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Minimal ideals of Abel-Grassmann's groupoids

Waqar Khan, Faisal Yousafzai and Kar Ping Shum

Abstract. We study minimal (0-minimal) ideals, simple (0-simple) Abel-Grassmann's groupoids

and zeroids of an Abel-Grassmann's groupoid S. We consider S containing a minimal ideal which

is the union of all minimal left ideals of S. The completely simple Abel-Grassmann's groupoid

which is equal to the union of all its nonzero minimal left ideals is investigated. In addition, we

discuss a universally minimal left ideal of S which is a right ideal and is the kernel of S. Finally,

we prove that S contains a left zeroid if and only if it contains a universally minimal left ideal.

1. Introduction and preliminaries

The concept of an Abel-Grassmann's groupoid (abbreviated as AG-groupoid) was
�rst introduced by M. A. Kazim and M. Naseeruddin in 1972 which they called a
left almost semigroup [7]. P. Holgate [6] called the same structure a left invertive

groupoid. P. V. Proti¢ and N. Stevanovi¢ later called such a groupoid an Abel-

Grassmann's groupoid [12]. An AG-groupoid is in fact a groupoid S satisfying the
left invertive law (ab)c = (cb)a. The left invertive law can be stated by introducing
the braces on the left of ternary commutative law abc = cba. An AG-groupoid
satis�es the medial law (ab)(cd) = (ac)(bd). Since AG-groupoids satisfy the medial
law, they belong to the class of entropic groupoids. If an AG-groupoid S contains
a left identity, then it satis�es the paramedial law (ab)(cd) = (dc)(ba) and the
identity a(bc) = b(ac) [11]. An AG-groupoid is an algebraic structure which is
midway between a groupoid and a commutative semigroup. Consequently, an
AG-groupoid has many properties similar to to the properties of semigroups (cf.
for example [3], [4] and [5]), but AG-groupoids (also AG-groupoids with a left
identity) are non-associative and non-commutative in general.

The minimal ideals are interesting not only in itself but it also in�uences the
other properties of semigroups. In the literature, some interesting articles on
minimal ideals and their properties can be found, for instance, see [1, 2, 8] and [9].

In this paper, we investigate minimal ideals in a non-associative and non-
commutative AG-groupoid. We also discuss zeroids and divisibility in an AG-
groupoid and relate them with minimal ideals.
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By a unitary AG-groupoid, we mean a AG-groupoid S with a left identity e.
It is worth noticing that if S is a unitary AG-groupoid then Se = eS = S and
S = S2. A groupoid with the property S = S2 is called surjective.

If I ⊆ S and SI ⊆ I (IS ⊆ I) , then I is called a left (right) ideal of S. If I
is both a left and right ideal of S, then I is called a two-sided ideal or simply an
ideal of S. A left ideal L of an AG-groupoid S is minimal if every left ideal M of
S included in L coincides with L. A similar statement holds for the right ideal.
Let S∗ be an AG-groupoid and S∗ ⊇ S ⊇ A such that A is a left ideal of S and
S is a left ideal of S∗ with the assumption that A is idempotent. Then A is a left
ideal of S∗. In fact, the following equalities always hold.

S∗A = S∗ ·AA ⊆ S∗ ·AS = A · S∗S ⊆ AS = AA · SS = SA · SA ⊆ A.

Notice that the property of being left ideal is transitive only if we impose an
extra condition on a left ideal A. In general, being a left ideal is not transitive. If
S is an AG-groupoid and A and B are ideals of the same type, then A∩B is either
empty or an ideal of the same type as A and B. Also if S is an AG-groupoid, then
the union of any collection of ideals of the same type is an ideal of the same type.

If there is an element 0 of an AG-groupoid (S, ·) such that x0 = 0x = 0 for all
x ∈ S, then 0 is the zero element of S.

