
Quasigroups and Related Systems 32 (2024), 1− 20

https://doi.org/10.56415/qrs.v32.01

On Baer filters of bounded distributive lattices

Shahabaddin Ebrahimi Atani

Abstract. Following the concept of Baer ideals, we define Baer filters and we will make
an intensive investigate the basic properties and possible structures of these filters.

1. Introduction

All lattices considered in this paper are assumed to have a least element
denoted by 0 and a greatest element denoted by 1, in other words they are
bounded.

The notion of an order plays an important role not only throughout
mathematics but also in adjacent such as logic, computer science and engi-
neering and, hence, ought to be in the literature. Filters of lattices play a
central role in the structure theory and are useful for many purposes. The
main aim of this article is that of extending some results obtained for ring
theory to the theory of lattices. The main difficulty is figuring out what
additional hypotheses the lattice or filter must satisfy to get similar results.
Nevertheless, growing interest in developing the algebraic theory of lattices
can be found in several papers and books (see for example [2, 3, 4, 7, 8, 9,
10]).

An ideal I of a commutative ring R is called a d-ideal provided that for
each a ∈ I and x ∈ R, Ann(a) ⊆ Ann(x) implies that x ∈ I. The concept of
d-ideals has been studied by several authors in different forms and by differ-
ent names. The notion of d-ideals in a commutative ring was introduced by
Speed [17] who called them Baer ideals. These ideals were also put to good
use in 1972 by Evans [5] when characterizing commutative rings that are
finite direct sums of integral domains. In [11], Jayaram introduced fd-ideals
(as strongly Baer ideals) and 0-ideals in reduced rings and characterize quasi
regular and von Neumann regular rings. In [13], Khabazian, Safaeeyan and
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Vedadi extended the concept of d-ideals to the category of modules and
investigated the modules for which their submodules are d-submodules. In
[16], Safaeeyan and Taherifar studied d-ideals and fd-ideals in general rings,
and not just the reduced ones. In [1], Anebri, Kim and Mahdou investi-
gated the concepts of d-submodules, fd-submodules and 0-submodules of a
module over a commutative ring. In [15], Mason investigated the concepts
of z-ideals of a commutative ring.

Let £ be a bounded distributive lattice. We say that a subset S ⊆ £ is
join closed if 0 ∈ S and s1 ∨ s2 ∈ S for all s1, s2 ∈ S (clearly, if p is a prime
filter of £, then £\p is a join closed subset of £). If F,G are filters of £ and
y ∈ £, then we define the filter quotients (G :£ F ) = {x ∈ £ : x ∨ F ⊆ G}
and ({1} :£ y) = (1 :£ y) = {z ∈ £ : z ∨ y = 1}; clearly these are
another filters of £ and G ⊆ (G :£ F ). A filter F is said to be a Baer
filter (resp. strongly Baer filter) if (1 :£ f) ⊆ (1 :£ x) for some f ∈ F
and x ∈ £ implies that x ∈ F (resp. (1 :£ G) ⊆ (1 :£ x) for some finite
subset G of F and x ∈ £ implies that x ∈ F ). F is said to be a 1-filter if
F = {1}S(£) = {x ∈ £ : x ∨ s = 1 for some s ∈ S} for some join closed
subset S of £. For each element x in a lattice £, the intersection of all
minimal prime filters in £ containing x is denoted by Px, and a filter F in
£ is called a z0-filter if Px ⊆ F , for all x ∈ F . A filter F of £ is a strongly
z0-filter if PA ⊆ F for each finite subset A of F . For each element x in a
lattice £, the intersection of all maximal filters in £ containing x is denoted
by Mx, and a filter F in £ is called a z-filter if Mx ⊆ F , for all x ∈ F . In
the present paper, we are interested in investigating Baer filters to use other
notions of Baer, and associate which exist in the literature as laid forth in
[1, 11, 15, 16].

Our objective in this paper is to extend the notion of Baer property
in commutative rings to Baer property in the lattices, and to investigate
the relations between Baer filters, Strongly Baer filters, z0-filters, strongly
z0-filters and z-filters. Among many results in this paper, the first, intro-
ductional section contains elementatary observations needed later on.

In Section 2, we give basic properties of Baer filters. In particular, we
show that the class of lattices for which their Baer filters, strongly Baer
filters, z0-filters and strongly z0-filters are the same (see Proposition 2.4,
Prposition 2.19 and Theorem 2.20). Also, we investigate Baer filters and
specify some distinguished classes of Baer filters in a lattice. For example,
1-filters, the filter (F :£ G) where F is a Baer filter and G is a filter of £ (so
(1 :£ H) for every filter H of £), direct meets and all minimal prime filters
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are Baer filters (see Lemma 2.5, Lemma 2.6, Proposition 2.7, Proposition
2.9 and Proposition 2.12). In this section we observe that in a lattice £, If
p is a prime filter of a lattice £, then either p is a Baer filter or the maximal
Baer filters contained in p are prime Baer filters (see Theorem 2.13).

Section 3 is dedicated to the study of z-filters. We show that every
minimal prime filter in a semisimple lattice £ is a z-filter (see Theorem
3.4). We also prove in Theorem 3.5 that if F is a z-filter of £, then every
p ∈ min(F ) is a z-filter. Here, we observe that in a lattice £, Baer filters
and z-filters are not coincide generally (see Example 3.7). The remaining
part of this section is mainly devoted to investigation of lattices £ such
that when the class of Baer filters is contained in the class of z-filters (see
Theorem 3.8).

Section 4 concentrates to the relation between Baer filters and prime
filters. We prove in Theorem 4.4 that every prime filter of £ is a Baer
filter if and only if every filter of £ is a Baer filter. We also show that £
is a classical lattice such that for every finitely generated filter F ⊆ I(£),
(1 :£ F ) 6= {1} if and only if every maximal filter of £ is a Baer filter (see
Theorem 4.5). Moreover, we prove that in a lattice £, every prime Baer
filter of £ is either a minimal prime or a maximal filter if and only if for
each maximal filter m of £ and each m,n ∈m, there exists a finite subset
A ⊆ (1 :£ m) and d /∈ m such that (1 :£ T (A ∪ {m})) ⊆ (1 :£ d ∨ n) (see
Theorem 4.6). Finally, we will show that every prime Baer filter of £ is
a minimal prime filter if and only if for each a ∈ £, there exists a finitely
generated filter F such that F ⊆ (1 :£ a) and (1 :£ T (F ∪ {a})) = {1} (see
Theorem 4.7).

