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Complete signature randomization
in an algebraic cryptoscheme with a hidden group

Alexandr A. Moldovyan

Abstract. The issue of the signature randomization in algebraic cryptoschemes with a
hidden group, which are based on the computational difficulty of solving large systems of
power equations, is considered. To ensure complete randomization of the signature, the
technique of doubling the verification equation was used to specify the hidden group. A
specific signature algorithm is proposed that uses 4-dimensional non-commutative asso-
ciative algebra as an algebraic support. Known results on the study of the structure of
this algebra were used in constructing the proposed algorithm and estimating its security.
The question of implementing similar algorithms on finite non-commutative associative
algebras of dimensions m > 6 is related to the open problem of studying their structure
from the point of view of decomposition into a set of commutative subalgebras.

1. Introduction

Design of algebraic signature algorithms with a hidden group [11, 17] had
been proposed as a way to solve the current problem of developing practical
post-quantum signature algorithms [1]. One can distinguish two main types
of the said signature schemes, which use finite non-commutative associative
algebras as their algebraic carrier: 1) based on the computational difficulty
of solving the hidden discrete logarithm problem [13, 16] and 2) based on
the computational difficulty of solving lage systems of power equations with
many unknowns [4, 9, 17].

The latter computationally difficult problem has been well tested as a
post-quantum primitive of multivariate-cryptography algorithms developed
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from 1988 [8] to the present [7, 10]. However, the known multivariate-
cryptography algorithms have a significant drawback for practical applica-
tion, which is the very large size of the public key.

The second type of the said algebraic signature algorithms is of special
interest as an approach to developing signature schemes possessing small-
size public key, which are based on the computational complexity of systems
of many power equations with many unknowns. In fact, only the first step
has been taken in this direction and it is necessary to study various aspects
of the design of the second type algebraic algorithms with a hidden group.
A common feature of the known algorithms of this type is specifying a
digital signature that includes a certain vector S as its element. In this
case, a vector-type verification equation is used with the repeated entry of
the vector S as a multiplier. In the next section it is shown that the said
feature is connected with a restricted randomization of the signature (in
sens that only a small part of the elements of the algebra used as algebraic
support can be potentially spesified as the vector S).

The latter creates the preconditions for potential attacks on algorithms
of the type under consideration, therefore this article proposes the design of
algebraic signature schemes with a hidden group, which ensures complete
randomization of the signature (in sens that all reversible vectors can be
potentially spesified as the vector S).

2. Preliminaries

Some m-dimensional vector A usually is denoted as A = (a0, a1, . . . , am−1)
or as A =

∑m−1
i=0 aiei, where a0, a1, . . . , am−1 are coodinates taking on the

values in some finite field (for example, in GF (p)); e0, e1, ... em−1 are
basis vectors. In a finite m-dimensional vector space we have two standard
operations: 1) addition of vectors and 2) scalar multiplication. Suppose the
vector multiplication operation is additionally specified so that it is closed
and distributive at the right and at the left relatively the addition operation.
Then we get a finite m-dimensional algebra.

The most interesting cases of the development of the algebraic signature
algorithms with a hidden group relates to the use of finite non-commutative
associative algebras (FNAA) with global two-sided unit. The property of
associativity is required due to using the exponentiation operations in the
signature-algorithms design (when multiplication is associative one can very
efficiently perform the exponentiation to a degree of large size).
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The operation of multiplying two vectors A and B (coordinates of which,
for example, are elements of the field GF (p)) can be defined by the formula

AB =

m−1∑
i=0

m−1∑
j=0

aibj(eiej),

where every of the products eiej is to be substituted by a vector (usually
single-component vector λek, where λ ∈ GF (p)) indicated in the cell at the
intersection of the ith row and jth column of basis vector multiplication
table (BVMT). Table 1 shows a specific example of BVMTs. To define
associative multiplication the BVMT should be composed so that multi-
plication of all possible triples of the basis vectors (ei, ej , ek) satisfies the
following equality:

(eiej) ek = ei (ejek) .

