On ϕ-2-absorbing primary subsemimodules over commutative semirings

Issaraporn Thongsomnuk, Ronnason Chinram
Pattarawan Singavananda and Patipat Chumket

Abstract

In this paper, we introduce the concepts of ϕ - 2 -absorbing primary subsemimodules over commutative semirings. Let R be a commutative semiring with identity and M be an R-semimodule. Let $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ be a function, where $S(M)$ is the set of subsemimodules of M. A proper subsemimodule N of M is said to be a ϕ-2-absorbing primary subsemimodule of M if $r s x \in N \backslash \phi(N)$ implies $r x \in N$ or $s x \in N$ or $r s \in \sqrt{(N: M)}$, where $r, s \in R$ and $x \in M$. We prove some basic properties of these subsemimodules, give a characterization of ϕ - 2 -absorbing primary subsemimodules, and investigate ϕ-2-absorbing primary subsemimodules of quotient semimodules.

1. Introduction

In 2007, the concept of 2-absorbing ideals of rings was introducted by Badawi [3]. He defined a 2-absorbing ideal I of a commutative ring R to be a proper ideal and if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Later in 2011 [7], Darani and Soheilnia introduced the concept of 2 -absorbing submodules and studied their properties. A proper submodule N of an R-module M is said to be a 2 -absorbing submodule of M if $a, b \in R$ and $m \in M$ with $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in(N: M)$.

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a commutative semiring in [6]. He defined a 2 -absorbing ideal I of a commutative semiring R to be a proper ideal and if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In the same year, Thongsomnuk

[^0]introduced the concept of 2 -absorbing subsemimodules over commutative semirings as a proper subsemimodule N of an R-semimodule M such that if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$, then $a m \in N$ or $b m \in N$ or $a b \in(N: M)$. The concept of 2-absorbing ideals of commutative semirings and 2 -absorbing subsemimodules has been widely recognized by several mathematicians, see [8] and [11].

Atani and Kohan (2010) introduced and examined the concept of primary ideals in a commutative semiring, as well as primary subsemimodules in semimodules over a commutative semiring (see [5]). They defined a primary ideal I of a commutative semiring R as a proper ideal, such that whenever $a, b \in R$ with $a b \in I$, then $a \in I$ or $b^{k} \in I$ for some $k \in \mathbb{N}$. Similarly, a primary subsemimodule N of an R-semimodule M is defined as a proper subsemimodule, such that whenever $a \in R$ and $m \in M$ with $a m \in N$, then $m \in N$ or $a^{k} \in(N: M)$ for some $k \in \mathbb{N}$. In 2015, Dubey and Sarohe [9] defined the concept of 2-absorbing primary subsemimodules of a semimodule M over a commutative semiring R with $1 \neq 0$ which is a generalization of primary subsemimodules of semimodules. A proper subsemimodule N of a semimodule M is said to be a 2-absorbing primary subsemimodule of M if $a b m \in N$ implies $a b \in \sqrt{(N: M)}$ or $a m \in N$ or $b m \in N$ for some $a, b \in R$ and $m \in M$.

Anderson and Batanieh (2008) generalized the concept of prime ideals, weakly prime ideals, almost prime ideals, n-almost prime ideals and ω prime ideals of rings to ϕ-prime ideals of rings with ϕ, see in [1]. They defined a ϕ-prime ideal I of a ring R with ϕ be a proper ideal and if for $a, b \in R, a b \in I \backslash \phi(I)$ implies $a \in I$ or $b \in I$. Later in 2016, Petchkaew, Wasanawichit and Pianskool [13] introduced the concept of $\phi-n$-absorbing ideals which are a generalization of n-absorbing ideals. A proper ideal I of R is called a ϕ-n-absorbing ideal if whenever $x_{1}, x_{2}, \ldots, x_{n+1} \in I \backslash \phi(I)$ for $x_{1}, x_{2}, \ldots x_{n+1} \in R$, then $x_{1} x_{2} \ldots x_{i-1} x_{i+1} \ldots x_{n+1} \in I$ for some $i \in$ $\{1,2, \ldots, n+1\}$. In 2017, Moradi and Ebrahimpour [12] introduced the concept of ϕ-2-absorbing primary and ϕ-2-absorbing primary submodules. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function, where $S(M)$ is the set of R-module M. They said that a proper submodule N of M is a $\phi-2$ absorbing primary submodule if $r s x \in N \backslash \phi(N)$ implies $r x \in N$, or $s x \in N$, or $r s \in \sqrt{(N: M)}$, where $r, s \in R$ and $x \in M$.

In this paper, we extend the concepts of ϕ-2-absorbing primary submodules over commutative rings to the concepts of ϕ-2-absorbing primary subsemimodules over commutative semirings. We explore fundamental prop-
erties of these subsemimodules, provide a characterization of ϕ-2-absorbing primary subsemimodules, and investigate ϕ-2-absorbing primary subsemimodules of quotient semimodules.

2. Preliminaries

Definition 2.1. [10] Let R be a semiring. A left R-semimodule (or a left semimodule over R) is a commutative monoid $(M,+)$ with additive identity 0_{M} for which a function $R \times M \rightarrow M$, denoted by $(r, m) \mapsto r m$ and called the scalar multiplication, satisfies the following conditions for all elements r and r^{\prime} of R and all elements m and m^{\prime} of M :
(1) $\left(r r^{\prime}\right) m=r\left(r^{\prime} m\right)$,
(2) $r\left(m+m^{\prime}\right)=r m+r m^{\prime}$,
(3) $\left(r+r^{\prime}\right) m=r m+r^{\prime} m$,
(4) $1_{R} m=m$, and
(5) $r 0_{M}=0_{M}=0_{R} m$.

Throughout this paper, we assume that R is a commutative semirings identity $1 \neq 0$ and a left R-semimodule will be considered as a unitary semimodule.

Definition 2.2. [10] Let M be an R-semimodule and N a subset of M. We say N is a subsemimodule of M precisely when N is itself an R-semimodule with respect to the operations for M.