2. Minimal and 0-minimal ideals

In [8], the authors studied minimal ideals of an AG-groupoid. They have shown
that if L is a minimal left ideal of a unitary AG-groupoid, then Lc forms a minimal
left ideal of S for all c ∈ S which is a consequence of the following lemma.

Lemma 2.1. Let L be a left ideal of a unitary AG-groupoid S. Then the following

conditions are equivalent:

(i) L is a minimal left ideal of S;
(ii) Lx = L for every x ∈ L;
(iii) Sx = L holds for every x ∈ L.

Proof. (i) ⇒ (ii). Let L be a minimal left ideal of S and x ∈ L. Then Lx ⊆ L.
Moreover, S · Lx = Se · Lx = SL · ex ⊆ Lx. Thus, Lx is a left ideal of S and, by
the minimality of L, we have Lx = L for every x ∈ L.

(ii)⇒ (iii) is simple.
(iii)⇒ (i). Let L be a left ideal of S such that Sx = L holds for every x ∈ L.

Assume that M is a left ideal of S which is contained in L and let x ∈ M. Then
x ∈ L and therefore, L = Sx ⊆ SM ⊆M . Hence L = M.

Lemma 2.2. A left ideal L (a right ideal R of a unitary AG-groupoid S is a

minimal left (right) ideal of S if and only if L = Sa for all a ∈ L (respectively,
R = Sa2 for every a ∈ R).
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Theorem 2.3. If a unitary AG-groupoid S contains a minimal left ideal L such

that L is idempotent, then S contains a minimal ideal which is the union of all the

minimal left ideals of S.

Proof. Assume that L is a minimal left ideal of S. Then, as a consequence of
Lemma 2.1, LS is the union of all the minimal left ideals of S, that is LS = ∪

s∈S
Ls.

Now we have the following equalities:

LS · S = SS · L = SL = SS · LL = LL · SS = LS,

and
S · LS = SS · LS = SL · SS ⊆ LS.

Hence, we can easily show that LS is an ideal of S. Further, we may suppose
that I is an ideal of S such that I ⊆ LS. Then S(I · LS) ⊆ LS. Therefore by the
minimality of L, we have I · LS = L. Thus LS = (I · LS)S ⊆ IS · S ⊆ I. Hence,
we can see that S contains a minimal two sided ideal which is a union of all the
minimal left ideals of S.

Corollary 2.4. A unitary AG-groupoid S will have no proper ideals if and only

if S is the union of all its minimal left ideals.

Corollary 2.5. If a unitary AG-groupoid S contains a minimal left ideal L and

an ideal I such that L is idempotent then L ⊆ I.

Theorem 2.6. Let L, R and I be the minimal left, minimal right and minimal

ideal of a unitary AG-groupoid S respectively such that L is idempotent and R ⊆ I.
Then I = LR = LS ·R = LS = SR = LI = IR.

Proof. Since L2 = L, and R ⊆ I we have S ·LR = L·SR = L(SS ·R) = L(RS ·S) ⊆
LR and LR · S = SR ·L = SR ·LL = SL ·RL ⊆ LR. So, LR is an ideal of S and
therefore by minimality of I again, we have I ⊆ LR. Also it is easy to see that
LR ⊆ I, which shows hat I = LR. Thus,

S(LS ·R) = (SS)(LS ·R) = (S · LS)(SR)

= (SS · LS)(SR) = (SL · SS)(SR)

⊆ (L · SS)(SR) ⊆ LS ·R,

and

(LS ·R)S = (LS ·R)(SS) = (LS · S)(RS) ⊆ SL ·R
= (SS · LL)R = (SL · SL)R ⊆ LS ·R.

Hence, LS ·R is an ideal of S and, by the minimality of I, we obtain I ⊆ LS ·R.
Also it is easy to see that LS ·R ⊆ I, which implies that I = LS ·R. The remaining
results can be proved in the similar manner.
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Corollary 2.7. If L, L′, R, R′ are minimal left and minimal right ideals of a

unitary AG-groupoid S respectively, then LR = L′R′.