The multiplication operation specified by Table 1 is associative, namely,
we have a four-dimensional FNAA with the global two-sided unit E =
(0, 0, 1, 1), structure of which is well studied from the point view of decom-
position into the set of commutative subalgebras [14]. Every of the latter
has order p2. The full number of the latter is η = p2 + p + 1. Arbitrary
two subalgebras intersect exactly in the set of scalar vectors L = λE, where
λ ∈ GF (p). Exactly three types of commutative subalgebras of order p2

exist [14]:
1) containing multiplicative group possessing two-dimensional cyclicity

and having order Ω = (p− 1)2;
2) containing cyclic multiplicative group of order Ω = p(p− 1);
3) containing cyclic multiplicative group of order Ω = (p2 − 1).
The number of commutative subalgebras of the first (η1), second (η2),

and third (η3) type is equal to [14]:

η1 =
p(p+ 1)

2
; η2 = p+ 1; η3 =

p(p− 1)

2
. (1)

In the paper [14] the formulas describing all elements of every type of the
subalgebras are also derived, which provide possibility to express all ele-
ments of a subalgebra via coordinates of one given representtative (that is
not a scalar vector) of the subalgebra.

The algebraic support of one of the algebraic signature schemes proposed
in [17] represents a 4-dimensional FNAA (set over GF (p) with p = 2q + 1,
where q is a 128-bit prime) containing sufficiently large number of different
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Table 1

The BVMT setting a sparse 4-dimensional FNAA over GF (p); λ 6= 0 [14].

◦ e0 e1 e2 e3
e0 0 λe3 e0 0
e1 λe2 0 0 e1
e2 0 e1 e2 0
e3 e0 0 0 e3

commutative groups having order q2 and possessing two-dimensional cyclic-
ity (a minimum generator system of such groups includes two vectors of the
same order equal to q). In that signature scheme the public key represents
the set of the vectors Y, Z, U, and W calculated as follows:

Y = AGB, Z = AGx1B;

U = AHB, W = AHx2A−1,
(2)

where x1 < q and x2 < q are random natural numbers; the vectors G and H
compose a minimum generator system of the commutative hidden group;
the vectors A and B satisfy the conditions AB 6= BA, AG 6= GA, and
BG 6= GB. The values x1, x2, A, and B are elements of the private key
connected with the public key. The signature (e1, e2, e3, S) to an electronic
document M is generated as follows [17]:

1. Using random natural numbers k < q and t < q, calculate the vector

R = AGkHtA−1. (3)

2. Using a specified 384-bit hash function fh, calculate the first signature
element e = e1||e2||e3 = fh (M,R) represented as concatenation of three
128-bit integers e1, e2, and e3.

3. Calculate the integers n and u:

n =
k − x1e2e3 − e3
e3 + e1e3 + e2e3

mod q; u =
t− x2e2e3 − e1e3
e3 + e1e3 + e2e3

mod q.

4. Calculate the second signature element

S = B−1GnHuA−1. (4)

The signature verification procedure includes the next steps:
1. Calculate the vector R′ = (Y S (US)e1 (ZSW )e2)e3 .
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2. Concatenate the vector R′ to the documentM and compute the hash
value e′ = fh (M,R′) .

3. If e′ = e (e′ 6= e,), then the signature is genuine (false).
In the formulas (3) and (4) the integers k, t, n, and u are random, but

the vectors G, H, A and B are fixed. Therefore, each of the vectors R and
S takes only q2 = O(p2), where O(·) is the order notation, different values
in the FNAA containing p4 different vectors. This shows that the signature
randomization in the algorithm [17] is quite limitted. The latter creates
potential preconditions for reducing security, which is assessed in [17] by
the value of the computational difficulty of solving a system of quadratic
equations connecting the elements of the public key with the elements of
the secret key (see formulas (2)).

Indeed, one can show that a genuine signature S1 = B−1Gn1Hu1A−1

defines four quadratic scalar equations with twelve fixed scalar uknowns
(coordinates of the vectors B−1, A−1, and Gn1Hu1) and each additional
genuine signature Si (i = 2, 3, . . . ) adds four cubic scalar equations con-
taining only two new scalar unknowns (due to limitted signature random-
ization). The latter describes an unknown vector GniHui from the hidden
group that is fixed by coordinates of the vector Gn1Hu1 (see formula (8)
in [17], which describes all elements of commutative subalgebra contain-
ing multiplicative group with two-dimensional cyclicity). For example, five
(six) different genuine signatures set a system of 20 (24) scalar equations
(quadratic and cubic) with 20 (22) unknowns.

