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Abstract

In the paper we present based on quasigroups new deniable
encryption method, relatively fast stream cipher and generalisa-
tion of El-Gamal scheme.
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1 Deniable-encryption mode for block ciphers

Deniable encryption (DE) is a method for generating ciphertexts that
can be alternatively decrypted providing security against the so called
coercive attacks [3] for which it is assumed that after ciphertext has
been sent the adversary has possibility to force both the sender and the
receiver to open the plaintext corresponding to the ciphertext and the
encryption key. In the case of block ciphering the DE can be provided
with simultaneous encryption of the secret and fake messages using the
secret and fake keys, correspondingly. While being coerced the sender
and receiver of the ciphertext open the fake key and fake message and
declare they have used the probabilistic encryption [4]. Earlier in paper
[5] it had been proposed a method for simultaneous encryption of two
messages based on solving a system of two linear equations. In this
section we propose design of the DE mode for using block ciphers,
which is based on the mentioned method.

Definition 1. Binary groupoid (G, ◦) is isotopic image of a binary

groupoid (G, ·), if there exist permutations α, β, γ of the set G such

that x ◦ y = γ−1(αx · βy) [1].
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Suppose EV be a block encryption algorithm with n-bit input data
block and the value used as encryption key. All existing n-bit data
blocks can be considered as elements of some quasigroup with the op-
eration ∗ defined as follows:

K ∗ i = EV (K ⊕ EV (i)),

where ⊕ is the XOR operartion; K and i are n-bit vectors. This quasi-
group is isotope of the group (G,⊕), where G is the set of all n-bit
vectors. Here EV is a permutation of the symmetric group SG.

Evidently, for all possible values i and Q 6= K we have

EV (Q⊕ EV (i)) 6= EV (K ⊕EV (i)). (1)

Using this property of the quasigroup one can define simultane-
ous encryption of two different messages T = (t1, t2, . . . , ti, . . . , tz) and
M = (m1,m2, . . . ,mi, . . . ,mz), where z < 2n; ti and mi are n-bit data
blocks, as generation of the single ciphertext C = (c1, c2, . . . , ci, . . . , cz)
containing (2n)-bit ciphertext blocks ci = (c′i, c

′′
i ), where c′i and c′′i are

n-bit values, computed from the following system of equations in the
field GF (2n):

{

c′i +Aic
′′
i ≡ Bi +mi mod η(x)

c′i +Gic
′′
i ≡ Hi + ti mod η(x),

(2)

where η(x) is some specified irreducible binary polynomial of the degree
n; the n-bit values Ai, Bi, Gi, and Hi are computed using the random
n-bit initialization vector V (this value is not secret) as follows:

Ai = EV (K ⊕ EV (i));Gi = EV (Q⊕ EV (i));

Bi = EK(Ai);Hi = EQ(Gi).

While solving (1) the values Ai, Bi, Gi, and Hi are considered as bi-
nary polynomials of the degree s < n. Due to condition (1) the system
(2) always has the single solution, therefore the proposed deniable-
encryption procedure is defined correctly. Let us agree that the secret
message (key) is the value T (Q) and the fake message (key) is the
value M (K). If the coercer forces the sender and receiver of the se-
cret message T to open the ciphertext C and the encryption key, then
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they open the fake key K and the fake message M and declare using
the probabilistic block-encryption mode implemented with the block
cipher E. In terms of paper [4] the declared encryption algorithm is
called the associated encryption algorithm.

In the case of the proposed deniable-encryption method the last
algorithm is described as consecutive probabilistic encryption of the
data blocks mi for each value i = 1, 2, . . . , z performing the following
steps:

1. Generate a random initialization vector V and compute the
values Ai = EV (K ⊕ EV (i)) and Bi = EK(Ai).

2. Generate a random binary polynomial ρi(x) of the degree s < n.

3. Compute the unknowns c′i and c′′i from the following system of
equations in GF (2n):

{

c′i +Aic
′′
i ≡ Bi +mi mod η(x)

c′i + ρic
′′
i ≡ 1 mod η(x),

(3)

Evidently, for some sequence of the values ρ1(x), ρ2(x), . . . , ρz(x) the
message M is transformed with the key K into the given ciphertext C.