Definition 2.3. [5] Let M be an R-semimodule, N a subsemimodule of M, and $m \in M$. Then an associated ideal of N is denoted as
$(N: M)=\{r \in R \mid r M \subseteq N\}$ and $(N: m)=\{r \in R \mid r m \in N\}$.
Definition 2.4. [5] An ideal I of a semiring R is called a subtractive ideal if $a, a+b \in I$ and $b \in R$, then $b \in I$.

A subsemimodule N of an R-semimodule M is called a subtractive subsemimodule if $x, x+y \in N$ and $y \in M$, then $y \in N$.

Proposition 2.5. [5] Let M be an R-semimodule. If N is a subtractive subsemimodule of M and $m \in M$, then $(N: M)$ and $(N: m)$ are subtractive ideals of R.

Lemma 2.6. Let $(N: M)$ be a subtractive ideal of R. If $a \in(N: M)$ and $a+b \in \sqrt{(N: M)}$, then $b \in \sqrt{(N: M)}$.
Proof. Assume that $a \in(N: M)$ and $a+b \in \sqrt{(N: M)}$. There exists $k \in \mathbb{N}$ such that $(a+b)^{k} \in(N: M)$. Then $\sum_{i=0}^{k}\binom{k}{i} a^{k-i} b^{i} \in(N: M)$. Since $\sum_{i=0}^{k-1}\binom{k}{i} a^{k-i} b^{i} \in(N: M)$ and $(N: M)$ is a subtractive ideal, we obtain $b^{k} \in(N: M)$. Thus, $b \in \sqrt{(N: M)}$.

Definition 2.7. [12] Let M be an R-semimodule. We define the functions $\phi_{\alpha}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ as follows: $\phi_{0}(N)=0, \phi_{\emptyset}(N)=\emptyset, \phi_{m+1}(N)=$ $(N: M)^{m} N$ for every $m \geqslant 0$ and $\phi_{\omega}(N)=\bigcap_{m=0}^{\infty}(N: M)^{m} N$, where N is a subsemimodule of M and $S(M)$ is the set of subsemimodules of M.

Definition 2.8. [12] Let M be an R-semimodule, $S(M)$ the set of subsemimodules of M and let $f_{1}, f_{2}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be two functions. Then $f_{1} \leqslant f_{2}$ if $f_{1}(N) \subseteq f_{2}(N)$ for all $N \in S(M)$.

Definition 2.9. [2] A subsemimodule N of an R-semimodule M is called a partitioning subsemimodule(or Q-subsemimodule) if there exists a nonempty subset Q of M such that

1. $R Q \subseteq Q$ where $R Q=\{r q \mid r \in R$ and $q \in Q\}$,
2. $M=\cup\{q+N \mid q \in Q\}$ where $q+N=\{q+n \mid n \in N\}$, and
3. if $q_{1}, q_{2} \in Q$, then $\left(q_{1}+N\right) \cap\left(q_{2}+N\right) \neq \emptyset$ if and only if $q_{1}=q_{2}$.

Let M be an R-semimodule and N a Q-subsemimodule of M. Let $M / N_{(Q)}=\{q+N \mid q \in Q\}$. Then $M / N_{(Q)}$ is a semimodule over R under the addition \oplus and the scalar multiplication \odot defined as follow: for any $q_{1}, q_{2}, q \in Q$ and $r \in R,\left(q_{1}+N\right) \oplus\left(q_{2}+N\right)=q_{3}+N$ and $r \odot(q+N)=q_{4}+N$ where $q_{3}, q_{4} \in Q$ are the unique elements such that $q_{1}+q_{2}+N \subseteq q_{3}+N$ and $r q+N \subseteq q_{4}+N$. The R-semimodule $M / N_{(Q)}$ is called the quotient semimodule of M by N.
Lemma 2.10. [4] Let M be an R-semimodule, N a Q-subsemimodule of M and P a subtractive subsemimodule of M with $N \subseteq P$. Then the followings hold:

1. N is a $Q \cap P$-subsemimodule of P.
2. $P / N_{(Q \cap P)}=\{q+N \mid q \in Q \cap P\}$ is a subsemimodule of $M / N_{(Q)}$.

Remark 2.11. The zero element of $P / N_{Q \cap P}$ is the same as the zero element of $M / N_{(Q)}$ which is $0_{M}+N$.

3. ϕ-2-absorbing primary subsemimodules

In this section, we investigate the ϕ-2-absorbing primary subsemimodules over commutative semirings. Initially, we introduce a novel definition for ϕ-2-absorbing primary subsemimodules. Subsequently, we explore various properties of ϕ-2-absorbing primary subsemimodules.

Definition 3.1. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ a function, where $S(M)$ is the set of subsemimodules of M. We say a proper subsemimodule N of M is a ϕ-2-absorbing primary subsemimodule if whenever $r s x \in N \backslash \phi(N)$ implies $r x \in N$, or $s x \in N$, or $r s \in \sqrt{(N: M)}=$ $\left\{a \in R \mid a^{n} M \subseteq N\right.$ for some $\left.n \in \mathbb{N}\right\}$, where $r, s \in R$ and $x \in M$.

Theorem 3.2. Let M be an R-semimodule, N a ϕ-2-absorbing primary subsemimodule of M and K be a subsemimodule of M such that $\phi(N \cap K)=$ $\phi(N)$. Then $N \cap K$ is a ϕ-2-absorbing primary subsemimodule of K.