Let us recall some notions and notations. By a lattice we mean a poset
(£,6) in which every couple elements x, y has a g.l.b. (called the meet of
x and y, and written x ∧ y) and a l.u.b. (called the join of x and y, and
written x ∨ y). A lattice £ is complete when each of its subsets X has a
l.u.b. and a g.l.b. in £. Setting X = £, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we
say that £ is a lattice with 0 and 1). A lattice £ is called a distributive
lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in £ (equivalently, £ is
distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in £). A non-empty
subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £, a 6 b implies
b ∈ F , and x∧ y ∈ F for all x, y ∈ F (so if £ is a lattice with 1, then 1 ∈ F
and {1} is a filter of £). A proper filter F of £ is called prime if x∨ y ∈ F ,
then x ∈ F or y ∈ F . A proper filter F of £ is said to be maximal if G is a



4 S. E. Atani

filter in £ with F $ G, then G = £. The radical of £, denoted by Rad(£),
is the intersection of all maximal filters of £.

Let A be subset of a lattice £. Then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is
called finitely generated if there is a finite subset A of F such that F = T (A).
A lattice £ with 1 is called £-domain if a ∨ b = 1 (a, b ∈ £), then a = 1 or
b = 1. First we need the following lemma proved in [2, 4, 6, 8, 9].

Lemma 1.1. Let £ be a lattice.
(1) A non-empty subset F of £ is a filter of £ if and only if x∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ £. Moreover, since x = x ∨ (x ∧ y),
y = y∨(x∧y) and F is a filter, x∧y ∈ F gives x, y ∈ F for all x, y ∈ £.

(2) If F1, . . . , Fn are filters of £ and a ∈ £, then∨n
i=1 Fi = {

∨n
i=1 ai : ai ∈ Fi} and a ∨ Fi = {a ∨ ai : ai ∈ Fi}

are filters of £ and
∨n

i=1 Fi =
⋂n

i=1 Fi.
(3) Let A be an arbitrary non-empty subset of £. Then

T (A) = {x ∈ £ : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)}.
Moreover, if F is a filter and A is a subset of £ with A ⊆ F , then
T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

(4) If £ is distributive, F,G are filters of £, and y ∈ £, then
(G :£ F ) = {x ∈ £ : x ∨ F ⊆ G},
(F :£ T ({y})) = (F :£ y) = {a ∈ £ : a ∨ y ∈ F} and
({1} :£ y) = (1 :£ y) = {z ∈ £ : z ∨ y = 1} are filters of £.

(5) If {Fi}i∈∆ is a chain of filters of £, then
⋃

i∈∆ Fi is a filter of £.
(6) If £ is distributive, G,F1, · · · , Fn are filters of £, then

G ∨ (
∧n

i=1 Fi) =
∧n

i=1(G ∨ Fi).
(7) If £ is distributive and F1, . . . , Fn are filters of £, then for each i∧n

i=1 Fi = {∧ni=1ai : ai ∈ Fi} is a filter of £ and Fi ⊆
∧n

i=1 Fi.

2. Basic properties of Baer filters

In this section, we collect some basic properties concerning Baer filters and
strongly Baer filters and then investigate the relationship among these fil-
ters. Throughout this paper we shall assume, unless otherwise stated, that
£ is a bounded distributive lattice. The proof of the following lemma can be
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found in [6] (with some different proof and notions), but we give the details
for convenience.

Lemma 2.1. For the lattice £ the following statements hold:
(1) If F is a proper filter of £ with F 6= {1}, then F contained in a

maximal filter of £;
(2) Every Maximal filter of £ is a prime filter.

Proof. (1). Since the filter F is proper, Ω = {G : G is a filter of £ with F ⊆
G,G 6= £} 6= ∅. Moreover, (Ω,⊆) is a partial order. Clearly, Ω is closed
under taking unions of chains and so the result follows by Zorn’s Lemma.

(2). Assume that m is a maximal filter of £ and let a ∨ b ∈ m with
a, b /∈ m. Then £ = m ∧ T ({a}) which implies that 0 = m ∧ (a ∨ s) for
some m ∈ m and s ∈ £. Then m is a filter gives b = b ∨ (m ∧ (a ∨ s)) =
(b ∨m) ∧ (b ∨ a ∨ s) ∈m which is impossible. Thus m is prime.

Lemma 2.2. Assume that F is a filter of £ and let S be a join closed
subset of £. Then FS(£) = {x ∈ £ : x ∨ s ∈ F for some s ∈ S} is a filter
of £ with F ⊆ FS(£).

Proof. If f ∈ F , then f∨s ∈ F (s ∈ S) gives F ⊆ FS(£). Let x1, x2 ∈ FS(L)
and t ∈ £. Then x1 ∨ s1, x2 ∨ s2 ∈ F for some s1, s2 ∈ S (so s1 ∨ s2 ∈ S)
gives (x1 ∧ x2) ∨ (s1 ∨ s2), (x1 ∨ t) ∨ s1 ∈ F ; hence x1 ∧ x2, x1 ∨ t ∈ FS(£),
as needed.

We remind the reader with the following definition.

Definition 2.3. Let F be a filter of £.
(1) F is said to be a Baer filter if (1 :£ f) ⊆ (1 :£ x) for some f ∈ F

and x ∈ £ implies that x ∈ F .
(2) F is said to be a strongly Baer filter if (1 :£ G) ⊆ (1 :£ x) for some

finite subset G of F and x ∈ £ implies that x ∈ F .
(3) F is said to be a 1-filter if F = {1}S(£) for some join closed subset

S of £.

It can be easily seen that every strongly Baer filter is a Baer filter. It
can also be verified that arbitrary intersection of Baer fiters is again a Baer
filter. The next result determines the class of lattices for which their Baer
filters and strongly Baer filters are the same.
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Proposition 2.4. A filter F of a lattice £ is a Baer filter if and only if F
is a strongly Baer filter.

Proof. It is enough to show that if F is Baer filter, then F is a strongly Baer
filter. Let (1 :£ A) ⊆ (1 :£ x) for some finite subset A = {a1, a2, · · · , ak}
of F (so

∧k
i=1 ai ∈ F , as F is a filter) and x ∈ £. Then (1 :£

∧k
i=1 ai) =⋂k

i=1(1 :£ ai) = (1 :£ A) ⊆ (1 :£ x) gives x ∈ F , as F is a Baer filter. This
completes the proof.

Lemma 2.5. For a lattice £ the following statements hold:

(1) If S is a join closed subset of £, then {1}S(£) is a Baer filter.

(2) A filter F of £ is a Baer filter if and only if for each f1, f2 ∈ F with
(1 :£ f1) ∩ (1 :£ f2) ⊆ (1 :£ x) implies x ∈ F .

Proof. (1). Let (1 :£ a) ⊆ (1 :£ x) for some a ∈ {1}S(£) and x ∈ £. Then
there exists s ∈ S such that a ∨ s = 1 which implies that s ∈ (1 :£ a) ⊆
(1 :£ x); hence x ∈ {1}S(£).

