https://doi.org/10.56415/qrs.v32.09

On weakly f-clean rings

Fatemeh Rashedi

Abstract

Let R be an associative ring with identity and $\operatorname{Id}(R)$ and $K(R)$ denote the set of idempotents and full elements of R respectively. The notion of weakly f-clean rings where element r can be written as $r=f+e$ or $r=f-e, e \in \operatorname{Id}(R)$ and $f \in K(R)$ was introduced. Different properties of weakly f-clean rings were studied. It was shown that a left quasi-duo ring R is weakly clean if and only if R is a weakly f-clean ring. Finally, it was shown that the ring of skew Hurwitz series $T=(H R, \alpha)$ where α is an automorphism of R is weakly f-clean if and only if R is weakly f-clean.

1. Introduction

Let R be an associative ring with identity and $U(R)$ and $\operatorname{Id}(R)$ denote the set of units and idempotents of R respectively. The ring R is clean if for each $r \in R$ there exist $u \in U(R)$ and $e \in \operatorname{Id}(R)$ such that $r=u+e[2,15]$. A ring R is weakly clean if each $r \in R$ can be written in the form $r=u+e$ or $r=u-e$ where $u \in U(R)$ and $e \in \operatorname{Id}(R)[1,5,8,13]$. Other generalizations of clean rings have been introduced $[3,6,9,10,16]$ An element $f \in R$ is full element if there exist $x, y \in R$ such that $x f y=1 . K(R)$ will denote the set of full elements of R. An element $r \in R$ is said to be f-clean if it can be written as the sum of an idempotent and a full element. A ring R is said to be f-clean if each element in R is a f-clean element $[12,14]$.

In this paper, we introduce the notion of a weakly f-clean ring as a new generalization of a weakly clean ring and a f-clean ring. Let R be a ring. An element $r \in R$ is called weakly f-clean if there exist $f \in K(R)$ and $e \in I d(R)$ of R such that $r=f+e$ or $r=f-e$. A ring R is called weakly f-clean if every element of R is weakly f-clean. Various properties of weakly f-clean rings and weakly f-clean elements were studied. We showed that, every homomorphic image of a weakly f-clean ring is weakly f-clean and

[^0]$\prod_{i \in I} R_{i}$ is weakly f-clean if and only if every R_{i} is weakly f-clean (Lemma 2.8). We also showed that, if R is a weakly f-clean ring and $e \in R$ is a central idempotent, then the corner ring $e R e$ is weakly f-clean (Lemma 2.13). A left quasi-duo ring R is weakly clean if and only if R isa weakly f clean ring (Theorem 2.17). Finally, we showed that the ring of skew Hurwitz series $T=(H R, \alpha)$ where α is an automorphism of R is weakly f-clean if and only if R is weakly f-clean (Theorem 2.23).

2. Main results

We start our work with the following definition.
Definition 2.1. An element $f \in R$ is said to be a full element if there exist $x, y \in R$ such that $x f y=1$. The set of all full elements of a ring R will be denoted by $K(R)$. Obviously, invertible elements and one-sided invertible elements are all in $K(R)$ [14].

Definition 2.2. An element in R is said to be f-clean if it can be written as the sum of an idempotent and a full element. A ring R is called a f-clean ring if each element in R is a f-clean element [14].

In the following, we define the weakly f-clean rings. Then we study some of the basic properties of weakly f-clean rings. Moreover, we give some necessarily examples.

Definition 2.3. Let R be a ring. Then an element $r \in R$ is called weakly f-clean if there exist $f \in K(R)$ and $e \in I d(R)$ of R such that $r=f+e$ or $r=f-e$. A ring R is called weakly f-clean if every element of R is weakly f-clean.

Example 2.4. Every clean, weakly clean or f-clean ring is weakly f-clean. Since every purely infinite simple ring is a f-clean ring, and so is weakly f-clean [14]. ($\left.\mathbb{Z}_{8},+,.\right)$ is a weakly f-clean ring, but $(\mathbb{Z},+,$.$) is not a weakly$ f-clean ring.

A weakly f-clean ring is not f-clean, in general.
Example 2.5. Let p and q be two distinct odd primes. Then the ring

$$
\mathbb{Z}_{(p)} \cap \mathbb{Z}_{(q)}=\left\{\left.\frac{r}{s} \right\rvert\, r, s \in \mathbb{Z}, s \neq 0, p \nmid s, q \nmid s\right\}
$$

is a weakly f-clean ring that is not f-clean.