Proof. Clearly, $N \cap K$ is a proper subsemimodule of K. Let $r s x \in(N \cap K) \backslash$ $\phi(N \cap K)$ where $r, s \in R$ and $x \in K$. We have $r s x \in N \backslash \phi(N \cap K)$. Thus, $r s x \in N \backslash \phi(N)$ because $\phi(N \cap K)=\phi(N)$. Since N is a ϕ-2-absorbing primary subsemimodule of M, we obtain $r x \in N$, or $s x \in N$, or $r s \in$ $\sqrt{(N: M)}$. If $r x \in N$ or $s x \in N$, then $r x \in N \cap K$ or $s x \in N \cap K$ because $x \in K$ and K is an R-semimodule. If $r s \in \sqrt{(N: M)}$, then $(r s)^{n} M \subseteq N$ for some positive integer n. In particular, $(r s)^{n} K \subseteq(r s)^{n} M \subseteq N$ and we know that $(r s)^{n} K \subseteq K$. Then $(r s)^{n} K \subseteq N \cap K$ for some positive integer n. Thus, $r s \in \sqrt{(N \cap K: K)}$. Hence $N \cap K$ is a ϕ-2-absorbing primary subsemimodule of K.

Consider the following example. Let $R=\mathbb{Z}_{0}^{+}$and $M=\mathbb{Z}_{0}^{+}$, where throughout this paper, \mathbb{Z}_{0}^{+}denotes the set of non-negative integers (including zero). We define the function $\phi: S\left(\mathbb{Z}_{0}^{+}\right) \rightarrow S\left(\mathbb{Z}_{0}^{+}\right) \cup\{\emptyset\}$ by $\phi(A)=\{0\}$ where $A \in S\left(\mathbb{Z}_{0}^{+}\right)$. Clearly, $8 \mathbb{Z}_{0}^{+}$is a ϕ-2-absorbing primary subsemimodule of \mathbb{Z}_{0}^{+}and $m \mathbb{Z}_{0}^{+}$is a subsemimodule of \mathbb{Z}_{0}^{+}where $m \in \mathbb{Z}_{0}^{+}$. We see that $\phi\left(8 \mathbb{Z}_{0}^{+} \cap m \mathbb{Z}_{0}^{+}\right)=\{0\}=\phi\left(8 \mathbb{Z}_{0}^{+}\right)$. Then $8 \mathbb{Z}_{0}^{+} \cap m \mathbb{Z}_{0}^{+}=[8, m] \mathbb{Z}_{0}^{+}$is a $\phi-2-$ absorbing primary subsemimodule of $m \mathbb{Z}_{0}^{+}$. This example demonstrates the concept outlined in Theorem 3.13.

Theorem 3.3. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\phi\} a$ function, and let N be a proper subsemimodule of M. Then the following conditions are equivalent:

1. N is a ϕ-2-absorbing primary subsemimodule of M.
2. For every $r \in R$ and $x \in M$ with $r x \notin N$,

$$
(N: r x) \subseteq(\sqrt{(N: M)}: r) \cup(N: x) \cup(\phi(N): r x) .
$$

Proof. First, let $a \in(N: r x)$. Then $\operatorname{ar} x \in N$. If $\operatorname{ar} x \in \phi(N)$, then $a \in(\phi(N): r x)$. If $\operatorname{ar} x \notin \phi(N)$, then $\operatorname{ar} x \in N \backslash \phi(N)$. Since N is a $\phi-2$ absorbing primary subsemimodule of M and $r x \notin N$, we have $a x \in N$ or $a \in(\sqrt{(N: M)}: r)$. Hence $(N: r x) \subseteq(\sqrt{(N: M)}: r) \cup(N: x) \cup(\phi(N):$ $r x)$.

Conversely, let $r, s \in R$ and $x \in M$ with $r s x \in N \backslash \phi(N)$ and $r x \notin N$. Since $r s x \in N$ and $r s x \notin \phi(N)$, we obtain $s \in(N: r x)$ and $s \notin(\phi(N)$: $r x)$. From $(N: r x) \subseteq(\sqrt{(N: M)}: r) \cup(N: x) \cup(\phi(N): r x)$. Thus, $s \in(\sqrt{(N: M)}: r)$ or $s \in(N: x)$. Hence, $s r \in \sqrt{(N: M)}$ or $s x \in N$. Therefore, N is a ϕ-2-absorbing primary subsemimodule of M.

Moradi and Ebrahimpour [12] introduced the definition of ϕ-triple-zero within the context of submodules. In this work, we will extend and adapt this definition to apply specifically to subsemimodules.

Definition 3.4. Let M be an R-semimodule, and $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ a function. Assume that N is a ϕ-2-absorbing primary subsemimodule of $M, r, s \in R$ and $x \in M$. We say (r, s, x) is a ϕ-triple-zero of N if $r s x \in \phi(N), r x, s x \notin N$ and $r s \notin \sqrt{(N: M)}$.

Theorem 3.5. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ a function, and let N be a subtractive subsemimodule of M such that $\phi(N) \subseteq$ N. Assume that N is a ϕ-2-absorbing primary subsemimodule of M and (r, s, x) is a ϕ-triple-zero of N. Then the following statements hold:

1. $r(N: M) x \subseteq \phi(N)$ and $s(N: M) x \subseteq \phi(N)$.
2. $(N: M)^{2} x \subseteq \phi(N)$.
3. $r s N \subseteq \phi(N)$.
4. $r(N: M) N \subseteq \phi(N)$ and $s(N: M) N \subseteq \phi(N)$.

Proof. (1). Suppose that there exists $t \in(N: M)$ such that $r t x \notin \phi(N)$. Since (r, s, x) is a ϕ-triple-zero of N, we have $r s x \in \phi(N)$. So, $r(s+t) x=$ $r s x+r t x \notin \phi(N)$. Since $\phi(N) \subseteq N$, we obtain $r(s+t) x \in N \backslash \phi(N)$.