(2). If F is a Baer filter, then (1 :£ f1 ∧ f2) = (1 :£ f1) ∩ (1 :£ f2) ⊆
(1 :£ x) gives x ∈ F . Conversely, let (1 :£ A) ⊆ (1 :£ x) for some finite
subset A = {a,a2, . . . , ak} of F and x ∈ £. Then (1 :£ A) =

⋂k
i=1(1 :£ ai)

= (1 :£ a1) ∩
⋂k

i=2(1 :£ ai) = (1 :£ a1) ∩ (1 :£
∧k

i=2 ai) ⊆ (1 :£ x) gives
x ∈ F .

Lemma 2.6. Let F and G be filters of £. If F is a Baer filter, then
(F :£ G) is a Baer filter. In particular, (1 :£ H) is a Baer filter for every
filter H of £.

Proof. Let (1 :£ f) ⊆ (1 :£ x) for some f ∈ (F :£ G) (so f ∨ G ⊆ F ) and
x ∈ £. Then for each g ∈ G, (1 :£ f ∨ g) ⊆ (1 :£ x∨ g) and f ∨ g ∈ F gives
x ∨ G ⊆ F , as F is a Baer filter; hence x ∈ (F :£ G). The in particular
statement is clear.

A proper filter F of £ is said to be a direct meet of £ if £ = F ∧G and
F ∩ G = {1} for some filter G of £. Compare the next Proposition with
Propostion 2.10 (4) in [16].

Proposition 2.7. Every direct meet of a lattice £ is a Baer filter.
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Proof. Let F be a direct meet of £. Then £ = F ∧G and G∩F = F ∨G =
{1} for some filter G of £. Clearly, G ∩ (1 :£ G) = {1} and F ⊆ (1 :£ G).
If x ∈ (1 :£ G), then x = x ∧ 1 ∈ £ = F ∧ G gives x = a ∧ b for some
a ∈ F and b ∈ G. This implies that a, b ∈ (1 :£ G) by Lemma 1.1; so b = 1
which gives x = a ∈ F . Thus F = (1 :£ G). Now the assertion follows from
Lemma 2.6.

Compare the next Proposition with Lemma 3.9 in [12].

Proposition 2.8. Assume that £ be a lattice and let F be a filter of £.
The following statements are equivalent:

(1) F is a Baer filter of £;
(2) (1 :£ (1 :£ f)) ⊆ F for each f ∈ F ;
(3) F =

⋃
f∈F (1 :£ (1 :£ f)).

Proof. (1)⇒ (2). Let x ∈ (1 :£ (1 :£ f)) for some f ∈ F . Then x∨ (1 :£ f)
= {1} gives (1 :£ f) ⊆ (1 :£ x); so x ∈ F , as F is a Baer filter.

(2) ⇒ (3). By (2), H =
⋃

f∈F (1 :£ (1 :£ f)) ⊆ F . If e ∈ F , then
e ∈ (1 :£ (1 :£ e)) ⊆ H and so we have equality.

(3) ⇒ (1). Let (1 :£ f) ⊆ (1 :£ x) for some f ∈ F and x ∈ £.
This implies that x ∈ (1 :£ (1 :£ x)) ⊆ (1 :£ (1 :£ f)) ⊆ F by (3), as
required.

Proposition 2.9. Let £ be a lattice. The following hold:
(1) If p is a prime filter of £, then 1p = {x ∈ £ : (1 :£ x)∩(£\p) 6= {1}}

is a Baer filter;
(2) If x ∈ £, then F = (1 :£ (1 :£ x)) is a Baer filter;
(3) If x ∈ £, then (1 :£ x) is a Baer filter.

Proof. (1). Let x1, x2 ∈ 1p and t ∈ £. Then there exist 1 6= a /∈ p and
1 6= b /∈ p (so 1 6= a ∨ b /∈ p) such that a ∨ x1 = 1 = b ∨ x2 which implies
that a ∨ b ∈ (1 :£ (x1 ∧ x2)) ∩ (£ \ p); hence x1 ∧ x2 ∈ 1p. Similarly,
x1 ∨ t ∈ 1p. Thus 1p is a filter of £. To see that 1p is a Baer filter, at first
we show that 1p =

⋃
x∈£\p(1 :£ x) = H. If x ∈ 1p, then x ∨ z = 1 for

some 1 6= z ∈ £ \ p. This implies that 1 6= x ∈ (1 :£ z) ⊆ H; so 1p ⊆ H.
Similarly, H ⊆ 1p, and so we have equality. Let (1 :£ a) ⊆ (1 :£ x) for
some a ∈ 1p and x ∈ £. Then there exists 1 6= t ∈ £\p such that a∨ t = 1.
Then t ∈ (1 :£ a) ⊆ (1 :£ x) which gives 1 6= t ∈ (1 :£ x) ∩ (£ \ p); thus
x ∈ 1p.
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(2). It suffices to show that for each y ∈ F , (1 :£ (1 :£ y)) ⊆ F by
Proposition 2.8. Let z ∈ (1 :£ (1 :£ y)).Then z∨(1 :£ y) = {1} = y∨(1 :£x)
gives (1 :£ x) ⊆ (1 :£ y) ⊆ (1 :£ z) which implies that z ∨ (1 :£ x) = {1};
so z ∈ F .

(3). Since (1 :£ x) = (1 :£ (1 :£ (1 :£ x))), (1 :£ x) is a Baer filter by
(2) and Lemma 2.6.

Proposition 2.10. A lattice £ is a £-domain if and only if it has no
nontrivial Baer filter.

Proof. Assume that F 6= {1} is a Baer filter of £ and let 1 6= x ∈ F . Then
(1 :£ x) = {1}, as £ is a £-domain. Thus for each y ∈ £, (1 :£ x) ⊆ (1 :£ y)
which implies that y ∈ F since F is a Baer filter. Hence F = £. Conversely,
for each x ∈ £, (1 :£ x) is a Baer filter by Proposition 2.9 (3); so either
(1 :£ x) = {1} or (1 :£ x) = £. Thus for each 1 6= x ∈ £, (1 :£ x) = {1}.
Hence £ is a £-domain.

Let £ be a lattice. We denote by Spec(£) the set of all prime filters of £.
If F is a filter in £, the set of all minimal prime filters over F (or belonging
to F ) will be denoted by min(F ). We need the following proposition proved
in [6, Proposition 2.7].

Proposition 2.11. For a lattice £ the following statements hold:
(1) If F is a filter and p is a prime filter of £, then p ∈ min(F ) if and

only if for each x ∈ p, there is a y /∈ p such y ∨ x ∈ F ;
(2) If p is a prime filter of £, then p ∈ min(£) if and only if for each

x ∈ p, there is a y /∈ p such that y ∨ x = 1.

The next result shows that every minimal prime filter of a lattice £ is a
Baer filter. Compare the next Proposition with Propostion 2.13 (1) in [16].