A similar consideration of the system of scalar power equations defined
by the vector R′ = R (for genuine signatures) and by formula (3) leads to
a smaller system of quadratic and cubic equations (note that formula (3)
defines the equation RA = AGkHt). Namely, three (four) different genuine
signatures set a system of 12 (16) scalar equations (quadratic and cubic)
with 12 (14) unknowns, whereas formulas (2) with the additional equations
GGx1 = Gx1G, GH = HG, and GHx2 = Hx2G define a system of 28 power
equations with 24 unknowns [17].

In the algebraic signature algorithm [4] based on difficulty of solving
large systems of power equations, consideration of the systems of scalar
equation composed for both the randomization vectors R and the genuine
signatures S is similar to the above case.

Thus, the limitted randomization of the signature in the known algebraic
algorithms based on computational difficulty of solving large systems of
power equations leads to potential reduction of the security. Therefore, the
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task of insuring the complete signature randomization is relevant.

3. Technique for complete randomization

Completeness of the signature randomization assumes the the signature
element S can potentially take on arbitrary reversible value in the FNAA
used as algebraic support. This can be provided with introducing a random
reversible vector V as a multiplier in the formula for computation of the
signature element S. However, this eliminates the possibility of using a
verification equation with multiple entry of the signature element S. In
order to get around this contradiction, you can use the technique of doubling
the verification equation, which was previously used in the papers [12, 18]
introducing specific signature algorithms with a hidden group, which are
based on computational difficulty of the hidden discrete logarithm problem.

Namely, when using the FNAA specified by Table 1 over GF (p), where
p = 2q+1 with 192-bit prime q, we suppose the signature element S should
satisfy the following two different verification equations in which the public
key elements Y1, T1, Z1, and U1 in the first equation and Y2, T2, Z2, and
U2 in the second equation are computed as masked elements of the hidden
group Γ<G,H> set by the minumum generator system <G,H>:{

R′1 = Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1 ;

R′2 = Y e1
2 T2Z

e2
2 U2SQ

h
2 ,

(5)

where Q1 and Q2 (Q1Q2 6= Q2Q1) are two vectors of the order p2−1, which
represent common public parameters; σ1 < q and σ2 < q are auxiliary
elements of the signature; h = h1||h2 = fh (M) is a 384-bit hash-function
value represented as concatenation of two 192-bit integers h1 and h2.

The public key elements are computed as follows:
1. Generate a random pair of vectors < G,H > of order q, which specify

the minumum generator system of the hidden group of order q2.
2. Generate at random natural numbers (< q) xy, xz, t11, t12, u11, u12,

t21, t22, u21, u22.
3. Generate random vectorsA, B, C, D, and F satisfying the inequalities

AB 6= BA, AG 6= GA, AC 6= CA, AD 6= DA, AF 6= FA, BG 6= GB,
BC 6= CB, BD 6= DB, BF 6= FB, CG 6= GC, CD 6= DC, CF 6= FC,
DG 6= GD, DF 6= FD, and FG 6= GF.

4. Calculate the vectors {Jt1, Ju1, Jt2, Ju2} ∈ Γ<G,H>: Jt1 = Gt11Ht12 ,
Ju1 = Gu11Hu12 , Jt2 = Gt21Ht22 , Ju2 = Gu21Hu22 .
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5. Calculate the public key as the set of vectors {Y1,Z1,T1,U1,Y2,Z2,T2,U2}
(with total size equal to ≈768 bytes):

Y1 = AGxyA−1;Z1 = BHxzB−1;T1 = AJt1B
−1;U1 = BJu1F

−1;

Y2 = CGC−1;Z2 = DHD−1;T2 = CJt2D
−1;U2 = DJu2F

−1.
(6)

The private key corresponding to the public key is the next set of ele-
ments {xy, xu, G,H, Jt1, Ju1, Jt2, Ju2, A,B,C,D, F with total size equal to
≈1104 bytes.

If we specify computation of the pair of randomization vectors R1 =
AGk1Hr1Jt1Ju1V Q

h1h2
1 and R2 = CGk2Hr2Jt2Ju2V Q

h
2 (where k1, r1, k2,

and r2 are random natural numbers; h is the 384-bit hash value h = h1||h2 =
fh(M) computed from the document M to be signed), then with the pair
of verification equations (5) and with public key elements (6) the required
signature element S is to be calculated as

S = FGnHuV, (7)

where V is a random reversible vector and the integers n and u are precom-
puted, depending on the signature randomization elements e1 and e2, such
that e1||e2 = fh (M,R1, R2) , and on random integers k1, r1, k2, and r2.

