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On irreducible pseudo-prime spectrum

of topological le-modules

Manas Kumbhakar and Anjan Kumar Bhuniya

Abstract. An le-module M over a ring R is a complete lattice ordered additive monoid having

the greatest element e together with a module like action of R. A proper submodule element n of

RM is called pseudo-prime if (n : e) = {r ∈ R : re 6 n} is a prime ideal of R. In this article we

introduce the Zariski topology on the set XM of all pseudo-prime submodule elements of M and

discuss interplay between topological properties of the Zariski topology on XM and algebraic

properties of M . If RM is pseudo-primeful, then irreducibility of XM and Spec(R/Ann(M))

are equivalent. Also there is a one-to-one correspondence between the irreducible components of

XM and the minimal pseudo-prime submodule elements in M . We show that if R is a Laskerian

ring then XM has only �nitely many irreducible components.

1. Introduction

Inspired by the theory of multiplicative lattices [1], [17], [18], [19], [20], and lattice
modules [7], [8], [9], [10], [11], [14], [21], we introduced the notion of le-modules
in [2]. An le-module is a complete lattice ordered monoid endowed with a module
like action of a commutative ring. Motivation behind introducing this new notion
is to create a new avenue similar to what we do in module theory for studying
commutative rings. In [2] and [12] we �nd several results on the interplay between
properties of an le-module M and properties of the ring R acting on M . We con-
sidered uniqueness of primary decompositions of the primary submodule elements
in a Laskerian le-module in [2].

In this article, we introduce the Zariski topology on the set XM of all pseudo-
prime submodule elements of an le-module M over a commutative ring R. Inspi-
ration comes from the enlightening interplay between the Zariski topology on the
prime spectrum Spec(R) of a commutative ring R and the ring theoretic proper-
ties of R [6], [13], [15], [16]; and interplay between the Zariski topology on the
pseudo-prime spectrum of a module A over R and the algebraic properties of RA
and R [4], [5]. Besides basic characterizations of the Zariski topology on XM , we
�nd several conditions on M under which XM may be an irreducible topological
space.

The organization of this article is as follows. This introduction is followed by
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a section to recap de�nition and basic properties of le-modules. Also we recall
a few notions on rings. In Section 3, we introduce the Zariski topology on XM

and characterize its basic properties. We show that XM is always T0 and it is T1
if and only if each pseudo-prime submodule element of RM is maximal in XM .
Annihilator of M is an ideal of R, which induces a natural mapping ψ from XM

into Spec(R/Ann(M)). Interplay of the properties of XM and Spec(R/Ann(M))
is re�ected prominently in the nature of this natural map ψ. Here we show
that if ψ is surjective, then connectedness of XM implies the connectedness of
Spec(R/Ann(M)). Section 4 characterizes irreducibility of XM . If ψ is surjective
then irreducibility of XM and Spec(R/Ann(M)) are equivalent. As a consequence
of the necessary and su�cient characterization of the irreducible closed subsets,
presented here, we establish a bijective correspondence between the irreducible
components of XM and the minimal pseudo-prime submodule elements of RM .
Also we prove that if a ring R is Laskerian then for every le-module RM , the
pseudo-prime spectrum XM has only �nitely many irreducible components.

2. Preliminaries

In this article, every ring R is commutative and contains 1; and N denotes the
set of all natural numbers. An le-semigroup (M,+,6, e) is such that (M,6) is
a complete lattice with the greatest element e, (M,+) is a commutative monoid
with the zero element 0M and for all m,mi ∈M, i ∈ I it satis�es

(S) m+ (∨i∈Imi) = ∨i∈I(m+mi).

Let R be a ring and (M,+,6, e) be an le-semigroup. Then M is called an
le-module over R if there is a mapping R×M −→M which satis�es

(M1) r(m1 +m2) = rm1 + rm2,

(M2) (r1 + r2)m 6 r1m+ r2m,

(M3) (r1r2)m = r1(r2m),

(M4) 1Rm = m; 0Rm = r0M = 0M ,

(M5) r(∨i∈I(mi)) = ∨i∈I(rmi),

for all r, r1, r2 ∈ R and m,m1,m2,mi ∈M , and i ∈ I.
We denote an le-module M over R by RM or by M . From (M5), we have,

(M5)′ m1 6 m2 ⇒ rm1 6 rm2, for all r ∈ R and m1,m2 ∈ M .