Proposition 2.12. If F is a Baer filter of a lattice £, then every minimal
prime filter over F is a Baer filter.

Proof. Suppose that p ∈ min(F ) and let (1 :£ p) ⊆ (1 :£ x) for some p ∈ p
and x ∈ £. Then p ∨ p′ ∈ F for some p′ /∈ p by Proposition 2.11 (1).
Clearly, (1 :£ p ∨ p′) ⊆ (1 :£ p′ ∨ x). This implies that x ∨ p′ ∈ F ⊆ p, as
F is a Baer filter, and therefore x ∈ p.

Theorem 2.13. If p is a prime filter of a lattice £, then either p is a Baer
filter or the maximal Baer filters contained in p are prime Baer filters.
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Proof. Set Ω = {F : F is a Baer filter of £ and F ⊆ p}. Then {1} ∈ Ω
and (Ω,⊆) is a partial order. Clearly, Ω is closed under taking unions of
chains and so by Zorn’s Lemma, Ω has a maximal element, say m. It is
clear that p = m if and only if p is a prime Baer filter. If m $ p, then
there exists a prime filter m′ minimal with respect to m ⊆m′ and m′ $ p
since m′ will be a Baer filter by Proposition 2.12. So, either m′ = m which
gives m is prime, or m $ m′ which contradicts the maximality of m.

Theorem 2.14. If F is a 1-filter of £, then every p ∈ min(F ) is a minimal
prime filter of £.

Proof. By assumption, F = {1}S(£) = {x ∈ £ : x ∨ s = 1 for some s ∈ S}
for some join closed subset S of £. By Proposition 2.11 (2), it suffices to
show that for each x ∈ p there exists y /∈ p such that y ∨ x = 1. Let
x ∈ p. Then by Proposition 2.11 (1), there is y /∈ p such that x ∨ y ∈ F
and p∩ S = ∅. So x∨ y ∨ s = 1 for some s ∈ S \p. Thus x∨ y ∨ s = 1 and
y ∨ s /∈ p and hence p is a minimal prime filter of £.

Compare the next Theorem with Lemma 2.5 in [16].

Theorem 2.15. Let F be a filter of a lattice £. Then F contained in a pro-
per Baer filter if and only if for each finite subset K of F , (1 :£ K) 6= {1}.

Proof. Assume to the contrary, that F is contained in a proper Bear filter
G and K a finite subset of F such that (1 :£ K) = {1}. Let y ∈ £. Then
(1 :£ K) ⊆ (1 :£ y) gives y ∈ G; so G = £ which is a contradiction.
Conversely, suppose that F has the stated property and put

H = {x ∈ £ : (1 :£ K) ⊆ (1 :£ x) for some finite subset K of F}.

Let x1, x2 ∈ H and t ∈ £. Then there exist finite subsets H1, H2 of F
such that (1 :£ H1) ⊆ (1 :£ x1) and (1 :£ H2) ⊆ (1 :£ x2). It follows that
(1 :£ H1∧H2) ⊆ (1 :£ H1)∩(1 :£ H2) ⊆ (1 :£ x1)∩(1 :£ x2) ⊆ (1 :£ x1∧x2)
and (1 :£ H1) ⊆ (1 :£ x1) ⊆ (1 :£ x1 ∨ t); hence x1 ∧ x2, x1 ∨ t ∈ H.
Therefore H is a filter of £. Let (1 :£ K) ⊆ (1 :£ y) for some finite subset
K = {k1, · · · , km} of H and y ∈ £. There are finite subsets K1, · · · ,Km of
F such that (1 :£ Ki) ⊆ (1 :£ ki) for each 1 6 i 6 m. Set K ′ =

∨m
i=1 Ki ⊆

F . If z ∈ (1 :£ K ′), then z ∨K ′ = {1} gives z ∨Ki = {1} (so z ∨ ki = 1)
for each 1 6 i 6 m which implies that z ∈ (1 :£ K) ⊆ (1 :£ x); hence
(1 :£ K ′) ⊆ (1 :£ x) and so x ∈ H. Thus H is a Baer filter. Moreover, if
f ∈ F , then (1 :£ {f}) ⊆ (1 :£ f) gives F ⊆ H.
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Compare the next Theorem with Proposition 2.14 in [16].

Theorem 2.16. If F1, F2, · · · , Fm are filters of £ such that for each i 6= j,
Fi∧Fj = £, then

⋂m
i=1 Fi is a Baer filter if and only if each Fi (1 6 i 6 m)

is a Baer filter.

Proof. (1). One side is clear. To see the other side, suppose that
⋂m

i=1 Fi is
a Baer filter, f ∈ Fj for some 1 6 j 6 m and b ∈ £ such that (1 :£ f) ⊆
(1 :£ b). Set F =

⋂m
i=1,i 6=j Fi. We claim that F ∧ Fj = £. On the contrary,

assume that F ∧ Fj 6= £. Then there is a maximal filer m of £ such that
F ∧ Fj ⊆ m by Lemma 2.1 (1) (so Fj ⊆ m and F ⊆ m). Then there is a
1 6 s 6 m with s 6= j such that Fs ⊆ m. Otherwise, for each 1 6 i 6 m
with i 6= j, there exists fi ∈ Fi \m, but then

∨m
i=1,i 6=j fi ∈ F \m By Lemma

2.1 (2), and this contradicts the statement of F ⊆m. So £ = Fj ∧Fs ⊆m,
a contradiction. Therefore Fj∧F = £ and hence 0 = fj∧y for some fj ∈ Fj

and y ∈ F . So b = (b ∨ fj) ∧ (b ∨ y) and (1 :£ f ∨ y) ⊆ (1 :£ b ∨ y). Since
f ∨ y ∈

⋂m
i=1 Fi and it is a Baer filter, b ∨ y ∈

⋂m
i=1 Fi. Thus b ∨ y ∈ Fj .

Since b ∨ fj ∈ Fj and b ∨ y ∈ Fj , b ∈ Fj . Therefore Fj is a Baer filter.

For each element x in a lattice £, the intersection of all minimal prime
filters in £ containing x is denoted by Px, and a filter F in £ is called a z0-
filter if Px ⊆ F , for all x ∈ F . Clearly, P1 =

⋂
1∈p∈min(£) p =

⋂
p∈min(£) p =

{1} by [6, Lemma 2.6], x ∈ Px and if a ∈ Px, then Pa ⊆ Px. A filter F of
£ is a strongly z0-filter if PA ⊆ F for each finite subset A of F . It can be
easily seen that every strongly z0-filter is a z0-filter. For each a ∈ £, set
V (a) = {p ∈ min(£) : a ∈ p}.

Proposition 2.17. For a lattice £ the following statements hold:
(1) For every x ∈ £ and a finite subset A of £, (1 :£ A) ⊆ (1 :£ x) if

and only if V (A) ⊆ V (x), i.e. Px ⊆ PA;
(2) For a, b ∈ £, (1 :£ a) ⊆ (1 :£ b) if and only if Pb ⊆ Pa, i.e.