Thus, the signature element S is computed depending on a random
multiplier V, thefore complete signature randomization is provided.

4. The proposed signature scheme

The used algebraic support, the common public parameters Q1, Q2, the
private key, and the public key have been presented in Section 3. The
signature generation algorithm is described as follows:

1. Generate at random natural numbers k1, r1, k2, and r2 (< q) and
calculate the 384-bit hash-function value h = h1||h2 = fh(M) (where M is
a signed document; h1 and h2 are 192-bit integers) and the vectors R1 and
R2:

R1 = AGk1Hr1Jt1Ju1V Q
h1h2
1 ;

R2 = CGk2Hr2Jt2Ju2V Q
h
2 .

(8)

2. Compute the hash-function value e = e1||e2 (the first signature
element), where || denotes the concatenation operation, from the docu-
ment M to which the vectors R1 and R2 are concatenated: e = e1||e2 =
fh (M,R1, R2) , where e1 and e2 are 192-bit integers.
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3. Calculate the integers n, u, σ1, and σ2:

n = k2 − e1 mod q; u = r2 − e2 mod q;

σ1 =
k1 − k2 + e1

xye1
mod q; σ2 =

r1 − r2 + e2
xze2

mod q.

4. Calculate the second signature element S:

S = FGnHuV.

The signature is e1, e2, σ1, σ2, S and has total size equal to ≈192 bytes.
Computational complexity w of the signature generation alorithm is roughly
equal to six exponentiations in the FNAA set by Table 1, i. e., to w ≈ 13, 824
multiplications modulo a 193-bit prime p.

The verification of the signature e1, e2, σ1, σ2, S to the document M is
performed with the following algorithm:

1. Calculate the hash-function value h = h1||h2 = fh (M) from the
document M . Then calculate the vectors R′1 and R′2 by formulas (5).

2. Compute the hash-function value e′ from the document M to which
the vectors R′1 and R′2 are concatenated: e′ = f (M,R′1, R

′
2) .

3. If e′ = e1||e2, then the signature is genuine, else the signature is false.
The computational complexity w′ of the signature verification algorithm

is roughly equal to four exponentiations in the 4-dimensional FNAA used as
algebraic support, i. e., w′ ≈ 9, 216 multiplications modulo a 193-bit prime
p.

Correctness proof of the signature scheme.
Taking into account that the vectors G,H, Jt1, Ju1, Jt2, Ju2 are elements of
the commutative group Γ<G,H> and have order q, one can show that the
correctly computed signature e1, e2, σ1, σ2, S passes the verification proce-
dure as genuine one:

R′1 = Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1

=
(
AGxyA−1

)e1σ1 AJt1B−1 (BHxzB−1
)e2σ2 BJu1F−1 (FGnHuV )Qh1h21

= AGxye1σ1Jt1H
xze2σ2Ju1G

nHuV Qh1h21

= AG
xye1

k1−k2+e1
xye1 Jt1H

xze2
r1−r2+e2

xze2 Ju1G
k2−e1Hr2−e2V Qh1h21

= AGk1−k2+e1Hr1−r2+e2Gk2−e1Hr2−e2Jt1Ju1V Q
h1h2
1

= AGk1Hr1Jt1Ju1V Q
h1h2
1 = R1;

R′2 = Y e1
2 T2Z

e2
2 U2SQ

h
2
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=
(
CGC−1

)e1 CJt2D−1 (DHD−1)e2 DJu2F−1 (FGnHuV )Qh1h21

= CGe1Jt2H
e2Ju2G

k2−e1Hr2−e2V Qh2 = R2;

{R′1 = R1; R
′
2 = R2} ⇒ fh(M,R′1, R

′
2) = fh(M,R1, R2) ⇒ e′ = e1||e2.

5. Disscussion

The completeness of signature randomization in the algorithm described
in Section 4 is connected with the fact that calculating a value of genuine
signature involves multiplying by a random vector V , therefore, for arbitrary
fixed set of values of the vectors F , Gn, and Hu (see formula (7)) the value
of the signature can take any reversible value in the FNAA used as an
algebraic support. However, for a certain number of genuine signatures it
is possible to calculate the unknown value F (the unknown vectors Gn and
Hu are not element of the private key).