Proposition 2.6. Let R be a ring and $r \in R$. Then r is weakly f-clean if and only if $-r$ weakly f-clean.

Proof. Suppose that r is weakly f-clean. Hence $r=f+e$ or $r=f-e$ for some $f \in K(R)$ and $e \in I d(R)$. Then $-r=-f-e$ or $-r=-f+e$. Since $-f \in K(R),-r$ weakly f-clean.

Proposition 2.7. Let R be a ring and every idempotent of R is central. Then $r \in R$ is weakly f-clean if and only if $1-r$ or $1+r$ is f-clean.

Proof. Suppose r is weakly f-clean. Hence $r=f+e$ or $r=f-e$ for some $f \in K(R)$ and $e \in I d(R)$. Then $1-r=-f+(1-e)$ or $1+r=f+(1-e)$, and so $1-r$ or $1+r$ is f-clean. Conversely, assume that $1-r$ or $1+r$ is f-clean. Hence $1-r=f+e$ or $1+r=f+e$ for some $f \in K(R)$ and $e \in I d(R)$. Then $r=-f+(1-e)$ or $r=f-(1-e)$, thus r is weakly f-clean.

Lemma 2.8.

(i) Every homomorphic image of a weakly f-clean ring is weakly f-clean.
(ii) Let $\left\{R_{i}\right\}_{i \in I}$ be a family of rings. Then $\prod_{i \in I} R_{i}$ is weakly f-clean if and only if every R_{i} is weakly f-clean.

Proof. (i). Is clear.
(ii). Suppose that every R_{i} is weakly f-clean and $r=\left(r_{i}\right) \in R$. Hence $r_{i}=f_{i}+e_{i}$ or $r_{i}=f_{i}-e_{i}$ for some $f_{i} \in K\left(R_{i}\right)$ and $e_{i} \in \operatorname{Id}\left(R_{i}\right)$. Then $r=f+e$ such that $f=\left(f_{i}\right) \in K(R)$ and $e=\left(e_{i}\right) \in I d(R)$, and so R is weakly f-clean. The converse follows from (i).

Let I be an ideal of a ring R. We say that idempotents of R are lifted modulo I if, for given $r \in R$ with $r-r^{2} \in I$, there exists $e \in \operatorname{Id}(R)$ such that $e-r \in \operatorname{Id}(R)$ [15].

Lemma 2.9. Let R be a ring such that idempotents are lifted modulo $J(R)$. Then R is weakly f-clean if and only if $R / J(R)$ is weakly f-clean.

Proof. Suppose that R is weakly f-clean. Hence $R / J(R)$ is weakly f-clean, by Lemma 2.8. Conversely, assume that $R / J(R)$ is weakly f-clean and $r \in R$. Hence $r+J(R)=(f+J(R))+(e+J(R))$ or $r+J(R)=(f+J(R))-$ $(e+J(R))$ with $e^{2}-e \in J(R)$ and $(x+J(R))(f+J(R))(y+J(R))=1+J(R)$ for some $x, y \in R$. Since idempotents can be lifted modulo $J(R), e$ is an
idempotent and $r=f+b+e$ or $r=f+b-e$ for some $b \in J(R)$. Since $(x+J(R))(f+J(R))(y+J(R))=1+J(R), x f y=1+z \in 1+J(R) \subseteq U(R)$ for some $z \in J(R)$. Therefore, there exist $x_{1}, y_{1} \in R$ such that $x_{1} f y_{1}=1$. Hence $x_{1}(f+b) y_{1}=1+x_{1} b y_{1} \in 1+J(R) \subseteq U(R)$. Thus $x_{1}(f+b) y_{1} u^{-1}=1$ for some $u \in U(R)$, and so $f+b \in K(R)$. Then R is weakly f-clean.

Lemma 2.10. Let R be a ring. Then R is weakly f-clean if and only if for every $r \in R$ there exist $g \in I d(R)$ and $f \in K(R)$ such that $g r=g f$ and $(g-1)(r-1)=(g-1) f$ or $g r=g f$ and $(g-1)(r-1)=(g-1) f+2(1-g)$.