V (a) ⊆ V (b).

Proof. (1). Let p ∈ PA and x ∈ £ such that (1 :£ A) =

(1 :£ A) =

k⋂
i=1

(1 :£ ai) = (1 :£

k∧
i=1

ai) ⊆ (1 :£ x),

where A = {a1, a2, · · · , ak} ⊆ p. By Proposition 2.11, there exist the
sequence {b1, b2, · · · , bk} ⊆ £ \ p such that for each 1 6 i 6 k, ai ∨ bi = 1.
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Set b =
∨k

i=1 bi. Then 1 6= b /∈ p. By assumption, b ∨ (
∧k

i=1 ai) = 1 gives
b ∈ (1 :£ x) and hence b ∨ x = 1 ∈ p. This implies that x ∈ p, as p is
prime. Thus V (A) ⊆ V (x). Conversely, let x ∈ £ and A = {a1, a2, · · · , ak}
be a finite subset of £ and y ∈ (1 :£ A) =

⋂k
i=1(1 :£ ai). This implies

that y ∨ ai = 1 for each 1 6 i 6 k. Then Px ⊆ PA ⊆
⋂k

i=1 Pai gives
x ∨ y ∈ Px∨y ⊆

⋂k
i=1 Pai∨y = P1 = {1} and hence x ∨ y = 1, as needed.

(2). This is clear by (1).

Lemma 2.18. Let F be a filter of a lattice £. The following hold:
(1) F is a z0-filter if and only if for each a ∈ F and b ∈ £, Pb ⊆ Pa

implies b ∈ F .
(2) F is a strongly z0-filter if and only if for each a ∈ £ and a finite

subset A of £, Pa ⊆ PA implies a ∈ F .

Proof. (1). Assume that F is a z0-filter and let Pb ⊆ Pa, where a ∈ F and
b ∈ £ which gives b ∈ Pb ⊆ Pa ⊆ F . Conversely, let x ∈ F and y ∈ Px.
Then by assumption, Py ⊆ Px and x ∈ F gives y ∈ F ; so Px ⊆ F .

(2). Suppose that F is a strongly z0-filter and let Pa ⊆ PA for some
a ∈ £ and a finite subset A of £. By assumption, a ∈ Pa ⊆ PA ⊆ F .
Conversely, let B be a finite subset of £ and z ∈ PB. Then by assumption,
Pz ⊆ PB gives z ∈ F . Thus PB ⊆ F . This completes the proof.

Proposition 2.19. A filter F of a lattice £ is a z0-filter if and only if F
is a strongly z0-filter.

Proof. It is enough to show that if F is z0-filter, then F is a strongly z0-
filter. Let Pa ⊆ PA for some a ∈ £ and a finite set A = {a1, a2, · · · , ak}
of £. Then (1 :£

∧k
i=1 ai) =

⋂k
i=1(1 :£ ai) = (1 :£ A) ⊆ (1 :£ a) by

Proposition 2.17; so again by Proposition 2.17, Pa ⊆ P∧k
i=1 ai

gives a ∈ F ,
as F is a z0-filter. Thus F is a strongly z0-filter by Lemma 2.18.

The following result determines the class of lattices for which their Baer
filters and z0-filters are the same.

Theorem 2.20. A filter F of a lattice £ is a Baer filter if and only if F is
a z0-filter.

Proof. Assume that F is a Baer filter and let a ∈ F and b ∈ £ such that
Pb ⊆ Pa. By Proposition 2.17, (1 :£ a) ⊆ (1 :£ b). Now F is a Baer filter
gives b ∈ F . Thus F is a z0-filter. Conversely, suppose that F is a z0-filter
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and let (1 :£ a) ⊆ (1 :£ b) for some a ∈ F and b ∈ £. Then by Proposition
2.17, we have b ∈ Pb ⊆ Pa ⊆ F , i.e. the result holds.

3. Some properties of z-filters

For each element x in a lattice £, the intersection of all maximal filters in
£ containing x is denoted by Mx, and a filter F in £ is called a z-filter if
Mx ⊆ F , for all x ∈ F . Clearly, M1 = Rad(£), x ∈Mx and if a ∈Mx, then
Ma ⊆Mx. A lattice £ is called semisimple provided that Rad(£) = {1}.

Lemma 3.1. Let F be a filter of £. Then F is a z-filter if and only if for
each a ∈ F and b ∈ £, Mb ⊆Ma implies b ∈ F .

Proof. Assume that F is a z-filter and letMb ⊆Ma, where a ∈ F and b ∈ £.
It follows that b ∈Mb ⊆Ma ⊆ F . Conversely, let x ∈ F and y ∈Mx. Then
by assumption, My ⊆Mx and x ∈ F gives y ∈ F ; so Mx ⊆ F .

Remark 3.2. 1. If m is a maximal filter of £, then Ma ⊆m for all a ∈m.
Thus the family of z-filters contains the set of maximal filters of £.

2. It can be easily seen that any intersection of z-filters is a z-filter.

3. By (1) and (2), Rad(£) is a z-filter. Moreover, if x ∈ Rad(£), F is
any z-filter and y ∈ F , then Mx ⊆ My gives x ∈ F . Therefore Rad(£) is
contained in every z-filter.

4. The intersections of maximal filters are the most obvious z-filters and
they will be called strong z-filters.

5. Suppose that T ({x}) is a z-filter; we show that

T ({x}) =
⋂
{m ∈ Max(£) : T ({x}) ⊆m}.

If y ∈
⋂
{m ∈ Max(£) : T ({x}) ⊆m}, thenMy ⊆Mx gives y ∈ T ({x}),

and so we have equality. Thus any cyclic z-filter is a strong z-filter.

Proposition 3.3. If F is a z-filter, then (F :£ G) is a z-filter for any G.

Proof. Let Mb ⊆Ma for some a ∈ (F :£ G) and b ∈ £. Then Mb∨g ⊆Ma∨g
for all g ∈ G. Since a∨g ∈ F , b∨g ∈ F for all g ∈ G, i.e. b ∈ (F :£ G).

Theorem 3.4. Every minimal prime filter in a semisimple lattice £ is a
z-filter.
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Proof. Assume that p is a minimal prime filter of £ and let Mq ⊆ Mp for
some p ∈ p and q ∈ £. Since p is minimal prime, there exists a y /∈ p such
that p∨y = 1 by Proposition 2.11. We claim that q∨y = 1. Assume to the
contrary, that y∨q 6= 1. By Lemma 2.1, there exists a maximal filter m such
that y∨ q /∈m, since an element which belongs to every maximal filter is 1,
as £ is semisimple. Then m∧T ({y∨ q}) = £, as m is a maximal filter and
so there would be elements s ∈ £ and m ∈m such that 0 = m∧ (y∨ q∨ s),
which then implies p = (p∨m)∧ (p∨ y ∨ q ∨ s) = p∨m, and hence p ∈m.
But q ∈ Mq ⊆ Mp ⊆ m, so we would have q ∈ m, and hence q ∨ y ∈ m,
leading to a contradiction. Therefore y ∨ q = 1 ∈ p, and since p is prime
with y /∈ p, we deduce that q ∈ p. Thus, p is a z-filter.