The latter can be done by constructing a systems of vector equations set
by formulas (7) and (8) for different signatures S connected with different
pairs of the vectors R1 and R2. For example, one signature S defines the
following three quadratic vector equations

SV −1 = F (GnHu)

R1V
−1Q−h1h21 = A

(
Gk1Hr1Jt1Ju1

)
;

R2V
−1Q−h2 = C

(
Gk2Hr2Jt2Ju2

)
,

(9)

where the vectors R1, R2, Q
h1h2
1 , and Qh2 are calculated in framework of the

signature verification procedure.
In the system of equations (9) each of the productsGnHu, Gk1Hr1Jt1Ju1,

and Gk2Hr2Jt2Ju2 sets a random selection of an element from a hidden
group Γ<G,H>. The latter is fixed, if we fix the unknownG = (g0, g1, g2, g3) .
All elements X = (x0, x1, x2, x3) of the commutative subalgebra that con-
tains the group Γ<G,H> are described by the following formula including
fixed coordinates (g0, g1, g2, g3) and two scalar variables i, j ∈ {0, 1, ..., p−1}
(see formula (8) in [14]):

X = (x0, x1, x2, x3) =

(
i,
g1
g0
i, j, j +

g3 − g2
g0

i

)
. (10)

Therefore, a random selection from the hidden group can be described with
the scalar unknowns i and j. Using formula (10) we can reduce the number
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of scalar unknowns, but the respective scalar equations become cubic (how-
ever, the computational complexity of solving a system of quadratic and of
cubic equation is of the same order for the same number of equations [3]).
Taking into account these remarks, we have four fixed vector unknowns A,
C, F, and G (setting 16 scalar unknowns that are coodinates of the said
vectors), a unique vector unknown V −1 for a triple of equations related to
the same signature, and unique pair of scalar unknowns i and j in each
vector equation of the considered system. If we have b different genuine
signatures, then we can compose a system of 3b different vector equations
and represent it as a system of 12b cubic scalar equations with d unknowns,
where

d = 16 + 4b+ 2·3b = 16 + 10b.

From the condition d = 12b we can fined the number of signatures b =
8, when the nuber of scalar unknowns is equal to the number of scalar
equations and the system includes 96 power (quadratic and cubic) scalar
equations.

A system of quadratic vector equations composed using formulas (6) de-
scribing connection of the public-key elements with the private-key elements
is as follows:


Y1A = AGxy ; Z1B = BHxz ; T1B = AJt1; U1F = BJu1;

Y2C = CG; Z2D = DH; T2D = CJt2; U2F = DJu2;

GH = HG; GJt2 = Jt2G; GJu2 = Ju2G;

GGxy = GxyG; GHxz = HxzG; GJt1 = Jt1G; GJu1 = Ju1G,

(11)

where the last seven equations reflect the fact that the unknown vectors
G, Gxy , H, Hxz , Jt1, Ju1, Jt2, and Ju2 are selected from the hidden group
Γ<G,H>. When representing this system of vector equation as a system of
scalar equations, the last seven equations in (11) can be reduced with using
formula (10) and considering the unknown vector G = (g0, g1, g2, g3) as
element fixing the group Γ<G,H> (coordinates of arbitrary vector included
in the hidden group can be described via coordinates of G and a unique pair
of scalar unknowns i and j). For example, using Table 1, the first vector
equation in (11), namely, Y1A = AGxy (where Y1 = (y0, y1, y2, y3) and
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A = (a0, a1, a2, a3)) is represented by the following four scalar equations:
y0a2 + y3a0 = a0j + a3i;

y2a1g0 + y1a3g0 = a2g1i+ a1g0j + a1g3 − a1g2;
λy1a0 + y2a2 = λa1i+ a2j;

λy0a1g0 + y3a3g0 = λa0g1i+ a3g0j + a3g3 − a3g2,

Each of the other vector equations in (11) is transformed into a similar four
scalar equations.

In this way we get a system of 32 quadratic and cubic scalar equations
with 40 scalar unknowns. The latter suggests that there are numerous
solutions defining many equivalent keys. However, their calculation involves
solving a system of 32 cubic equations. The complexity of solving a system
of power equations depends exponentially on the number of equation (and
weakly depends on the degree of equations [3]) and determines the security
of the algorithm under consideration to a direct attack.

A system of power equations composed for a set of known genuine sig-
natures includes significantly larger number of equations than the system
composed from formulas describing connection of public-key elements with
the private-key elements, therefore one can conclude that using the known
signatures can not be used to reduce the security level of the introduced
signature algorithm, i. e. the proposed signature randomization technique
is efficient.