Proof. Suppose that R is weakly f-clean and $r \in R$. Hence $r=f+e$ or $r=f-e$ for some $e \in \operatorname{Id}(R)$ and $f \in K(R)$. Assume $g=1-e$. If $r=f+e$, then $g r=g(f+e)=g f$ and $(g-1)(r-1)=(g-1) f$. If $r=f-e$, then $g r=g(f+e)=g f$ and $(g-1)(r-1)=(g-1) f+2(1-g)$. Conversely, assume that for every $r \in R$ there exist $g \in I d(R)$ and $f \in K(R)$ such that $g r=g f$ and $(g-1)(r-1)=(g-1) f$. Then $g f-f=g r-g-r+1$, and so $r=f+(1-g)$. If for every $r \in R$ there exist $g \in \operatorname{Id}(R)$ and $f \in K(R)$ such that $g r=g f$ and $(g-1)(r-1)=(g-1) f+2(1-g)$, then $g f-f+2(1-g)=g r-g-r+1$, and so $r=f-(1-g)$. Therefore R is weakly f-clean.

Each polynomial ring over a nonzero commutative ring is not weakly clean [1, Theorem 1.9]. If R is commutative ring, then $U(R)=K(R), R$ is weakly clean if and only if R is weakly f-clean. Hence each polynomial ring over a nonzero commutative ring is not weakly f-clean.

Lemma 2.11. Let R be a ring such that idempotents are lifted modulo $J(R)$ and $R[\alpha]=R+R \alpha+\cdots+R \alpha^{n}$ with $\alpha^{n+1}=0$. Then R is weakly f-clean if and only if $R[\alpha]$ is weakly f-clean.

Proof. Suppose that R is weakly f-clean. Since $J(R[\alpha])=J(R)+\langle\alpha\rangle$,

$$
R[\alpha] / J(R[\alpha]) \cong R / J(R) .
$$

Then $R[\alpha] / J(R[\alpha])$ is weakly f-clean, by Lemma 2.9. Since idempotents can be lifted modulo $J(R[\alpha]), R[\alpha]$ is weakly f-clean, by Lemma 2.9. Conversely, suppose that $R[\alpha]$ is weakly f-clean. Since $R[\alpha] / J(R[\alpha]) \cong$ $R / J(R), R / J(R)$ is weakly f-clean. Since idempotents can be lifted modulo $J(R), R$ is weakly f-clean, by Lemma 2.9.

Proposition 2.12. Let R be a ring and $e \in I d(R)$ such that $r \in e R e$ is weakly f-clean in eRe. Then r is weakly f-clean in R.

Proof. Suppose $r \in e R e$ is weakly f-clean in $e R e$. Hence $r=f+g$ or $f-g$ for some $g \in I d(e R e)$ and $f \in K(e R e)$, and so there exist $x, y \in e R e$ such that $x f y=e$. If $r=f+g$, then $(x-(1-e))(f-(1-e))(y+$ $(1-e))=(x f y+(1-e))=1$, and so $f-(1-e) \in K(R)$. It is clear that $g+(1-e) \in I d(R)$. Hence $r=(f-(1-e))+(g+(1-e))$. If $r=f-g$, then $(x+(1-e))(f+(1-e))(y+(1-e))=(x f y+(1-e))=1$, and so $f+(1-e) \in K(R)$. It is clear that $g+(1-e) \in \operatorname{Id}(R)$. Hence $r=(f+(1-e))-(g+(1-e))$. Therefore r is weakly f-clean in R.

Lemma 2.13. Let R be a weakly f-clean ring and $e \in R$ be a central idempotent. Then the corner ring eRe is weakly f-clean.

Proof. Assume that R is a weakly f-clean ring and $e \in R$ is a central idempotent. Hence $e R e$ is homomorphic image of R. Then $e R e$ is weakly f-clean, by Lemma 2.8.

Let R be a ring and ${ }_{R} M_{R}$ be an R - R-bimodule which is a ring possibly without a unity in which $(m n) r=m(n r),(m r) n=m(r n)$ and $(r m) n=$ $r(m n)$ held for all $m, n \in M$ and $r \in R$. The ideal extension of R by M is defined to be the additive abelian group $I(R, M)=R \oplus M$ with multiplication $(r, m)(s, n)=(r s, r n+m s+m n)$.

Lemma 2.14. Let R be a weakly f-clean and ${ }_{R} M_{R}$ be an R - R-bimodule such that for any $m \in M$, there exists $n \in M$ such that $m+n+n m=0$. Then the ideal-extension $I(R, M)$ of R by M is weakly f-clean.