Compare the next theorem with Theorem 1.1 in [15].

Theorem 3.5. If F is a z-filter of £, then every p ∈ min(F ) is a z-filter.

Proof. It suffices to show that if p is a prime filter containing F which is
not a z-filter, it is not minimal. If p is not a z-filter, then there are elements
q /∈ p and p ∈ p such that Mq ⊆Mp by Lemma 3.1. Set D = (£ \ p) ∪H,
where H = {p ∨ s : s /∈ p}. Clearly, 0 ∈ D. Let x, y ∈ D. If x, y /∈ p, then
x∨ y /∈ p gives x∨ y ∈ D. If x /∈ p and y ∈ H, then there exists u /∈ p such
that y = u ∨ p which implies that x ∨ y = (x ∨ u) ∨ p ∈ H ⊆ D. Similarly,
if x ∈ H and y /∈ p, we have x ∨ y ∈ D. If x, y ∈ H, then x = p ∨ u and
y = p ∨ u′ for some u, u′ /∈ p. Then x ∨ y = p ∨ (u ∨ u′) ∈ H ⊆ D. Thus D
is a join closed subset of £. If x ∈ F ∩D, then x ∈ H; so x = p∨s for some
s /∈ p. By assumption, Mq∨s ⊆ Mp∨s and p ∨ s ∈ F gives q ∨ s ∈ F ⊆ p.
But q, s /∈ p and p is prime. Thus D∩F = ∅. By [6, Lemma 2.6 (i)], There
is a prime filter F ⊆ p′ which is maximal with respect to the property
p′ ∩ F = ∅ and it is clear that p′ $ p. Thus p is not minimal.

Compare the next corollary with Theorem 1.5 in [15].

Corollary 3.6. If p is a prime filter of a semisimple lattice £, then either
p is a z-filter or the maximal z-filters contained in p are prime z-filters.

Proof. Set ∆ = {G : G is a z-filter of £ and G ⊆ p}. Then {1} ∈ ∆ and
∆ is inductive so by Zorn’s lemma, ∆ has a maximal element, say q. It is
clear that p = q if and only if p is a prime z-filter. If q $ p, then there
exists a prime filter q′ minimal with respect to q ⊆ q′ and q′ $ p since q′

will be a z-filter by Theorem 3.5. So, either q′ = q which gives q is prime,
or q $ q′ which contradicts the maximality of q.
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The following example shows that z-filters are not necessarily Baer fil-
ters.

Example 3.7. Let D = {a, b, c}. Then £ = {X : X ⊆ D} forms a
distributive lattice under set inclusion greatest element D and least element
∅ (note that if x, y ∈ £, then x∨y = x∪y and x∧y = x∩y). It can be easily
seen that proper filters of £ are {D}, F1 = {D, {a, b}}, F2 = {D, {a, c}},
F3 = {D, {b, c}}, F4 = {D, {a, c}, {a, b}{a}}, F5 = {D, {b, c}, {a, b}{b}}
and F6 = {D, {a, c}, {c, b}{c}}. Then

F3 = (1 :£ {a}) ⊆ (1 :£ {a, b}) = F6, {a, b} ∈ F5

and {a} /∈ F5. This shows that F5 is not a Baer filter, but F5 is a z-filter
since it is maximal. So Baer filters and z-filters are not coincide generally.

The following theorem shows when the class of Baer filters is contained
in the class of z-filters. Compare the next Theorem with Propostion 2.9 in
[16].

Theorem 3.8. For a lattice £ the following statements are equivalent:
(1) £ is semisimple;
(2) Every Baer filter of £ is a z-filter.

Proof. (1) ⇒ (2). Assume that F is a Baer filter of £ and let Mb ⊆ Ma,
where a ∈ F and b ∈ £. Let x ∈ (1 :£ a). Then Mb ⊆ Ma gives Mb∨x ⊆
Mx∨a ⊆ M1 = Rad(£) = {1}. Hence b ∨ x ∈ Mb∨x = {1} which implies
that (1 :£ a) ⊆ (1 :£ b); thus b ∈ F , as F is Baer Filter. Therefore F is a
z-filter.

(2)⇒ (1). Suppose that every Baer filter is a z-filter; so {1} is a z-filter
which gives Rad(£) = M1 ⊆ {1} and hence Rad(£) = {1}. Thus £ is
semisimple.

4. Further results

This section is devoted to the relation between Baer filters and prime filters.
Let us begin the following proposition.

Proposition 4.1. For a lattice £ the following statements hold:
(1) If F is a filter, p is a prime filter of £ and F ∩ p is a Baer filter,

then either F or p is a Baer filter;
(2) If p and q are prime filters of £ which do not belong to a chain,
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then p and q are both Baer filters if and only if p∩q is a Baer filter;
(3) If F is a filter, m is a maximal filter of £ such that F * m, then F

and m are both Baer filters if and only if F ∩m is a Baer filter.

Proof. (1). If F ⊆ p, then p ∩ F = F is a Baer filter. So we may assume
that there exists x ∈ F with x /∈ p. Let (1 :£ p) ⊆ (1 :£ y) for some p ∈ p
and y ∈ £. Then (1 :£ x ∨ p) ⊆ (1 :£ x ∨ y) and p ∨ x ∈ p ∩ F gives
x∨ y ∈ p∩F , as p∩F is a Baer filter which implies that y ∈ p. Thus p is
a Baer filter.

(2). We need only prove the converse. Assume that q * p (so there
exists x ∈ q with x /∈ p) and let (1 :£ p) ⊆ (1 :£ y) for some p ∈ p
and y ∈ £. Then (1 :£ x ∨ p) ⊆ (1 :£ x ∨ y) and p ∨ x ∈ p ∩ q gives
x ∨ y ∈ q ∩ p ⊆ p, as q ∩ p is a Baer filter; hence y ∈ p. Consequently, p
is a Baer filter and so is q via similar argument.

(3). Since m $ m ∧ F ⊆ £, we have F ∧m = £. Now the assertion
follows from Theorem 2.16.

An element x of £ is called identity join of a lattice £, if there exists
1 6= y ∈ £ such that x ∨ y = 1. An element x of £ is called zero-divisor of
a lattice £, if there exists 0 6= y ∈ £ such that x ∧ y = 0. The set of all
identity joins of a lattice £ is denoted I(£) and the set of all zero-divisors
of £ is denoted Z(£).