The best-known methods for solving a large system of power equations
use the algorithms F4 [5] and F5 [6]. Taken into account the latter algo-
rithms, the paper [2] presents the minimum number of power equations in
different fields GF (q′) that is requiered to get the security level (ψ) 280, 2100,
2128, 2192, and 2256 for the case when the number of equations is approxi-
mately equal to the number of unknowns (see Table 2). Using that results,
security of the introduced signature algorithm to direct attack can be es-
timeted as ≈2100. To improve the security level one can try to implement
the algorithm from Section 4 on FNAAs having dimensions m ≥ 6. Suitable
non-commutative algebras are described, for example, in [15]. However, the
decomposition of that FNAAs into the set of commutative subalgebras (re-
sults of which are useful for both the design and the security evaluation)
has not been studied yet, therefore, for such versions of the algorithm it
is not entirely clear how one can minimize the number of equations in the
system of scalar equations, to which the system of vector equations (11) is
reduced.
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Table 2

The minimum number of equations in GF (q′) by [2].

ψ = . . . 280 2100 2128 2192 2256

q′ = 16 30 39 51 80 110
q′ = 31 28 36 49 75 103
q′ = 256 26 33 43 68 93

Leaving the said implementations for future research, we note that at
the moment, the assessment of the security level of the proposed algorithm
is quite rough and applies only to direct attacks related to solving a system
of quadratic vector equations (11) connecting elements of public and private
keys. Obviously, further analysis of resistance to attacks of various types is
required. At the moment we only claim that the randomization technique
used ensures sufficient completeness of the signature randomization.

In the first and second verification equations (5) the most right mul-
tipliers Qh1h21 and Qh2 are used to insure security to the following algo-
rithm for forging a signature. Suppose a genuine signature e1, e2, σ1, σ2, S
is available and an attacker is intended to forge a signature e′′1, e′′2, σ′′1 , σ′′2 , S′′

to the document M ′′. From equations (5) he can calculate the vectors
R′′1 = R′1 and R′′2 = R′2, the values e′′ = e′′1||e′′2 = fh (M ′′, R′′1 , R

′′
2) and

h′′ = h′′1||h′′2 = fh (M ′′) , where e′′1, e′′2, h′′1, and h′′2 are 192-bit integers.
Since R′′1 = R′1, from the first of equations (5) one gets the value S′′ =

S′′1 :
Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1 = Y

e′′1σ
′′
1

1 T1Z
e′′2σ
′′
2

1 U1S
′′
1Q

h′′1h
′′
2

1 ⇒

⇒ S′′1 = FGxy(e1σ1−e
′′
1σ
′′
1 )Hxz(e2σ2−e′′2σ′′2 )F−1SQ

h1h2−h′′1h′′2
1 ,

Since R′′2 = R′2, from the second of equations (5) one gets the value S′′ = S′′2 :

Y e1σ1
2 T2Z

e2σ2
2 U2SQ

h
2 = Y

e′′1σ
′′
1

2 T2Z
e′′2σ
′′
2

2 U2S
′′
2Q

h′′
2 ⇒

⇒ S′′2 = FGe1σ1−e
′′
1σ
′′
1He2σ2−e′′2σ′′2F−1SQh−h

′′

2 .

Then the attacker calculates the signature elements σ′′1 = σ1e1e
′′
1
−1 and

σ′′2 = σ2e2e
′′
2
−1 for which he has S′′1Q

h′′1h
′′
2−h1h2

1 = S′′2Q
h′′−h
2 .

Thus, due to using the multiplications by Qh1h21 and Qh2 (such that
Q1Q2 6= Q2Q1) in the first and second verification equations, correspond-
ingly, the probability of the equality S′′1 = S′′2 = S′′ that take place, if h′′ = h
(i. e., probability of successful signature forgery) is negligible (≈2−384 for
the used 384-bit hash function).
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6. Conclusion

The proposed technique for complete signature randomization can be imple-
mented in algebraic signature algorithms with a hidden group and doubled
verification equation. The structure of the algebra used as an algebraic
carrier, from the point of view of decomposition into a set of commuta-
tive subalgebras, is essential for the development of signature schemes and
assessment of their security. To develop new versions of the proposed algo-
rithm on FNAAs of dimension m ≥ 6, it is of interest to study the structure
of the latter.
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