Proof. Suppose that $(r, m) \in I(R, M)$. Hence $r=f+e$ or $r=f-e$ for some $e \in I d(R)$ and $f \in K(R)$. Then $(r, m)=(f, m)+(e, 0)$ or $(r, m)=$ $(f, m)-(e, 0)$. It is clear that $(e, 0) \in I d(I(R, M))$. Assume that $x f y=1$. Hence $x m y \in M$, and so there exists $n \in M$ such that $x m y+n+n x m y=0$. Then $(x, n x)(f, m)(y, 0)=1$, and so $(f, m) \in K(I d(I(R, M))$. Therefore $\operatorname{Id}(I(R, M)$ is weakly f-clean.

Let R be a ring and σ be a ring endomorphism of R. Then the skew power series ring $R[[x ; \sigma]]$ of R is the ring obtained by giving the formal power series ring over R with the new multiplication $x r=\sigma(r) x$ for all $a \in R$. In particular, $R[[x]]=R\left[\left[x ; 1_{R}\right]\right]$.

Lemma 2.15. Let R be a ring and σ be a ring endomorphism of R. Then the following statements are equivalent.
(i) R is a weakly f-clean ring.
(ii) The formal power series ring $R[[x]]$ of R is a weakly f-clean ring.
(iii) The skew power series ring $R[[x ; \sigma]]$ of R is a weakly f-clean ring.

Proof. $(i i) \Rightarrow(i)$. Suppose $R[[x]]$ is a weakly f-clean ring. Since R is a homomorphic image of $R[[x]], R$ is weakly f-clean, by Lemma 2.8 .
$(i i i) \Rightarrow(i)$. Suppose $R[[x ; \sigma]]$ is a weakly f-clean ring. Since R is a homomorphic image of $R[[x ; \sigma]], R$ is weakly f-clean, by Lemma 2.8.
$(i) \Rightarrow(i i i)$. Suppose R is a weakly f-clean ring and $g=r_{0}+r_{1} x+\cdots \in$ $R[[x ; \sigma]]$. Then $r_{0}=f_{0}+e_{0}$ or $r_{0}=f_{0}-e_{0}$ for some $f_{0} \in K(R)$ and $e_{0} \in I d(R)$. If $r_{0}=f_{0}+e_{0}$ and $g^{\prime}=g-e_{0}=f_{0}+r_{1} x+\cdots$ such that $x_{0} f_{0} y_{0}=1$ for some $x_{0}, y_{0} \in R$, then $u=\left(x_{0}+\cdots\right) g^{\prime}\left(y_{0}+\cdots\right)=$ $1+x_{0} r_{1} \sigma\left(y_{0}\right) x+\cdots \in U(R[[x ; \sigma]])$. Hence $g^{\prime} \in K(R[[x ; \sigma]])$, and $g=g^{\prime}+e_{0}$ with $e_{0} \in \operatorname{Id}(R[[x ; \sigma]])$. If $r_{0}=f_{0}-e_{0}$ and $g^{\prime}=g+e_{0}=f_{0}+r_{1} x+\cdots$ such that $x_{0} f_{0} y_{0}=1$ for some $x_{0}, y_{0} \in R$, then $u=\left(x_{0}+\cdots\right) g^{\prime}\left(y_{0}+\cdots\right)=$ $1+x_{0} r_{1} \sigma\left(y_{0}\right) x+\cdots \in U(R[[x ; \sigma]])$. Hence $g^{\prime} \in K(R[[x ; \sigma]])$, and $g=g^{\prime}-e_{0}$ with $e_{0} \in \operatorname{Id}(R[[x ; \sigma]])$. Therefore $R[[x ; \sigma]]$ is weakly f-clean.
$(i) \Rightarrow(i i)$. Suppose R is a weakly f-clean ring. Since $R[[x]]=R\left[\left[x ; 1_{R}\right]\right]$, the proof is similar to $(i) \Longrightarrow(i i i)$.

Theorem 2.16. Let R be a ring and $r \in R$ is a weakly f-clean element. Then $B=\left(\begin{array}{ll}r & s \\ 0 & 0\end{array}\right)$ is a weakly f-clean element in $M_{2}(R)$ for every $s \in R$.