Lemma 4.2. If {1} 6= p is a prime filter of £ with (1 :£ p) 6= {1}, then
p ⊆ Id(£).

Proof. By [7, Proposition 2.2 (iv)], p = (1 :£ (1 :£ p)). This implies that
p ⊆ Id(£).

Following the concept of classical rings (see [13, 3]), we define classical
lattices as follows:

Definition 4.3. A lattice £ is called [classical if £ = I(£) ∪ Z(£).

The following theorem shows that: when is every prime filter of £ a
Baer filter? (Compare the next theorem with Proposition 3.2 in [16]).

Theorem 4.4. For a lattice £ the following statements are equivalent:
(1) Every prime filter of £ is a Baer filter;
(2) Every filter of £ is a Baer filter;
(3) For each x ∈ £, T ({x}) is a Bear filter;
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(4) £ is a classical lattice and for each x, y ∈ £, (1 :£ x) ⊆ (1 :£ y)

implies y ∈ T ({x}).

Proof. (1)⇒ (2). Let F be a filter of £. Then F =
⋂

F⊆p p by [6, Lemma
2.6 (ii)]; hence F is a Baer filter of £ by (1).

The implication (2)⇒ (3) is clear.
(3) ⇒ (4). Let x be an arbitrary element of £ such that x 6= 0, 1. If

x /∈ Z(£), then there exists a non-zero element y of £ such that x ∧ y 6= 0;
so x ∧ y 6= 1. If T ({x ∧ y}) = £, then 0 = (x ∧ y) ∨ s for some s ∈ £ gives
x∧y = 0, a contradiction. Thus T ({x∧y}) 6= £. If (1 :£ x∧y) = {1}, then
for each z ∈ £, we have (1 :£ x ∧ y) ⊆ (1 :£ z) and hence z ∈ T ({x ∧ y}).
Therefore, T ({x ∧ y}) = £, a contradiction. Thus (1 :£ x ∧ y) 6= {1}. Let
1 6= a ∈ (1 :£ x∧ y). Then a∨ (x∧ y) = (a∨x)∧ (a∨ y) = 1 gives a∨x = 1
which implies that x ∈ I(£). Thus £ is a classical lattice. Let x, y ∈ £
such that (1 :£ x) ⊆ (1 :£ y). By assumption, T ({x}) is a Baer filter; hence
y ∈ T ({x}).

(4)⇒ (1). Suppose that p is a prime filter of £ and let p ∈ p. We claim
that (1 :£ p) 6= {1}. Otherwise, for each z ∈ £, we have (1 :£ p) ⊆ (1 :£ z)
and hence z ∈ T ({p}). Therefore, T ({p}) = £ ⊆ p, a contradiction. Thus
p ∈ I(£) and so p ⊆ I(£). Let (1 :£ p) ⊆ (1 :£ x) for some p ∈ p and
x ∈ £. By assumption, x ∈ T ({p}) ⊆ p, as needed.

The following theorem is a lattice counterpart of Theorem 3.1 in [16]
describing the structure of maximal ideals of a classical ring.

Theorem 4.5. For a lattice £ the following statements are equivalent:

(1) £ is a classical lattice such that for every finitely generated filter
F ⊆ I(£), (1 :£ F ) 6= {1};

(2) Every maximal filter of £ is a Baer filter.

Proof. (1) ⇒ (2). Suppose that m is a maximal filter of £. We claim
that m ⊆ I(£). Assume to the contrary, that there is a x ∈ m such that
x /∈ I(£). By assumption, there exists a non-zero element y /∈ m such
that x ∧ y = 0. Then T ({y}) ∧m = £ gives x = m ∧ (y ∨ s) for some
m ∈ m and s ∈ £ which implies that y ∨ s ∈ m by Lemma 1.1. Then
0 = x ∧ y = m ∧ y ∧ (y ∨ s) = m ∧ (y ∨ s) = x, a contradiction. Thus
m ⊆ I(£). Set

G = {x ∈ £ : (1 :£ A) ⊆ (1 :£ x) for some finite subset A of m}.
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If x ∈ m, then (1 :£ x) ⊆ (1 :£ x) gives m ⊆ G. We claim that G is
a proper Baer filter. Let x, y ∈ G and a ∈ £. Then there are two finite
subsets A and B of m such that (1 :£ A) ⊆ (1 :£ x) and (1 :£ B) ⊆ (1 :£ y).
Hence,

(1 :£ A ∧B) ⊆ (1 :£ A) ∩ (1 :£ B) ⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)

and (1 :£ A) ⊆ (1 :£ x) ⊆ (1 :£ x∨a) gives x∧y, x∨a ∈ G. Thus G is a filter
of £. Let (1 :£ g) ⊆ (1 :£ z) for some g ∈ G and z ∈ £. By assumption,
there exists a finite subset H of m such that (1 :£ H) ⊆ (1 :£ g). Therefore
(1 :£ H) ⊆ (1 :£ g) ⊆ (1 :£ z) and hence z ∈ G. So G is a Baer filter. If
y ∈ G, then {1} 6= (1 :£ T (A)) ⊆ (1 :£ A) ⊆ (1 :£ y) for some finite subset
A of m which implies that y ∈ I(£) and so G ⊆ I(£). Thus G is a proper
filter and so by maximality of m we have G = m is a Baer filter.

(2) ⇒ (1). Let c /∈ Z(£). Then there exists a maximal filter m′ of £
such that c ∈ T ({c}) ⊆m′ by Lemma 2.1. If m ∈m′, then (1 :£ m) 6= {1}
(otherwise, T ({m}) = £ ⊆ m′, a contradiction since m′ is a Baer filter)
gives m′ ⊆ I(£) by Lemma 4.2 and so c ∈ I(£). Thus £ is a classical lattice.
Let H be a finitely generated filter of £ such that H ⊆ I(£). Then there is
a maximal filter Q of £ such that H ⊆ Q. It follows that (1 :£ H) 6= {1},
as Q is a Baer filter. This completes the proof.

Compare the next theorem with Theorem 3.2 in [16]).

Theorem 4.6. For a lattice £ the following statements are equivalent:
(1) Every prime Baer filter of £ is either a minimal prime or a maximal

filter;
(2) For each maximal filter m of £ and each m,n ∈m, there exists a

finite subset A ⊆ (1 :£ m) and d /∈m such that (1 :£ T (A∪{m})) ⊆
(1 :£ d ∨ n).

Proof. (1)⇒ (2) Assume to the contrary, that there exists a maximal filter
m of £ and m,n ∈m such that (1 :£ T (A ∪ {m})) * (1 :£ n ∨ d) for each
d /∈m and each finite subset A ⊆ (1 :£ m). Set S = {n ∨ c : c /∈m} ∪ {0},

G = {x ∈ £ : (1 :£ T (A ∪ {m})) ⊆ (1 :£ x), where A ⊆ (1 :£ m) is finite}.