An element n of M is said to be a submodule element if n+ n, rn 6 n, for all
r ∈ R. We call a submodule element n proper if n 6= e. Note that 0M = 0Rn 6 n,
for every submodule element n of M . Also n + n = n, i.e., every submodule
element of M is an idempotent. Let {ni}i∈I be a family of submodule elements of
M . Then their sum is de�ned by:
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∑
i∈I ni =

∨
{(ni1 + ni2 + · · ·+ nik) : k ∈ N, and i1, i2, · · · , ik ∈ I}.

It is easy to check that
∑

i∈I ni is a submodule element of M .

For an ideal I of R, we de�ne

Ie =
∨
{
∑k

i=1 aie : k ∈ N; a1, a2, · · · , ak ∈ I}

Then Ie is a submodule element ofM . Also for any two ideals I and J of R, I ⊆ J
implies that Ie 6 Je.

Let n be a submodule element of M . We denote

(n : e) = {r ∈ R : re 6 n}.

Then (n : e) is an ideal of R. For any two submodule elements n, l of M , n 6 l
implies that (n : e) ⊆ (l : e). Also if {ni}i∈I is an arbitrary family of submodule
elements in RM , then (∧i∈Ini : e) = ∩i∈I(ni : e). For every submodule element n
of RM and ideal I of R, Ie 6 n if and only if I ⊆ (n : e). This result, proved in
[2], is useful here.

A proper submodule element n of an le-module RM is called a pseudo-prime

submodule element if (n : e) is a prime ideal of R. The pseudo-prime spectrum of

RM is the set of all pseudo-prime submodule elements of M and it is denoted by
XM . A pseudo-prime submodule element p of M is said to be maximal if for any
pseudo-prime submodule element q of M , p 6 q implies p = q. Minimal pseudo-
prime submodule elements are de�ned dually. A submodule element n ofM is said
to be pseudo-semiprime if n is a meet of some pseudo-prime submodule elements
of M . A pseudo-prime submodule element p of M is called extraordinary if for
any two pseudo-semiprime submodule elements n and l of M , n ∧ l 6 p implies
that either n 6 p or l 6 p. An le-module RM is said to be topological if XM = ∅
or every pseudo-prime submodule element of M is extraordinary.

For every submodule element n of M , we denote

V (n) = {l ∈ XM : n 6 l}.

The following result have some use in this article.

Lemma 2.1. (cf. [12]) Let RM be an le-module. Then for any ideals I and J of

R, V ((IJ)e) = V (Ie) ∪ V (Je) = V ((I ∩ J)e).

Now we recall some notions from rings. We denote the set of all prime ideals of
R by Spec(R). A topology, known as the Zariski topology is de�ned on Spec(R).
The closed sets in the Zariski topology on Spec(R) are of the form

V R(I) = {P ∈ Spec(R) : I ⊆ P}

There are many useful characterizations associating arithmetical properties of R
and topological properties of Spec(R) [13], [15], [16].
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3. Pseudo-prime spectrum of topological le-modules

Here we introduce a topology on XM analogous to the Zariski topology on the set
of all pseudo-prime submodules of a module over a ring.

Lemma 3.1. Let RM be an le-module. Then

(i) V (0M ) = XM .

(ii) V (e) = ∅.

(iii) ∩i∈IV (ni)=V (
∑

i∈I ni) for any family of submodule elements {ni}i∈I of M.

Proof. (i) and (ii) are obvious.
(iii). We have V (

∑
i∈I ni) ⊆ V (ni) for each i ∈ I, and hence V (

∑
i∈I(ni)) ⊆

∩i∈IV (ni). Now let p ∈ ∩i∈IV (ni). Then ni 6 p for all i ∈ I implies that∑
i∈I ni 6 p, and so p ∈ V (

∑
i∈I(ni)). Thus ∩i∈IV (ni) ⊆ V (

∑
i∈I ni). Conse-

quently, ∩i∈IV (ni) = V (
∑

i∈I ni).

Let us denote

VR(M) = {V (n): n is a submodule element of M}.

In general, VR(M) is not closed under �nite unions. If VR(M) is closed under �nite
unions, then the le-module RM is called a top le-module [12]. Thus an le-module

RM is a top le-module if and only if for every submodule elements n, l of M there
is a submodule element k of M such that V (n) ∪ V (l) = V (k). Also we assume
that every le-module RM such that XM = ∅ is a top le-module. Following result
shows that the classes of top and topological le-modules are same and establishes
an useful characterization of the le-modules in this class.