To distinguish the use of the deniable encryption with the system
(2) from the probabilistic encryption with the system (3) the poten-
tial coercive attacker should compute the key Q. The last problem is
computationally difficult, if E is a secure block cipher, for example,
AES [7] with 128-bit key and n = 128. Restoring the secret message
from the ciphertext is performed as decryption of each ciphertext block
ci = (c·i, c

·′
i ), i = 1, 2, . . . , z, as follows:

1. Using the secret key Q compute the values Gi = EV (Q⊕EV (i))
and Hi = EQ(Gi).

2. Compute the plaintext data block ti = c′i +Gic
′′
i −Hi mod η(x).

The fake decryption of the ciphertext is as follows (i = 1, 2, . . . , z):

1. Using the fake key K compute the values Ai = EV (K ⊕ EV (i))
and Bi = EK(Ai).

2. Compute the plaintext data block mi = c′i+Aic
′′
i −Bi mod η(x).
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2 Stream cipher on base of binary quasigroups

Here we give more detailed description of algorithm which was proposed
in [10]. This algorithm simultaneously uses two cryptographical proce-
dures: enciphering using generalisation of Markovski stream algorithm
[11] and enciphering using a system of orthogonal operations.

We also give some realisation of this algorithm on base of T-
quasigroups, more precise, on the base of medial quasigroups. Neces-
sary information about quasigroups and some its applications in cryp-
tography can be found in [1, 8, 10].

Below we denote the action of the left (right, middle) translation
in the power a of a binary quasigroup (Q, g1) on the element u1 by
the symbol g1T

a
l1
(u1). And so on. Here l1 means leader element. See

[8, 10, 11] for details.

Algorithm 1. Enciphering. Initially we have plaintext u1, u2, . . . , u6.

Step 1.

g1T
a
l1
(u1) = v1

g2T
b
l2
(u2) = v2

F c
1 (v1, v2) = (v′1, v

′
2)

Step 2.

g3T
d
v′
1

(u3) = v3

g4T
e
v′
2

(u4) = v4

F
f
2
(v3, v4) = (v′3, v

′
4)

Step 3.

g5T
g

v′
3

(u5) = v5

g6T
h
v′
4

(u6) = v6

F i
3(v5, v6) = (v′5, v

′
6).

(4)

We obtain ciphertext v′1, v
′
2, . . . , v

′
6.
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Deciphering. Initially we have ciphertext v′1, v
′
2, . . . , v

′
6.

Step 1.

F−c
1

(v′1, v
′
2) = (v1, v2)

g1T
−a
l1

(v1) = u1

g2T
−b
l2

(v2) = u2

Step 2.

F
−f
2

(v′3, v
′
4) = (v3, v4)

g3T
−d
v′
1

(v3) = u3

g4T
−e
v′
2

(v4) = u4

Step 3.

F−i
3

(v′5, v
′
6) = (v5, v6)

g5T
−g

v′
3

(v5) = u5

g6T
−h
v′
4

(v6) = u6

(5)

We obtain plaintext u1, u2, . . . , u6.

From Algorithm 1 we obtain classical Markovski algorithm, if we
take only one quasigroup, one kind of quasigroup translations (left
translations) any of which is taken in power = 1, and, finally, if sys-
tem of orthogonal operations (crypto-procedure F ) is not used. Some
generalisations of Algorithm 1 are given in [12].

3 T-quasigroup based stream cipher

We give a numerical example of encryption Algorithm 1 based on T -
quasigroups (more exactly, on medial quasigroups) [12]. Notice that
the number 257 is prime. Form of parastrophes of T-quasigroups, for

example, of quasigroup (A,
(13)

∗ ) can be found in [12], [6, p. 39].

Example 1. Take the cyclic group (Z257,+) = (A,+).
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1. Define T-quasigroup (A, ∗) with the form x∗y = 2 ·x+131 ·y+3
with a leader element l, say, l = 17. Denote the mapping x 7→ x∗l

by the letter g1, i.e. g1(x) = x ∗ l for all x ∈ A.

In order to find the mapping g−1

1
we find the form of operation

(13)

∗ . We have x
(13)

∗ y = 129 ·x+63 ·y+127, f−1x = x
(13)

∗ l. Then

g−1

1
(g1(x)) = g−1

1
(x ∗ l) = (x ∗ l)

(13)

∗ l=x.

In some sense quasigroup (A,
(13)

∗ ) is the ”right inverse quasi-

group” to quasigroup (A, ∗). Notice that from results of article

[6, Theorem 16] it follows that (A, ∗)⊥(A,
(13)

∗ ).

2. Define T-quasigroup (A, ◦) with the form x◦y = 10 ·x+81 ·y+53
with a leader element l, say, l = 71. Denote the mapping x 7→ l∗x

by the letter g2, i.e. g2(x) = l ◦ x for all x ∈ A.

In order to find the mapping g−1

2
we find the form of operation

(23)

◦ . We have x
(23)

◦ y = 149 · x+ 165 · y + 250.

3. Define a system of two parastroph orthogonal T-quasigroups (A, ·)

and (A,
(23)

· ) in the following way






x · y = 3 · x+ 5 · y + 6

x
(23)

· y = 205 · x+ 103 · y + 153.

Denote quasigroup system (A, ·,
(23)

· ) by F (x, y), since this system

is a function of two variables.