Since N is a ϕ-2-absorbing primary subsemimodule of M and $r x, s x \notin N$, we have $r(t+s) \in \sqrt{(N: M)}$. By Lemma 2.6 and $r t \in(N: M)$, we have $r s \in \sqrt{(N: M)}$, which is a contradiction with ϕ-triple-zero of N. Therefore, $r(N: M) x \subseteq \phi(N)$. Similarly, $s(N: M) x \subseteq \phi(N)$.
(2). Suppose that there exists $t, k \in(N: M)$ such that $t k x \notin \phi(N)$. Since (r, s, x) is a ϕ-triple-zero of N, we have $r s x \in \phi(N)$. By part (1), we have $s t x, r k x \in \phi(N)$. Thus, $(t+r)(k+s) x \notin \phi(N)$. Then $(t+r)(k+s) x \in$ $N \backslash \phi(N)$. Since N is a ϕ-2-absorbing primary subsemimodule of M and $r x, s x \notin N$, we have $(t+r)(k+s) \in \sqrt{(N: M)}$. By Lemma 2.6, we obtain $r s \in \sqrt{(N: M)}$, which is a contradiction with ϕ-triple-zero of N. Hence, $(N: M)^{2} x \subseteq \phi(N)$.
(3). Suppose that there exists $y \in N$ such that $r s y \notin \phi(N)$. Since (r, s, x) is a ϕ-triple-zero of N, we have $r s x \in \phi(N)$. So, $r s(x+y) \notin \phi(N)$. Then $r s(x+y) \in N \backslash \phi(N)$ because $\phi(N) \subseteq N$. Since N is a $\phi-2$-absorbing primary subsemimodule, $r(x+y) \in N$ or $s(x+y) \in N$ or $r s \in \sqrt{(N: M)}$. Since N is a subtractive subsemimodule and $y \in N$, we obtain $r x \in N$ or $s x \in N$ or $r s \in \sqrt{(N: M)}$, which is a contradiction with ϕ-triple-zero of N. Therefore, $r s N \subseteq \phi(N)$.
(4). Suppose that there exists $t \in(N: M)$ and $y \in N$ such that $r t y \notin \phi(N)$. Since (r, s, x) is a ϕ-triple-zero of N, we obtain $r s x \in \phi(N)$. By parts (1) and (3), we have $r t x, r s y \in \phi(N)$. So, $r(s+t)(x+y) \notin \phi(N)$. Since $\phi(N) \subseteq N$ and $y \in N$, we get $r(s+t)(x+y) \in N \backslash \phi(N)$. Since N is a ϕ-2-absorbing primary subsemimodule, $r(x+y) \in N$ or $(s+t)(x+y) \in N$ or $r(s+t) \in \sqrt{(N: M)}$. Since N is a subtractive subsemimodule and Lemma 2.6, we have $r x \in N$ or $s x \in N$ or $r s \in \sqrt{(N: M)}$, which is a contradiction with ϕ-triple-zero of N. Hence, $r(N: M) N \subseteq \phi(N)$. Similarly, $s(N$: $M) N \subseteq \phi(N)$.

Corollary 3.6. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\} a$ function, and let N be a subtractive subsemimodule of M such that $\phi(N) \subseteq$ N. Assume that N is a ϕ-2-absorbing primary subsemimodule of M and is not a 2-absorbing primary subsemimodule. Then $(N: M)^{2} N \subseteq \phi(N)$.

Proof. Since N is a ϕ-2-absorbing primary subsemimodule of M and is not a 2 -absorbing primary subsemimodule, we have (r, s, x) is a ϕ-triplezero of N. Assume that $t, k \in(N: M), y \in N$ and tky $\notin \phi(N)$. So, $t k y \in N \backslash \phi(N)$. Consider $(r+t)(s+k)(x+y) \notin \phi(N)$ because N is a $\phi-$ triple zero and Theorem 3.5 and $\phi(N) \subseteq N$ is subtractive subsemimodule. Then $(r+t)(s+k)(x+y) \in N \backslash \phi(N)$. Since N is a ϕ-2-absorbing primary
subsemimodule, we have $(r+t)(x+y) \in N$ or $(s+k)(x+y) \in N$ or $(r+t)(s+k) \in \sqrt{(N: M)}$. Since N is a subtractive subsemimodule and Lemma 2.6, we have $r x \in N$ or $s x \in N$ or $r s \in \sqrt{(N: M)}$, which is a contradiction with ϕ-triple-zero of N. Therefore, $(N: M)^{2} N \subseteq \phi(N)$.

To illustrate Theorem 3.16(3), consider the following example. We define a function $\phi: S\left(\mathbb{Z}_{0}^{+}\right) \rightarrow S\left(\mathbb{Z}_{0}^{+}\right) \cup\{\emptyset\}$ by $\phi(A)=2 A$ where $A \in S\left(\mathbb{Z}_{0}^{+}\right)$. In this context, $15 \mathbb{Z}_{0}^{+}$is demonstrably a ϕ-2-absorbing primary subsemimodule and a subtractive subsemimodule of \mathbb{Z}_{0}^{+}. Interestingly, $30 \mathbb{Z}_{0}^{+}=$ $\phi\left(15 \mathbb{Z}_{0}^{+}\right) \subseteq 15 \mathbb{Z}_{0}^{+}$. Furthermore, the triplet $(3,10,2)$ qualifies as a ϕ-triplezero of $15 \mathbb{Z}_{0}^{+}$. In this case, $(3 \cdot 10) \cdot 15 \mathbb{Z}_{0}^{+}=450 \mathbb{Z}_{0}^{+} \subseteq 30 \mathbb{Z}_{0}^{+}$, which aligns with the concept outlined in Theorem 3.16(3).

In 2017, the concept of weakly ϕ-2-absorbing primary submodules was introduced by Moradi and Ebrahimpour [12]. In the current study, we will extend this idea and provide a definition for weakly ϕ-2-absorbing primary subsemimodules.

Definition 3.7. Let M be an R-semimodule, $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function, where $S(M)$ is the set of R-module M. They said that a proper submodule N of M is a weakly ϕ-2-absorbing primary submodule if $0 \neq r s x \in N \backslash \phi(N)$ implies $r x \in N$, or $s x \in N$, or $r s \in \sqrt{(N: M)}$, where $r, s \in R$ and $x \in M$.

Proposition 3.8. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\} a$ function, and let N be subtractive subsemimodule of M such that $\phi(N) \subseteq N$ that is not 2-absorbing primary subsemimodule of M. If N is a weakly 2absorbing primary subsemimodule of M, then $(N: M)^{2} N=\{0\}$.

