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Abstract

The cooperative two-photon spontaneous decay of an excited atomic system in a micro-
cavity is investigated. We demonstrate that the presence of a small number of thermalized
photons in the microcavity mode stimulate the cooperative generation rate of the coherent
entangled photon pairs.

It is well known that the spontaneous decay of a single atom in a microcavity differs
substantially from decay in free space [1] . Such behavior of an atom inside a microcavity
can be explained by the fact that near the transition frequency the rate of spontaneous
decay is proportional to the EMF mode density.

The study of two-photon light generation has attracted much attention [2-4] . The first
report of an experimental observation of two-photon coherent light generation in which
excited Li atoms were used was made by Nikolaus et al [3] . Experiments involving Ry-
dberg atoms have demonstrated the real possibility of building a two-photon micromaser
[4] . Since in a microcavity the rate of two-photon decay in a three-level cascade system in-
creases substantially, it is of interest to analyze in such a setting the cooperative emission
of radiation by Rydberg atoms in microcavities.

In the present paper we study the cooperative decay of an ensemble of such atoms
with a cascade pattern of the levels, where at a finite temperature the intermediate level
is arbitrarly offset from resonance with a microcavity mode. In this case the intermediate
level is essentially vacant, and the fact that it lies between the excited and ground states
leads to a sizable increase in the two-photon cooperative transition amplitude. Using the
statistical method of eliminating operators of the EMF and the virtual intermediate state
of electrons in the atoms [2] one can obtain the following equation for an operator of
the atomic subsystem, 0(t), in the process of two-photon spontaneous decay inside the
microcavity.
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where the operators R and satisfy the usual commutation relations for spin operators.
Here w21 is the atomic transition frequency between the dipole-forbidden 2) and 1)
states; d3 is the dipole moment of the transition between levels 3) and /3) (,i3=1,2);

gk with g;\ the polarization vector of a photon (A = 1, 2) of frequency
Wk and V the cavity volume. In deriving equation (1) , we have considered the offset
L = Wk w231 ( Wk w311) much greater than the damping factor F(k) of the
microcavity in order to two-photon process can occur. Next we limit ourselves to one
microcavity mode. When the number of atoms is large, the process of cooperative two-
photon decay becomes appreciable stronger. If we ignore fluctuations in the number of
particles when the number of atoms is large (N >> 1) , one can easily obtain for the atomic
inversion operator

(R(t)) = -(R) - (j(j + 1) - (RZ)2 + (Ri)), (2)t 'r

where 1/r=4g4d(1+2n)/(Fz2h4), 1/'r(')=8g4dn2/(FL\2h4) and j = N/2. The solution
of this equation is

(R(t)) = ' q _ tanh [(t - to)],

where Tr (b)/c is the time of cooperative spontaneous decay of the ensemble of atoms,
to = r ln is the time lag of the pulse of collective emission of a pair of photons

in the microcavity, q = /T(b) , and c = (i + q)2 + 4j(j + 1) . The Eq. (2) describing
two-photon cooperative spontaneous decay implies that a thermalized field affects not
only the Einstein coefficient 1/r(") corresponding to stimulated decay but also the rate
of two-photon spontaneous decay, 1/r . Clearly, a thermalized field facilitates the pro-
cess of cooperative two-photon decay. This constitutes one of main difference between
two-photon dipole-forbidden emission and one-photon cooperative spontaneous emission.
Evidently, two-photon cooperative spontaneous emission prevails over stimulated ther-
malized transition only if N(1 + 2n) > ri2. These estimates suggest that when ri < 1, the
term 1/(b) which corresponds to induced decay, is negligible in comparison to the term
1/(b) which corresponds to spontaneous decay.

In the absence of radiators inside the microcavity, one can calculate the fluctuations
of the electromagnetic field operators:

= (at2a2) _ (ata)2 = n2.

It would be very interesting to find the fluctuations in the number of photons of the
electromagnetic field that are generated by the excited radiators in the process of two-
photon emission in the microcavity. In doing this one introduce a function that accounts
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for fluctuations of the electromagnetic field in relation to thermalized fluctuations:

522 (3)

where 2 (at2(t)a2(t))_(at(t)a(t))2. Since experiments often monitor the dynamics of
the population difference of the population difference of the atomic subsystem in the
microcavity, we express the electromagnetic field fluctuations 5 in terms of the kinetics
of atomic population inversion.

Let G(')(t) = (at(t)a(t)) then

G'(t) = (at(t)a(t))
= (df(t)a(t) + at(t)t) ). (4)

Eliminating the heat-bath operators, in the Born-Marcov approximation G(')(t) <<
FG(1)(t) , one can represent the function G1 (t) via the atomic inversion operator:

G'(t) = n - (R(t)). (5)

For a large number of excited atoms in the Born-Marcov approximation (t) <<
FG(2)(t) we find for the second-order correlation function G(2)(t) = (at2(t)a2(t)):

G2(t) = 2n2 {3 + 1/2](R(t)) + [(R(t))]2. (6)

One can observe that as the two-photon absorption probability w (at2a2)=G(2)(t) , at
low-temperatures it is proportional to the two-photon flux :

w r'J d/dt(R(t)) ''
We note that the probability w also depends on the square of the two-photon flux, but this
dependence is ignored in our approximation. Note that for one-photon superradiance, the
function G2 (t) is proportional to the square of the one-photon flux, or J2 . This occurs
because at R+ for one-photon emission, while for two-photon emission we have a2
R+ . Hence

w (R2R2) ([d/dtR]2)
for one-photon superradiance, and

w (RR) d/dt(R)

for two-photon superradiance.
Now we can easily derive a formula for the relative fluctuations of the electromagnetic

field inside the microcavity:

= -(n + 1/2)(R(t)). (7)
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This implies that in each decay event, photons are generated in pairs and the emission
intensity becomes proportional to N2, while the second-order correlation function for the
photons remains much greater than the square of the first-order correlation function. In
this case, at low temperatures and for large numbers of atoms, we can speak of photon
superbunching, i.e. ö/ö >> 1.
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