Lemma 2.8. If L is a minimal left ideal of a unitary AG-groupoid S, then L is

an AG-groupoid without proper left ideal.

Proof. Let L′ be a left ideal of L, then LL′ ⊆ L. As L is a left ideal of S, we have
S ·LL′ = Se ·LL′ = SL ·eL′ ⊆ LL′, The above result shows that LL

′
is a left ideal

of S contained in L and therefore by the minimality of L, we have L = LL
′ ⊆ L

′
.

This equality shows that L = L
′
and thus L contains no proper left ideal.

De�nition 2.9. A left (right) ideal M of an AG-groupoid S with zero is called
0-minimal if M 6= {0} and {0} is the only left (right) ideal of S properly contained
in M.

Theorem 2.10. Let M be a 0-minimal ideal of a unitary AG-groupoid S with

zero such that M2 6= {0} and S 6= {0}. If R 6= {0} is a right ideal of S contained

in M, then R2 6= {0}.

Proof. Let R be right ideal of S, then it is easy to show that RS is an ideal
of S. Therefore by the 0-minimality of M, either RS = {0} or RS = M. Let
RS = {0} . Since R is nonzero and would appear as an ideal of S contained in M,
therefore R = M. Thus, M2 ⊆MS = RS = {0}. This contradicts the hypothesis
of M. Thus RS = M and therefore M2 = RS · RS = R2S, which shows that
R2 6= {0}.

Lemma 2.11. Let S be a unitary AG-groupoid with zero and S 6= {0} . Then

Sa · S = S for every 0 6= a ∈ S if {0} is the only left ideal of S.

Proof. Assume that S2 6= {0} and {0} is the only left ideal of S. Further, suppose
that C = {c ∈ S : Sc · S = {0}} 6= ∅. If x ∈ C and y ∈ S, then

(S · yx)S = (y · Sx)(SS) = (yS)(Sx · S) = (Sx)(yS · S) ⊆ Sx · S = {0} .

The above equality implies yx ∈ C. Thus yx ∈ SC ⊆ C which means that C is a
left ideal of S. Therefore, either C = {0} or C = S. For the last case, we have

SC · S = S2S = SS = S = {0},

which contradicts our assumption. Hence, we have C = {0} and Sa · S 6= {0} for
all 0 6= a ∈ S. Since Sa · S is a left ideal of S, we have Sa · S = S.

Theorem 2.12. If a 0-minimal ideal A of a unitary AG-groupoid S with zero
contains at least one 0-minimal left ideal of S and A2 6= {0}, then every left ideal

of A is also a left ideal of S.



Minimal ideals of Abel-Grassmann's groupoids 37

Proof. Assume that L 6= {0} is a left ideal of A and a ∈ L\ {0} . By Lemmas
2.2, 2.11 and the fact that A2 6= {0} , we obtain Aa · A = A and Aa 6= {0} . By
Lemma 6.8 [8], S contains a left ideal L1 such that a ∈ L1 ⊆ A. Since Aa is a
nonzero left ideal of S contained in L1, we have Aa = L1. Thus, a ∈ Aa. Therefore
L ⊆ ∪{Aa : a ∈ L} . To show the converse statement let x ∈ ∪{Aa : a ∈ L}. Then
there exist elements b ∈ A and c ∈ L such that x = bc. Since AL ∈ L, it is
evident that x ∈ L. Thus L = ∪{Aa : a ∈ L} . By the union of a set of ideals,
∪{Aa : a ∈ L} is a left ideal of S.

3. Simple and completely 0-simple AG-groupoids

In this section, we consider an AG-groupoid which contains a zero but contains
no proper ideal except zero. If zero is the only element of an AG-groupoid, then
it would be a proper ideal. The fact that the intersection of two nonzero minimal
ideals might contain a zero element of an AG-groupoid di�erentiates it from the
class of non-zero ideals.