Proof. Suppose $r \in R$ is a weakly f-clean element. Then $r=f+e$ or $r=f-e$ for some $f \in K(R)$ and $e \in I d(R)$. Hence $x f y=1$ for some $x, y \in R$. If $r=f+e$, then

$$
B=\left(\begin{array}{ll}
e & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
f & y \\
0 & -1
\end{array}\right),
$$

such that $\left(\begin{array}{ll}e & 0 \\ 0 & 1\end{array}\right) \in I d\left(M_{2}(R)\right)$ and $\left(\begin{array}{cc}f & y \\ 0 & -1\end{array}\right) \in K\left(M_{2}(R)\right)$, by [14, Proposition 2.6]. If $r=f-e$, then

$$
B=\left(\begin{array}{ll}
f & s \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right) .
$$

such that $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right) \in \operatorname{Id}\left(M_{2}(R)\right)$ and

$$
\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
f & s \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

and so $\left(\begin{array}{ll}f & s \\ 0 & 1\end{array}\right) \in K\left(M_{2}(R)\right)$. Therefore $B=\left(\begin{array}{ll}r & s \\ 0 & 0\end{array}\right)$ is a weakly f-clean element in $M_{2}(R)$ for every $s \in R$.

A ring R is said to be left quasi-duo, if every maximal left ideal of R is a two-sided ideal. Commutative rings, local rings, rings in which every nonunit has a power that is central are all belong to this class of rings [17] . A ring R is said to be Dedekind finite if $r s=1$ always implies $s r=1$ for any $r, s \in R$.

Theorem 2.17. Let R be a left quasi-duo ring. Then the following statements are equivalent.
(i) R is a weakly clean ring.
(ii) R is a weakly f-clean ring.

Proof. ($i=($ ii $)$. Is clear.
(ii) $\Rightarrow(i)$. Suppose R is a weakly f-clean ring. Since R is a left quasiduo ring, $K(R) \subseteq U(R)$, by [14, Theorem 2.9]. Hence R is a weakly clean ring.

Corollary 2.18. Let R be a commutative (local or Dedekind finite) ring. Then R is weakly clean if and only if R is weakly f-clean.

Proof. Since every commutative (local or Dedekind finite) ring is a left quasi-duo ring, the assertion holds, by Theorem 2.17.

Corollary 2.19. Let R be a ring in which every nonunit has a power that is central. Then R is weakly clean if and only if R is weakly f-clean.

Proof. Suppose every nonunit has a power that is central. Hence R is a left quasi-duo ring. Then the assertion holds, by Theorem 2.17.

Corollary 2.20. Let R be a ring in which all idempotents are central. Then R is weakly clean if and only if R is weakly f-clean.

Proof. Since all idempotents are central, R is Dedekind finite. Hence the assertion holds, by Corollary 2.18.

If G is a group and R is a ring, we denote the group ring over R by $R G$.
Lemma 2.21. Let R be a ring such that $2 \in U(R)$. Then R is weakly f-clean if and only if $R G$ is weakly f-clean.

Proof. Suppose $R G$ is weakly f-clean. Since R is a homomorphic image of $R G, R$ is weakly f-clean, by Lemma 2.8. Conversely, since $2 \in U(R)$, $R G \cong R \times R$, by [11, Proposition 3]. Hence $R G$ is weakly f-clean by Lemma 2.8.

Suppose that R is an associative ring with unity and $\alpha: R \longrightarrow R$ is an endomorphism such that $\alpha(1)$. The ring ($H R, \alpha$) of skew Hurwitz series over a ring R is defined as follows: the elements of ($H R, \alpha$) are functions $f: \mathbb{N} \longrightarrow R$, where \mathbb{N} is the set of integers greater or equal than zero. The operation of addition in $(H R, \alpha)$ is componentwise and the operation of multiplication is defined, for every $f, g \in(H R, \alpha)$, by:

$$
f g(n)=\sum_{k=0}^{n}\binom{n}{k} f(k) \alpha^{k}(g(n-k)) \text { for each } n \in \mathbb{N},
$$

where $\binom{n}{k}$ is the binomial coefficient defined for all $n, k \in \mathbb{N}$ with $n \geqslant k$ by $n!/ k!(n-k)!$. In the case where the endomorphism α is the identity, we denote $H R$ instead of $(H R, \alpha)$. If one identifies a skew formal power series $\sum_{n=0}^{\infty} \in R[[x ; \alpha]]$ with the function f such that $f(n)=a_{n}$, then multiplication in (HR, $)$ is similar to the usual product of skew formal power series, except that binomial coefficients appear in each term in the product introduced above. It can be easily shown that T is a ring with identity h_{1}, defined by $h_{1}(0)=1$ and $h_{1}(n)=0$ for all $n \geqslant 1$. It is clear that R is canonically embedded as a subring of $(H R, \alpha)$ via $r \in R \longmapsto h_{r} \in$ $(H R, \alpha)$, where $h_{r}(0)=r, h_{r}(n)=0$ for every $n \geqslant 1[4,11]$.