Let x, y ∈ G and a ∈ £. Then there are two finite subsets A and B of
(1 :£ m) such that (1 :£ T (A ∪ {m}) ⊆ (1 :£ x) and (1 :£ T (B ∪ {m}) ⊆
(1 :£ y). Hence,

(1 :£ T (A ∪B ∪ {m}) ⊆ (1 :£ T (A ∪ {m}) ∩ (1 :£ T (B ∪ {m})
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⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)

and (1 :£ T (A ∪ {m}) ⊆ (1 :£ x) ⊆ (1 :£ x ∨ a) gives x ∧ y, x ∨ a ∈ G.
Thus G is a filter of £. Let (1 :£ g) ⊆ (1 :£ z) for some g ∈ G and
z ∈ £. By assumption, there exists a finite subset C of (1 :£ m) such that
(1 :£ T (C ∪ {m}) ⊆ (1 :£ g) ⊆ (1 :£ z); so z ∈ G which implies that G
is a Baer filter. Clearly, S is a join closed subset of £. If s ∈ S ∩ G, then
s = n ∨ t for some t /∈ m and there exists a finite subset D of (1 :£ m)
such that (1 :£ T (C ∪ {m}) ⊆ (1 :£ n ∨ t) which is a contradiction. Thus
G ∩ S = ∅. Then there exists a p ∈ min(G) such that p ∩ S = ∅ by [6,
Lemma 2.6 (i)]. Moreover, by Proposition 2.12, p is a Baer filter. Since
(1 :£ T (A ∪ {m})) ⊆ (1 :£ m), m ∈ G ⊆ p. Then by Proposition 2.11,
there exists d /∈ p such that m ∨ d = 1 which implies that {d} ⊆ (1 :£ m).
On the other hand (1 :£ T ({d,m})) ⊆ (1 :£ d). Thus d ∈ G ⊆ p which is a
contradiction, i.e. (2) holds.

(2)⇒ (1). Let p be a prime Baer filter of £. By Lemma 2.1, there exists
a maximal filter q of £ such that p ⊆ q. If p = q, then we are done. So we
may assume that p 6= q. Suppose that p is neither maximal nor minimal
prime. By Proposition 2.11, there exists p ∈ p such that p ∨ c 6= 1 for each
c ∈ £ \ p. Suppose that q ∈ q such that q /∈ p. Thus (1 :£ p)∩ (£ \ p) = ∅
which implies that (1 :£ p) ⊆ p. Now by assumption, there exists a finite
subset A of (1 :£ p) and d ∈ £\q such that (1 :£ T (A∪{p})) ⊆ (1 :£ q∨d).
Then T (A ∪ {p}) ⊆ p and p is a Baer filter gives q ∨ d ∈ p; hence either
d ∈ p or q ∈ p, a contradiction, i.e. (1) holds.

Compare the next theorem with Theorem 3.3 in [16].

Theorem 4.7. For a lattice £ the following statements are equivalent:
(1) Every prime Baer filter of £ is a minimal prime filter;
(2) For each a ∈ £, there exists a finitely generated filter F such that

F ⊆ (1 :£ a) and (1 :£ T (F ∪ {a})) = {1}.

Proof. (1)⇒ (2). Let a ∈ £. If (1 :£ a) = {1}, then (1 :£ T ({1} ∪ {a})) =
{1}. So we may assume that (1 :£ a) 6= {1}. Set G = T ({a} ∪ (1 :£ a)).
We claim that there exists a finite subset A of G such that (1 :£ A) = {1}.
To the contrary assume that for each finite subset A of G, (1 :£ A) 6= {1}.
Set H = {x ∈ £ : (1 :£ A) ⊆ (1 :£ x) for some finite subset A ⊆ G}.

Let x, y ∈ H and u ∈ £. So there exist two finite subsets A,B of G
such that (1 :£ A) ⊆ (1 :£ x) and (1 :£ B) ⊆ (1 :£ y). Then

(1 :£ A ∧B) ⊆ (1 :£ A) ∩ (1 :£ B) ⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)
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and (1 :£ A) ⊆ (1 :£ x) ⊆ (1 :£ x ∨ u); hence x ∧ y, x ∨ u ∈ H. Let
(1 :£ h) ⊆ (1 :£ z) for some h ∈ H and z ∈ £. Then there exists a
finite subset C of G such that (1 :£ C) ⊆ (1 :£ c) ⊆ (1 :£ z); hence
z ∈ H. Thus H is a Baer filter. Let p be a minimal prime filter over H.
By Proposition 2.12, p is a Baer filter; so p is a minimal prime filter of £
by (1). Since {a} ⊆ G and (1 :£ a) ⊆ (1 :£ a), a ∈ H ⊆ p. Moreover,
if b ∈ (1 :£ a), then {b} ⊆ (1 :£ a) ⊆ G and (1 :£ b) ⊆ (1 :£ b) gives
(1 :£ a) ⊆ p. Now by Proposition 2.11, there exists c ∈ £ \ p such that
c ∨ a = 1 which implies that c ∈ (1 :£ a) ⊆ p, a contradiction. Hence
there is a finite subset A = {a1, a2, · · · , ak} of G such that (1 :£ A) = {1}.
Assume that for each 1 6 i 6 k, a ∧ bi 6 ai (so ai = (ai ∨ a) ∧ (ai ∨ bi),
where bi ∈ (1 :£ a). Set F = T ({b1, b2, · · · , bk}) ⊆ (1 :£ a). It remains to
show that (1 :£ T (F ∪ {a})) = {1}. Then for each 1 6 i 6 k,

(1 :£ bi)∩ (1 :£a) ⊆ (1 :£a∨ai)∩ (1 :£ai∨ bi) = (1 :£ (ai∨a)∧ (ai∨ bi))
= (1 :£ai).

This implies that

(1 :£ T (F ∪ {a})) ⊆ (1 :£ F ∪ {a}) = ∩ki=1(1 :£ bi) ∩ (1 :£ a) ⊆ ∩ki=1ai
= (1 :£ A) = {1}.

(2) ⇒ (1). Let p be a prime Baer filter and a ∈ p. By (2), there
exits a finitely generated filter F = T (A) of £ such that F ⊆ (1 :£ a) and
(1 :£ T (F ∪{a})) = {1}, where A is a finite set. We claim that A∪{a} * p.
Otherewise, for each y ∈ £, {1} = (1 :£ A ∪ {a}) ⊆ (1 :£ y) gives y ∈ p, as
p is a Baer filter of £, a contradiction. Hence there exists z ∈ A ⊆ (1 :£ a)
such that z /∈ p and z∨a = 1. Therefor by Proposition 2.11, p is a minimal
prime filter.
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