Proof. Assume that N is a weakly 2-absorbing primary subsemimodule of M but N is not 2-absorbing primary subsemimodule of M. Then N is a ϕ_{0}-2-absorbing primary subsemimodule of M. By Corollary 3.6, we obtain $(N: M)^{2} N \subseteq \phi_{0}(N)=\{0\}$. Clearly, $\{0\} \subseteq(N: M)^{2} N$. Thus, $(N:$ $M)^{2} N=\{0\}$.

Subsequently, we analyze the function ϕ_{n}, as defined in Definition 2.7, for cases where $n \leqslant 4$. We also explore the function ϕ_{ω}, also defined in Definition 2.7 , which establishes a connection with ϕ-2-absorbing primary subsemimodules.

Proposition 3.9. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup$ $\{\emptyset\}$ a function, and let N be subtractive subsemimodule of M such that
$\phi(N) \subseteq N$ that is not 2-absorbing primary subsemimodule of M. If N is a ϕ-2-absorbing primary subsemimodule of M for some ϕ with $\phi \leqslant \phi_{4}$, then $(N: M)^{2} N=(N: M)^{3} N$.

Proof. Assume that N is a ϕ-2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_{4}$ and N is not 2 -absorbing primary subsemimodule. By Corollary 3.6, we obtain $(N: M)^{2} N \subseteq \phi(N)$. Since $\phi \leqslant \phi_{4}$, then $\phi(N) \subseteq \phi_{4}(N)=$ $(N: M)^{3} N$. Now, we have $(N: M)^{2} N \subseteq(N: M)^{3} N$. Since N is an R-semimodule, we have $(N: M)^{3} N=(N: M)(N: M)^{2} N \subseteq(N: M)^{2} N$. Therefore, $(N: M)^{2} N=(N: M)^{3} N$.

Corollary 3.10. Let M be an R-semimodule, $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ a function, and let N be subtractive subsemimodule of M such that $\phi(N) \subseteq N$. If N is a ϕ-2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_{4}$, then N is a ϕ_{ω}-2-absorbing primary subsemimodule of M.

Proof. Assume that N is a ϕ-2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_{4}$. It's clear that N is a ϕ_{ω}-2-absorbing primary subsemimodule of M if N is a 2-absorbing primary subsemimodule. Now, we consider in case that N is not 2-absorbing primary, then $(N: M)^{2} N=(N: M)^{3} N$, by Proposition 3.9. Since N is a ϕ-2-absorbing primary subsemimodule of M with $\phi \leqslant \phi_{4}$, we have N is $\phi_{4}-2$-absorbing primary. So, $\phi_{\omega}(N)=$ $\bigcap_{m=0}^{\infty}(N: M)^{m} N=(N: M)^{3} N=\phi_{4}$. Thus, N is a ϕ_{ω}-2-absorbing primary subsemimodule of M.

Lemma 3.11. Let N be a subtractive ϕ-2-absorbing primary subsemimodule of an R-semimodule M and $a, b \in R$. Suppose that $a b K \subseteq N \backslash \phi(N)$ for some subsemimodule K of M. Then $a b \in \sqrt{(N: M)}$ or $a K \subseteq N$ or $b K \subseteq N$.

Proof. Let $a b K \subseteq N \backslash \phi(N)$ for some subsemimodule K of M. Assume that $a b \notin \sqrt{(N: M)}, a K \nsubseteq N$ and $b K \nsubseteq N$. Then $a k_{1} \notin N$ and $b k_{2} \notin N$ for some $k_{1}, k_{2} \in K$. Since $a b k_{1} \in N \backslash \phi(N), a b \notin \sqrt{(N: M)}, a k_{1} \notin N$ and N is a ϕ-2-absorbing primary subsemimodule, we have $b k_{1} \in N$. Since $a b k_{2} \in N \backslash \phi(N), a b \notin \sqrt{(N: M)}, b k_{2} \notin N$ and N is a ϕ-2-absorbing primary subsemimodule, we obtain $a k_{2} \in N$. We know that $a b\left(k_{1}+k_{2}\right) \in N \backslash \phi(N)$ and $a b \notin \sqrt{(N: M)}$. Since N is a ϕ-2-absorbing primary subsemimodule, we have $a\left(k_{1}+k_{2}\right) \in N$ or $b\left(k_{1}+k_{2}\right) \in N$. If $a\left(k_{1}+k_{2}\right) \in N$, then $a k_{1} \in N$ (as N is a subtractive), which is a contradiction. If $b\left(k_{1}+k_{2}\right) \in N$, then $b k_{2} \in N$ (as N is a subtractive), which is a contradiction. Hence, $a b \in \sqrt{(N: M)}$ or $a K \subseteq N$ or $b K \subseteq N$.

Theorem 3.12. Let K be a subtractive subsemimodule of M and $\sqrt{(K: M)}$ be a subtractive ideal of R. If K is a ϕ-2-absorbing primary subsemimodule of M, then whenever $I J N \subseteq K \backslash \phi(K)$ for some ideals I, J of R and a subsemimodule N of M, then $I J \subseteq \sqrt{(K: M)}$ or $I N \subseteq K$ or $J N \subseteq K$.

Proof. Let K be a ϕ-2-absorbing primary subsemimodule of M. Assume that $I J N \subseteq K \backslash \phi(K)$ for some ideals I, J of R and a subsemimodule N of M. Suppose that $I J \nsubseteq \sqrt{(K: M)}, I N \nsubseteq K$ and $J N \nsubseteq K$. Then $a_{1} N \nsubseteq K$ and $b_{1} N \nsubseteq K$ for some $a_{1} \in I$ and $b_{1} \in J$. Since $a_{1} b_{1} N \subseteq$ $K \backslash \phi(K), a_{1} N \nsubseteq K, b_{1} N \nsubseteq K$ and Lemma 3.11, we have $a_{1} b_{1} \in \sqrt{(K: M)}$. Since $I J \nsubseteq \sqrt{(K: M)}$, we have $a_{2} b_{2} \notin \sqrt{(K: M)}$ for some $a_{2} \in I$ and $b_{2} \in J$. Since $a_{2} b_{2} N \subseteq K \backslash \phi(K)$ and $a_{2} b_{2} \notin \sqrt{(K: M)}$, we have $a_{2} N \subseteq K$ or $b_{2} N \subseteq K$ by Lemma 3.11. Here three cases arise.