Proposition 2.22. Let R be a ring. Then $f \in K(T=(H R, \alpha))$ if and only if $f(0) \in K(R)$.

Proof. [12, Proposition 2.11].
Theorem 2.23. Let R be a ring and α be an automorphism of R. Then $T=(H R, \alpha)$ is weakly f-clean if and only if R is weakly f-clean.

Proof. Suppose that $W=\{h \in T \mid h(0)=0\}$, where $T=(H R, \alpha)$ is weakly f-clean. Hence $R \cong T / W$, and so R is a homomorphic image of T. Then R is weakly f-clean, by Lemm 2.8. Conversely, asuume that R is weakly f-clean and $h \in T$. Hence $h(0) \in R$, and so $h(0)=f+e$ or $h(0)=f-e$ for some $e \in I d(R)$ and $f \in K(R)$. Define an element $g \in T$ by,

$$
g(n)= \begin{cases}f & n=0 \\ h(n) & n>0\end{cases}
$$

Then $h=g+h_{e}$ or $h=g-h_{e}$, where $g \in K(T)$ and $h_{e} \in \operatorname{Id}(T)$. Then $T=(H R, \alpha)$ is weakly f-clean.

Here we shall formulate two questions of interest.
Problem 2.24. When is a matrix ring weakly f-clean?
Problem 2.25. Let R be a ring and $e \in I d(R)$ such that the subring eRe is weakly f-clean. Is R also weakly f-clean?

Acknowledgements. I would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

[1] M.Y. Ahn, D.D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math., 36 (2006), 783 - 799.
[2] D.D. Anderson, V.P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, Comm. Algebra, 30 (2002), 3327-3336.
[3] N. Ashrafi, E. Nasibi, r-clean rings, Math. Reports, 15(65) (2013), 125 132.
[4] A. Benhissi, F. Koja, Basic properties of Hurwitz series rings, Ricerche Math., 61 (2012), 255 - 273.
[5] A.Y.M. Chin, K.T. Qua A note on weakly clean rings, Acta Math. Hungar., 132 (2001), 113 - 116.
[6] V.P. Camillo, H.P. Yu, Exchange rings, unit and idempotents Commun. Algebra, 22 (1994), 4737 - 4749.
[7] P.V. Danchev, On weakly clean and weakly exchange rings having the strong property, Publ. Inst. Math. (Beograd), 101 (2017), 135 - 142.
[8] P.D. Danchev, On weakly clean and weakly exchange rings having the strong property, Publ. Inst. Math. (Beograd), 101 (2017), 135 - 142.
[9] P.V. Danchev, Weakly clean and exchange UNI rings, Ukrain. Math. J., 71 (2019), 1617 - 1623.
[10] P.V. Danchev, Weakly exchange rings whose units are sums of two idempotents, Vestnik St. Petersburg Univ., Math., Mekh., 6(64) (2019), 265 - 269.
[11] A.M. Hassanein, Clean rings of skew Hurwitz series, Matematiche (Catania), 62 (2007), 47 - 54.
[12] A.L. Handam, On f-clean rings and full elements, Prayecciones J. Math., 30 (2011), 277 - 284.
[13] T. Kosan, S. Sahinkaya, Y. Zhou, On weakly clean rings, Comm. Algebra, 45 (2017), 3494 - 3502.
[14] B. Li, L. Feng, f-clean rings and rings having full elements J. Korean Math. Soc., 47 (2010), 247 - 261.
[15] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269 - 278.
[16] F. Rashedi, Invo- k-clean rings, Bull. Transilvania Univ. Brašov, Math. Computer Sci., 2(64) (2022), $167-172$.
[17] H. Yu, On quasi-duo rings, Glasgow Math. J., 37 (1995), 21 - 31.
Received July 09, 2023
Department of Mathematics, Technical and Vocational University, Tehran, Iran
E-mail: frashedi@tvu.ac.ir

[^0]: 2010 Mathematics Subject Classification: 16U99, 16 Z 05.
 Keywords: Weakly clean ring, f-clean ring, Weakly f - clean ring.