In order to find the mapping F−1(x, y) we solve the system of

linear equations
{

3 · x+ 5 · y + 6 = a

205 · x+ 103 · y + 153 = b.

We have ∆ = 55, 1/∆ = 243, x = 100 ·a+70 ·b+255, y = 43 ·a+
215 · b. Therefore we have, if F (x, y) = (a, b), then F−1(a, b) =
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(100 · a+ 70 · b+ 255, 43 · a+ 215 · b), i.e.

{

x = 100 · a+ 70 · b+ 255

y = 43 · a+ 215 · b.

We have defined the mappings g1, g2, F and now we can use them

in Algorithm 1.

Let 212; 17; 65; 117 be a plaintext. We take the following values in

formula (4): a = b = d = e = f = 1; c = 2. Below we use Gothic font

to distinguish leader elements, i.e., the numbers 17 and 71 are leader

elements. Then

Step 1.

g1(212) = 212 ∗ 17 = 2 · 212 + 131 · 17 + 3 = 84
g2(17) = 71 ◦ 17 = 10 · 71 + 81 · 17 + 53 = 84
F (84; 84) = (3 · 84 + 5 · 84 + 6; 205 · 84 + 103 · 84 + 153) = (164; 68)
F (164; 68) = (3·164+5·68+6; 205·164+103·68+153) = (67; 171)

Step 2.

g1(65) = 65 ∗ 67 = 2 · 65 + 131 · 67 + 3 = 172
g2(117) = 171 ◦ 117 = 10 · 171 + 81 · 117 + 53 = 189
F (172; 189) = (3 · 172 + 5 · 189 + 6; 205 · 172 + 103 · 189 + 153) =

(182; 139)

We obtain the following ciphertext 67; 171; 182; 139.

For deciphering we use formula (5).

Step 1.

F−1(67; 171) = (100·67+70·171+255, 43·67+215·171) = (164; 68)
F−1(164; 68) = (100 ·164+70 ·68+255, 43 ·164+215 ·68) = (84; 84)

g−1

1
(84) = 84

(13)

∗ 17 = 129 · 84 + 63 · 17 + 127 = 212

g−1

2
(84) = 71

(23)

◦ 84 = 149 · 71 + 165 · 84 + 250 = 17

Step 2.

F−1(182; 139) = (100 · 182 + 70 · 139 + 255, 43 · 182 + 215 · 139) =
(172; 189)

g−1

1
(172) = 172

(13)

∗ 67 = 129 · 172 + 63 · 67 + 127 = 65
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g−1

2
(189) = 171

(23)

◦ 189 = 149 · 171 + 165 · 189 + 250 = 117

A program using freeware version of programming language Pascal
was developed. Experiments demonstrate that encoding-decoding is
executed sufficiently fast.

Remark 1. Proper binary groupoids are more preferable than linear

quasigroups by construction of the mapping F (x, y) in order to make

encryption more safe, but in this case decryption may be slower than

in linear quasigroup case and definition of these groupoids needs more

computer (or some other device) memory. The same remark is true

for the choice of the function g. Maybe a golden mean in this choice

problem is to use linear quasigroups over non-abelian, especially simple,

groups.

Remark 2. In this cipher there exists a possibility of protection against

standard statistical attack. For this scope it is possible to denote more

often used letters or pair of letters by more than one integer or by more

than one pair of integers.

4 De-symmetrisation of Markovski algorithm

We give an analogue of El Gamal encryption system based on
Markovski algorithm.

Let (Q, f) be a binary quasigroup and T = (α, β, γ) be its isotopy.

Alices keys are as follows:

Public Key is (Q, f), T , T (m,n,k) = (αm, βn, γk), m,n, k ∈ N, and
Markovski algorithm.

Private Key m,n, k.

Encryption

To send a message b ∈ (Q, f) Bob computes T (r,s,t), T (mr,ns,kt) for
a random r, s, t ∈ N and (T (mr,ns,kt)(Q, f)).

The ciphertext is (T (r,s,t), T (mr,ns,kt)(Q, f), (T (mr,ns,kt)(Q, f))b).

To obtain (T (mr,ns,kt)(Q, f))b Bob uses Markovski algorithm which
is known to Alice.
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Decryption

Alice knows m,n, k, so if she receives the ciphertext

(T (r,s,t), T (mr,ns,kt)(Q, f), (T (mr,ns,kt)(Q, f))b),

she computes T (−rm,−ns,−kt) from T (r,s,t) and then (Q, f), further she
computes (Q, f)−1 and, finally, she computes b.

In this algorithm it can also be used isostrophy [9] instead of isotopy,
Algorithm 1 instead of Markovski algorithm, n-ary (n > 2) quasigroups
[2, 10] instead of binary quasigroups.
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