Case I: When $a_{2} N \subseteq K$ but $b_{2} N \nsubseteq K$. Since $a_{1} b_{2} N \subseteq K \backslash \phi(K)$, $b_{2} N \nsubseteq K$ and $a_{1} N \nsubseteq K$, then by Lemma 3.11, $a_{1} b_{2} \in \sqrt{(K: M)}$. We know that $a_{2} N \subseteq K$ but $a_{1} N \nsubseteq K$, so $\left(a_{1}+a_{2}\right) N \nsubseteq K$ (as K is subtractive). Since $\left(a_{1}+a_{2}\right) b_{2} N \subseteq K \backslash \phi(K), b_{2} N \nsubseteq K$ and $\left(a_{1}+a_{2}\right) N \nsubseteq K$, we have $\left(a_{1}+\right.$ $\left.a_{2}\right) b_{2} \in \sqrt{(K: M)}$ by Lemma 3.11. Since $a_{1} b_{2} \in \sqrt{(K: M)}$ and $\sqrt{(K: M)}$ is subtractive, we have $a_{2} b_{2} \in \sqrt{(K: M)}$, which is a contradiction.

Case II: When $b_{2} N \subseteq K$ but $a_{2} N \nsubseteq K$. We can conclude similary to Case I.

Case III: When $a_{2} N \subseteq K$ and $b_{2} N \subseteq K$. Since $b_{2} N \subseteq K$ and $b_{1} N \nsubseteq$ K, we have $\left(b_{1}+b_{2}\right) N \nsubseteq K$. Since $a_{1}\left(b_{1}+b_{2}\right) N \subseteq K \backslash \phi(K),\left(b_{1}+b_{2}\right) N \nsubseteq K$ and $a_{1} N \nsubseteq K$, we get that $a_{1}\left(b_{1}+b_{2}\right) \in \sqrt{(K: M)}$ by Lemma 3.11. Since $a_{1} b_{1} \in \sqrt{(K: M)}$ and $\sqrt{(K: M)}$ is subtractive, we conclude that $a_{1} b_{2} \in \sqrt{(K: M)}$. Since $a_{2} N \subseteq K, a_{1} N \nsubseteq K$ and K is subtractive implies $\left(a_{1}+a_{2}\right) N \nsubseteq K$. Since $\left(a_{1}+a_{2}\right) b_{1} N \subseteq K \backslash \phi(K),\left(a_{1}+a_{2}\right) N \nsubseteq K$ and $b_{1} N \nsubseteq K$, we have $\left(a_{1}+a_{2}\right) b_{1} \in \sqrt{(K: M)}$ by Lemma 3.11. Since $a_{1} b_{1} \in$ $\sqrt{(K: M)},\left(a_{1}+a_{2}\right) b_{1} \in \sqrt{(K: M)}$ and $\sqrt{(K: M)}$ is subtractive, we have $a_{2} b_{1} \in \sqrt{(K: M)}$. Since $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right) N \subseteq K \backslash \phi(K),\left(a_{1}+a_{2}\right) N \nsubseteq K$ and $\left(b_{1}+b_{2}\right) N \nsubseteq K$, by Lemma 3.11, $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right) \in \sqrt{(K: M)}$. Since $a_{2} b_{1}, a_{1} b_{2}, a_{1} b_{1} \in \sqrt{(K: M)}$ and $\sqrt{(K: M)}$ is subtractive, then $a_{2} b_{2} \in$ $\sqrt{(K: M)}$, which is a contradiction.

Hence, $I J \subseteq \sqrt{(K: M)}$ or $I N \subseteq K$ or $J N \subseteq K$.
Theorem 3.13. Let M an R-semimodule, and let $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ be a function. Assume that N is a subsemimodule of M such that $\phi(N)$ is a

2-absorbing primary subsemimodule of M and $\phi(N) \subseteq N$. Then N is a ϕ 2 -absorbing primary subsemimodule of M if and only if N is a 2 -absorbing primary subsemimodule of M.

Proof. First, assume that N is a ϕ-2-absorbing primary subsemimodule of M and $\phi(N)$ is a 2 -absorbing primary subsemimodule of M. Let $r, s \in R$ and $x \in M$ with $r s x \in N$. Suppose that neither $r x$ nor $s x$ is in N. Here two cases arise.

Case I: $r s x \in \phi(N)$. Then $r s \in \sqrt{(\phi(N): M)} \subseteq \sqrt{(N: M)}$ because $\phi(N)$ is a ϕ-2-absorbing primary subsemimodule, $\phi(N) \subseteq N$ and $r x, s x \notin$ N.

Case II: $r s x \notin \phi(N)$. Since N is a ϕ-2-absorbing primary subsemimodule and $r x, s x \notin N$, we obtain $r s \in \sqrt{(N: M)}$.

Conversely, it's clearly.
Let M be an R-semimodule, N be a Q-subsemimodule of M. For a function $\phi: S(M) \longrightarrow S(M) \cup\{\emptyset\}$ we define the function $\phi_{N}: S\left(M / N_{(Q)}\right) \longrightarrow$ $S\left(M / N_{(Q)}\right) \cup\{\emptyset\}$ by $\phi_{N}(K / N)=\phi(K) / N_{(\phi(K) \cap Q)}$ if $\phi(K) \neq \emptyset$, and $\phi_{N}(K / N)=\emptyset$ if $\phi(K)=\emptyset$, for every subsemimodule K of M with $N \subseteq K$.