Theorem 3.1. If an AG-groupoid S without zero has at least one minimal left

ideal, then the sum of all its minimal left ideals is a two-sided ideal of S.

Proof. Let Aα be the minimal left ideals of S and B =
∑
αAα. Then B is a left

ideal. In fact: SB = S
∑
αAα =

∑
α SAα ⊆

∑
αAα = B. Also let a ∈ S, then

Ba =
∑
αAαa. But since Aαa is a minimal left ideal of S is contained in the

sum of all minimal left ideals, i.e Aαa ⊆ B holds for all a ∈ S. It shows that
Ba ∈ BS ⊆ B. Hence B is a two sided ideal of S.

Theorem 3.2. An AG-groupoid without zero having at least one minimal left ideal

is the sum of all its minimal left ideals if and only if it is simple.

Proof. Let S be simple and has at least one minimal left ideal L. By Theorem 3.1
the sum B of all the minimal left ideals is a two sided ideal of S. Thus B = S. As
B ⊂ S is contrary to the de�nition of simplicity of S.

Conversely, suppose that S =
∑
α Lα. Suppose that S has a two-sided subideal

A distinct from S, i.e., AS ⊆ A ⊂ S and SA ⊆ A ⊂ S. Then ALα is a left
ideal of S contained in Lα. In fact: S(ALα) = A(SLα) ⊆ ALα ⊂ Lα. Since
every Lα is a left ideal of S, according to the minimality, ALα = Lα. Therefore,
AS = A

∑
α Lα =

∑
αALα =

∑
Lα = S, which contradicts our supposition. Thus

S has no proper two sided ideal and hence is simple.

In a unitary AG-groupoid S the situation Sa 6= S (Sa2 6= S) for every a ∈ S is
possible. Indeed, such situation take place in a unitary AG-groupoid S with the
following multiplication table:
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. a b c d e
a a a a a a
b a b c d e
c a e b c d
d a d e b c
e a c d e b

De�nition 3.3. An AG-groupoid S is called left (right) simple if S is the only
left (right) ideal of S. It is called simple if it contains no proper ideal.

Theorem 3.4. A unitary AG-groupoid S is left (right) simple if and only if Sa = S
(Sa2 = S) for every a ∈ S.

Proof. Suppose that S is a left simple AG-groupoid. Let a ∈ S, Then

S · Sa = SS · Sa = aS · SS = aS · S = SS · a = Sa.

Thus Sa is a proper left ideal of S, but this contradicts our assumption. So,
Sa = S.

Conversely, suppose that Sa = S for all a ∈ S. Let L be a left ideal and b ∈ L.
Then S = Sb ⊆ SL ⊆ L and hence S = L.

Let S be right simple and a ∈ S. Then

Sa2 · S = SS · a2S = S · a2S = a2 · SS = SS · aa = Sa2.

The above shows that Sa2 is a proper right ideal of S, which is a contradiction to
the fact that S is right simple and therefore Sa2 = S.

The converse statement is obvious.

De�nition 3.5. An AG-groupoid S with zero is called 0-simple (left 0-simple,

right 0-simple) if S2 6= {0} and {0} is the only ideal (left ideal, right ideal) of S.

Theorem 3.6. Let S be a unitary AG-groupoid with zero and S 6= {0}. Then S
is left (right) 0-simple if and only if Sa · S = S (Sa2 · S = S) for every 0 6= a ∈ S.

Proof. The �rst part of the proof is a consequence of Lemma 2.11. To prove the
second part assume that Sa · S = S. Then S2 6= {0} because S = Sa · S ⊆ S2. Let
A 6= {0} be a left ideal of S and a ∈ A, then S = Sa · S ⊆ SA · S ⊆ A. Hence S is
left 0-simple. Similarly it can be proved for a right 0-simple AG-groupoid.

Corollary 3.7. A unitary AG-groupoid S without zero is left (right) simple if and

only if Sa · S = S (Sa2 · S = S) for all a ∈ S.

