hall / CRC, 2002.

[143] S. Vaudenay, On the need for multipermutations: Cryptanalysis of MD4 and
SAFER, LNCS 1008 (1995), 286�297.

[144] M. Vojvoda, Cryptanalysis of one hash function based on quasigroup, Tatra Moun-
tains Math. Publ. 29 (2004), 173�181.

[145] M. Vojvoda, M. Sýs and M. Jókay, A note on algebraic properties of quasi-
groups in Edon80, SASC 2007, Bochum, Germany, 2007.

[146] C. Wolf and B. Preneel, Taxonomy of public key schemes based on the prob-
lem of multivariate quadratic equations, IACR Cryptology ePrint Archive, Report
2005/077.

[147] C. Wolf and B. Preneel, MQ*-IP: An identity-based identi�cation scheme
without number-theoretic assumptions, ICAR Cryptology ePrint Archive, Report
2010/087.

[148] Y. Xu, A cryptography application of conjugate quasigroups, Proc. of the Intern.
Confer. on Web Information Systems and Mining 2010, vol. II, Sanya, China, 2010,
pp. 63�65.

Received May 5, 2015
Faculty of Computer Science and Engineering, Ss �Cyril and Methodius� University, Skopje,
Macedonia
E-mail: smile.markovski@gmail.com