Theorem 3.14. Let M be an R-semimodule, N a Q-subsemimodule of M and $P, \phi(P)$ are subtractive subsemimodules of M with $N \subseteq P$. Then P is a ϕ-2-absorbing primary subsemimodule of M if and only if $P / N_{(Q \cap P)}$ is a $\phi_{N}-2$-absorbing primary subsemimodule of $M / N_{(Q)}$.

Proof. First, assume that P is a ϕ-2-absorbing primary subsemimodule of M. Then we have $P / N_{(Q \cap P)}$ is a subsemimodule of $M / N_{(Q)}$. Now let $r, s \in R$ and $q_{1}+N \in M / N_{(Q)}$ where $q_{1} \in Q$ be such that $r s \odot\left(q_{1}+N\right) \in$ $P / N_{(Q \cap P)} \backslash \phi_{N}\left(P / N_{(Q \cap P)}\right)$. Then there existe unique $q_{2} \in Q \cap P$ such that $r s \odot\left(q_{1}+N\right)=q_{2}+N$ where $r s q_{1}+N \subseteq q_{2}+N$. Since $q_{2} \in P$ and $N \subseteq P$, we have $r s q_{1}+N \subseteq P$. Since $N \subseteq P$ and P is a subtractive subsemimodule, $r s q_{1} \in P$. Since $r s q_{1}+N \subseteq q_{2}+N \notin \phi_{N}\left(P / N_{(Q \cap P)}\right)$, we obtain $r s q_{1}+N \subseteq$ $q_{2}+N \notin \phi(P) / N_{(Q \cap \phi(P))}$. Thus, we have $r s q_{1}=q_{2}+x$ for some $x \in N \subseteq$ $\phi(P)$. Since $q_{2} \notin Q \cap \phi(P)$, we get $q_{2} \notin \phi(P)$. Then $r s q_{1}=q_{2}+x \notin \phi(P)$ because $\phi(P)$ is subtractive. Now, we have $r s q_{1} \in P \backslash \phi(P)$. Since P is a ϕ-2-absorbing subsemimodule of M, it can be concluded that $r q_{1} \in P$ or $s q_{1} \in P$ or $r s \in \sqrt{(P: M)}$. We claim that $r \odot\left(q_{1}+N\right) \in P / N_{(Q \cap P)}$ or $s \odot\left(q_{1}+N\right) \in P / N_{(Q \cap P)}$ or $r s \in \sqrt{\left(P / N_{(Q \cap P)}: M / N_{(Q)}\right.}$.

Case I: $r q_{1} \in P$. Since $q_{1} \in Q$, we have $r q_{1} \in Q$. Then $r q_{1} \in Q \cap P$. So, $r q_{1}+N \in P / N_{(Q \cap P)}$. Moreover, $r \odot\left(q_{1}+N\right)=q_{3}+N$ where $q_{3} \in Q$ is unique such that $r q_{1}+N \subseteq q_{3}+N$. Then $r q_{1}=q_{3}+x_{1}$ for some $x_{1} \in N \subseteq P$. Since P is subtractive, we have $q_{3} \in P$. Thus, $r \odot\left(q_{1}+N\right)=q_{3}+N \in P / N_{(Q \cap P)}$.

Case II: $s q_{1} \in P$. We can conclude similarly to Case I that $s \odot\left(q_{1}+N\right) \in$ $P / N_{(Q \cap P)}$.

Case III: $r s \in \sqrt{(P: M)}$. Then there exists $k \in \mathbb{N}$ such that $(r s)^{k} \in$ $(P: M)$. So, $(r s)^{k} M \subseteq P$. Let $q+N \in M / N_{(Q)}$ where $q \in Q$. Consider $(r s)^{k} \odot(q+N)=q_{4}+N$ where $q_{4} \in Q$ is unique such that $(r s)^{k}+N \subseteq q_{4}+N$. So, $(r s)^{k} q=q_{4}+x_{2}$ for some $x_{2} \in N \subseteq P$. Since $(r s)^{k} \in(P: M)$, we have $(r s)^{k} q \in P$. Hence, $q_{4} \in P$ because P is subtractive. Then $q_{4} \in Q \cap P$. Thus, $(r s)^{k} \odot(q+N)=q_{4}+N \in P / N_{(Q \cap P)}$. Hence, $r s \in$ $\sqrt{\left(P / N_{(Q \cap P)}: M / N_{(Q)}\right.}$.

Therefore, $P / N_{(Q \cap P)}$ is a ϕ_{N}-2-absorbing primary subsemimodule of $M / N_{(Q)}$.

Conversely, assume that $P / N_{(Q \cap P)}$ is a ϕ_{N}-2-absorbing primary subsemimodule of M. Let $r, s \in R$ and $x \in M$ such that $r s x \in P \backslash \phi(P)$. Since N is a Q-subsemimodule of M and $x \in M$, we have $x \in q_{1}+N$ where $q_{1} \in Q$. So, $r s x \in r s \odot\left(q_{1}+N\right)$. Let $r s \odot\left(q_{1}+N\right)=q_{2}+N$ where q_{2} is the unique element of Q such that $r s q_{1}+N \subseteq q_{2}+N$. Then $r s x \in q_{2}+N$. So there is $y \in N$ such that $q_{2}+y=r s x \in P$. Since $y \in N \subseteq P$ and P is subtractive, we obtain $q_{2} \in P$. Then $q_{2} \in Q \cap P$. Thus, $r s \odot\left(q_{1}+N\right)=q_{2}+N \in P / N_{(Q \cap P)}$. Consider $r s x \notin \phi(P)$ and $y \in N \subseteq \phi(P)$. Since $r s x=q_{2}+y$ and $\phi(P)$ is subsemimodule, we have $q_{2} \notin \phi(P)$ so that $q_{2}+N \notin \phi(P) / N_{(Q \cap \phi(P))}=\phi_{N}(P / N)$. Now, we have $r s \odot\left(q_{1}+N\right)=q_{2}+N \notin P / N_{(Q \cap P)} \backslash \phi_{N}(P / N)$. Since $P / N_{(Q \cap P)}$ is a ϕ_{N}-2-absorbing primary subsemimodule of $M / N_{(Q)}$, we get $r \odot\left(q_{1}+N\right) \in$ $P / N_{(Q \cap P)}$ or $s \odot\left(q_{1}+N\right) \in P / N_{(Q \cap P)}$ or $r s \in \sqrt{\left(P / N_{(Q \cap P)}: M / N_{(Q)}\right)}$. Here three cases arise.