Lemma 3.8. Let {0} be the only ideal properly contained in a unitary AG-groupoid

S with 0. Then S is 0-simple.
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Proof. Since S2 is an ideal of S. We have either S2 = {0} or S2 = S. If S2 = {0},
then S = {0} and {0} is not the proper ideal of S, a clear contradiction. Now if
S2 6= {0}, then by de�nition, S is 0-simple.

Lemma 3.9. Let L (R) be a 0-minimal left (right) ideal of a 0-simple unitary

AG-groupoid S with zero. Then Sa = L (Sa2 = R) for a ∈ L\0 (a ∈ R\0).

Proof. Let L be a 0-minimal left ideal of S and a ∈ L\0. Then Sa is a left ideal of
S contained in L. By minimality of L, either Sa ={0} or Sa = L. The case Sa = 0
is impossible because a 6= {0} and therefore Sa = L. Similarly in the case for a
right ideal.

De�nition 3.10. If S is an AG-groupoid with zero such that S2 6= {0} and has
no proper nonzero ideal and has minimal left and minimal right nonzero ideals,
then S is said to completely simple AG-groupoid with zero.

Theorem 3.11. Let L be a minimal left ideal of a completely simple unitary AG-

groupoid S with zero such that L is idempotent. Then LS = S = A, where A is a

nonzero left ideal of S contained in LS.

Proof. Let S be an AG-groupoid and L be a nonzero minimal left ideal such that
L2 = L. Since we have LS · S = (LL · SS)S = (LS · LS)S ⊆ LL · S ⊆ LS, and
S · LS = SS · LS = SL · SS ⊆ LS, we see that LS is an ideal of S. If LS = {0},
then there exists only one minimal left ideal L, i.e., the zero ideal and S reduces
to L. Therefore LS = SS = S2 = {0}, which the contradicts the argument of S.
Hence our assumption is false and hence LS = S. Let A be a nonzero left ideal
of S contained in LS. Let a ∈ LS. Then there exists b ∈ L and y ∈ S such that
a = by. Since A ⊆ LS, therefore 0 6= f ∈ A has the form f = ty for t ∈ L and
y ∈ S. According to Lemma 2.1, every b ∈ L has the form b = st where s ∈ S.
Therefore, a = by = st · y = se · ty = se · f ∈ SA ⊆ A. It follows that LS ⊆ A and
hence LS = A.

Corollary 3.12. Let L be an idempotent minimal left ideal of a completely simple

unitary AG-groupoid S with zero. Then LS is a minimal left ideal of S.

Theorem 3.13. If S is a completely simple unitary AG-groupoid with a zero and

L and R are nonzero minimal left and right ideals of S respectively such that L
and R are idempotents. Then RL 6= {0}. If LR 6= {0}, then LR = S.

Proof. Similarly as in the proof of Theorem 3.11 we can prove that LS = S and
SR = S. Hence,

S = SS = SR · LS = (SS ·RR)(LS) = (RS · L)S = (LS ·RR)S

= (LR · SR)S = S(LR ·R) · S = (S ·RL)S.

The above equality implies that RL 6= {0} . If LR 6= {0}, then

S · LR = SS · LR = L(SS ·R) = L(RS · S) ⊆ LR
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and LR · S = (LL ·R)S ⊆ LR, which shows that LR is a two sided ideal of S and
therefore LR = S.

Corollary 3.14. If L is a nonzero minimal left ideal of a completely simple unitary

AG-groupoid S, then LR = S for some nonzero minimal right ideal R of S.

4. Zeroids and divisibility in AG-groupoids

The concept of zeroids in an AG-groupoid was given by Q. Mushtaq in [10], where
it is shown that every AG-groupoid has a left zeroid and characterized an AG-
groupoid in terms of zeroids.