Case I: $r \odot\left(q_{1}+N\right) \in P / N_{(Q \cap P)}$. Then $r \odot\left(q_{1}+N\right)=q_{2}+N$ where q_{2} is the unique element of $Q \cap P$ such that $r q_{1}+N \subseteq q_{2}+N$. Thus, $r q_{1}+N \subseteq q_{2}+N \subseteq P$ because $N \subseteq P$ and $q_{2} \in Q \cap P$. So, $x \in q_{1}+N$ that $r x \in r\left(q_{1}+N\right) \subseteq r q_{1}+N \subseteq q_{2}+N \subseteq P$. Thus, $r x \in P$.

Case II: $s \odot\left(q_{1}+N\right) \in P / N_{(Q \cap P)}$. We can conclude similarly to Case I that $s x \in P$.

Case III: $r s \in \sqrt{\left(P / N_{(Q \cap P)}: M / N_{(Q)}\right)}$. Then $(r s)^{k} \odot M / N_{(Q)} \subseteq$ $P / N_{(Q \cap P)}$ for some $k \in \mathbb{N}$. Let $m \in M$. So, there is unique $q_{3} \in Q$ such that $m \in q_{3}+N$ and $(r s)^{k} m \in(r s)^{k}\left(q_{3}+N\right) \subseteq(r s)^{k} \odot\left(q_{3}+N\right)=q_{4}+N$ where q_{4} is the unique element of Q such that $(r s)^{k} q_{3}+N \subseteq q_{4}+N$. Now, $q_{4}+N=(r s)^{k} \odot\left(q_{3}+N\right) \in P / N_{(Q \cap P)}$. Then $(r s)^{k} m \in q_{4}+N \subseteq P$. So, $(r s)^{k} M \subseteq P$. Thus, $(r s)^{k} M \subseteq P$. Therefore, $r s \in \sqrt{(P: M)}$.

Hence, P is a ϕ-2-absorbing primary subsemimodule of M.
Corollary 3.15. Let M be an R-semimodule, N a Q-subsemimodule of M, and let P and $\phi(P)$ be subtractive subsemimodules of M with $N \subseteq P$. If $\phi(P)=N$ and P is a ϕ-2-absorbing primary subsemimodule of M, then $P / N_{(Q \cap P)}$ is a weakly 2-absorbing primary subsemimodule of $M / N_{(Q)}$.

Proof. Since $\phi(P)=N$, we have $\phi_{N}(P / N)=\phi(P) / N=\{0\}$. By Theorem 3.14, we conclude that $P / N_{(Q \cap P)}$ is a weakly 2-absorbing primary subsemimodule of $M / N_{(Q)}$.

References

[1] D.D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686 - 696.
[2] R.E. Atani, and S.E. Atani, On subsemimodules of semimodules, Bul. Acad. Siinte Repub. Mold. Mat., 63 (2010), no. 2, 20 - 30.
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), no. 3, 417 - 429.
[4] J.N. Chaudhari and B.R. Bonde, On partitioning and subtractive subsemimodules of semimodules over semirings, Kyungpook Math. J., 50 (2010), $329-336$.
[5] J.N. Chaudhari and B.R. Bonde, Weakly prime subsemimodules of semimodules over semirings, Int. J. Algebra, 5 (2011), no. 4, 167 - 174.
[6] J.N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra, 6 (2012), no. 6, 265-270.
[7] A.Y. Darani, and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai. J. Math., 9 (2011), no. 3, $577-584$.
[8] M.K. Dubey and P. Sarohe, On 2-absorbing semimodules, Quasigroups Related Syst., 21 (2013), 175 - 184.
[9] M. K. Dubey and P. Sarohe, On 2-absorbing primary subsemimodules over commutative semirings, Bul. Acad. Stiinte Repub. Mold., Mat., 78 (2015), no. 2, $27-35$.
[10] J.S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, (1999).
[11] P. Kumar, M.K. Dubey and P. Sarohe, On 2-absorbing ideals in commutative semiring, Quasigroups Related Syst. 24 (2016), $67-74$.
[12] R. Moradi and M. Ebrahimpour, On ϕ-2-absorbing primary submodule, Acta Math. Vietnam, 42 (2017), $27-35$.
[13] P. Petchkaew, A. Wasanawichit, and S. Pianskool, Generalizations of n-absorbing ideals of commutative semirings, Thai. J. Math., 14 (2016), no. 2, 477 - 489 .

Received August 13, 2023
I. Thongsomnuk

Division of Mathematics, Faculty of Science and Technology, Phetchaburi Rajabhat University, Na Wung, Muang, Phetchaburi 76000, Thailand
E-mail: issaraporn.tho@mail.pbru.ac.th
R. Chinram

Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
E-mail: ronnason.c@psu.ac.th
P. Singavanada

Program in Mathematics, Faculty of Science and Technology, Songkhla Rajabhat University, Khoa-Roob-Chang, Muang, Songkhla 90000, Thailand
pattarawan.pe@skru.ac.th
P. Chumket

Division of Mathematics, Faculty of Science Technology and Agriculture, Yala Rajabhat University, Tambol Sateng, Mueang, Yala 95000, Thailand
E-mail: patipat.c@yru.ac.th

[^0]: 2010 Mathematics Subject Classification: 13C05, 13C13, 16Y60
 Keywords: Semimodule, ϕ-2-absorbing primary subsemimodule, subtractive subsemimodule, Q-subsemimodule