De�nition 4.1. An element u of an AG-groupoid S is said to be a left (right)
zeroid of S if for every element a ∈ S, there exists x ∈ S such that u = xa (u = ax),
that is u ∈ Sa (u ∈ aS). An element is called zeroid if it is both a left and a right
zeroid.

De�nition 4.2. A left (right) ideal of an AG-groupoid S is called an universally

minimal left ideal of S if it is contained in every left (right) ideal of S. If an
AG-groupoid S has a minimal ideal K, then K is called the kernel of S.

Lemma 4.3. A unitary AG-groupoid S contains a left zeroid if and only if it

contains a universally minimal left ideal L and L contains all the left zeroids of S.

Proof. Assume that S contains a left zeroid and L consist of all left zeroids of S.
Then for a ∈ SL there exists x ∈ S and y ∈ L such that a = xy. Since L is the set
of all left zeroids, y = bc for some b ∈ S. Thus

a = xy = x · bc = ex · bc = cb · xe = (xe · b)c.

So, a is a left zeroid belonging to L. Hence SL ⊆ L and L is a left ideal of S. Let
L1 be a left ideal of S. Then for b ∈ L1, Sb ⊆ SL1 ⊆ L1. Let z ∈ L, then since z
is a left zeroid, z ∈ Sb ⊆ L1 and therefore L ⊆ L1.

Conversely, if S contains a universally minimal left ideal L, then for any x ∈ S,
Sx is a left ideal of S and L ⊆ Sx. Hence for every a ∈ L we have a = yx for some
y ∈ S. Thus we a is a left zeroid of S.

Lemma 4.4. An universally minimal left ideal of a unitary AG-groupoid S is a

right ideal of S and is the kernel of S.

Proof. Assume that L is an universally minimal left ideal of S. Let p ∈ LS. Then
p = xy for x ∈ L and y ∈ S. By Theorem 2.3, Ly is a minimal left ideal of S and
by de�nition of L, L ⊆ Ly and hence L = Ly. Thus p ∈ Ly = L and therefore
LS ⊆ L, which shows that L is a right ideal of S. By de�nition, L contains no
proper ideal and hence is the kernel of S.
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Theorem 4.5. In a unitary AG-groupoid S with zeroids, every left zeroid is a

right zeroid and vice versa. The set of all zeroids of S is the kernel of S.

Proof. The proof follows from Lemmas 4.7 and 4.4.

An element a ∈ S is said to be divisible on the left (right) by b ∈ S if there
exist x, y ∈ S such that a = ax (a = yb).

Theorem 4.6. Let a and b be two distinct elements of a unitary AG-groupoid S.
Then a is divisible by b on the right if and only if the left ideal of a is contained

in the left ideal of b.

Proof. Suppose that a is divisible by b on the right. Then for some x ∈ S, a = xb.
Thus

Sa ∪ a = S · xb ∪ xb ⊆ S · Sb ∪ Sb = SS · Sb ∪ Sb

= bS · SS ∪ Sb = Sb ∪ Sb = Sb ⊆ Sb ∪ b.

Conversely, let Sa ∪ a ⊆ Sb ∪ b. Since a and b are distinct elements, therefore
we have a ∈ Sb, this means that there exists some y ∈ S such that a = yb.

Corollary 4.7. If some elements of a unitary AG-groupoid S are divisible by all

the elements of S, then the collection of such elements is a universally minimal

left ideal of S.

Proof. Let B be a non-empty collection of all such elements which are divisible by
all the elements of S on the right, then B is a left ideal of S. Indeed, for a1, a2 ∈ S,
there exists x ∈ S such that b = xa1 for b ∈ S. Thus

a2b = a2 · xa1 = ea2 · xa1 = a1x · a2e = (a2e · x)a1.

So, a2b is divisible on the right by a1 ∈ S and hence a2b ∈ B.
Let L be any arbitrary left ideal of S. Then for l ∈ L and b ∈ B, there exists

x ∈ S such that b = xl ∈ B. Hence, B ⊆ L and it is an universally minimal left
ideal of S.
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