Theorem 3.2. The following statements are equivalent for an le-module RM .

(i) RM is a top le-module.

(ii) Every pseudo-prime submodule element of M is extraordinary.

(iii) V (n) ∪ V (l) = V (n ∧ l), for any pseudo-semiprime submodule elements n
and l of M .

Proof. If XM = ∅ then the results hold trivially. Suppose XM 6= ∅.
(i)⇒ (ii). Let p be any pseudo-prime submodule element of M and let n and l be
two pseudo-semiprime submodule elements of M such that n∧ l 6 p. Since RM is
a top le-module, there exists a submodule element k ofM such that V (n)∪V (l) =
V (k). Now n = ∧pi, for some collection of pseudo-prime submodule elements pi
of M . Then n 6 pi implies that pi ∈ V (n) ⊆ V (k) for each i ∈ I. It follows that
k 6 pi for each i ∈ I and hence k 6 n. Similarly k 6 l. Thus k 6 n ∧ l which
implies that V (n∧ l) ⊆ V (k). Now V (n)∪V (l) ⊆ V (n∧ l) ⊆ V (k) = V (n)∪V (l).
So, V (n) ∪ V (l) = V (n ∧ l). Also p ∈ V (n ∧ l) = V (n) ∪ V (l) shows that either
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p ∈ V (n) or p ∈ V (l), i.e., either n 6 p or l 6 p. Hence p is extraordinary.

(ii) ⇒ (iii). Let n and l be two pseudo-semiprime submodule elements of M .
We have V (n) ∪ V (l) ⊆ V (n ∧ l). Let p ∈ V (n ∧ l). Then p is a pseudo-prime
submodule element and n ∧ l 6 p. Since p is extraordinary, either n 6 p or l 6 p,
equivalently, either p ∈ V (n) or p ∈ V (l). Hence p ∈ V (n) ∪ V (l). Consequently,
V (n) ∪ V (l) = V (n ∧ l).
(iii) ⇒ (i). Let n and l be any two submodule elements of M . If V (n) = ∅, then
V (n) ∪ V (l) = V (l) and the result holds. Assume that both V (n) and V (l) are
nonempty. Then V (n) ∪ V (l) = V (∧p∈V (n)p) ∪ V (∧p∈V (l)p) = V ((∧p∈V (n)p) ∧
(∧p∈V (l)p)), by (iii). Thus RM is a top le-module.

From the equivalence of (i) and (ii) in the above result, we have:

Corollary 3.3. An le-module RM is a top le-module if and only if it is a topological

le-module.

Thus in view of Lemma 3.1, it follows that VR(M) satis�es the axioms of a
topological space for the closed subsets if and only if RM is topological. If RM is
a topological le-module, then this topology is said to be the Zariski topology on
XM .

Henceforth, in this article, we assume that every le-module RM is a topological
le-module.

Recall that a topological space X is T1 if and only if every singleton subset of
X is a closed subset. For each subset Y of XM , we denote the closure of Y in XM

by Y , and meet of the elements of Y by =(Y ), i.e., =(Y ) = ∧p∈Y p. If Y = ∅, then
we take =(Y ) = e.

A subset Y of a topological space X is called dense in X if Y has non-empty
intersection with every non-empty open subset of X. Equivalently, Y is dense in
X if and only if Y = X.

Proposition 3.4. Let RM be an le-module and Y ⊆ XM .

(i) Then Y = V (=(Y )). Hence Y is closed if and only if Y = V (=(Y )). In

particular, {l} = V (l), for every l ∈ XM .

(ii) If 0M ∈ Y , then Y is dense in XM .

(iii) XM is a T0-space.

(iv) XM is a T1-space if and only if each pseudo-prime submodule element of M
is a maximal element in XM .

Proof. (i). Clearly Y ⊆ V (=(Y )). Let V (n) be any closed subset of XM containing
Y . Since =(V (n)) 6 =(Y ), we have V (=(Y )) ⊆ V (=(V (n))) = V (n). Thus
V (=(Y )) is the smallest closed subset of XM containing Y . Hence, Y = V (=(Y )).

(ii). This is clear by (i).

(iii). Let n and l be two distinct elements of XM . Then by (i),
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{n} = V (n) 6= V (l) = {l}.

Now by the fact that a topological space is a T0-space if and only if the closures
of distinct elements are distinct, we conclude that XM is a T0-space.

(iv). Let XM be a T1-space and let p be a pseudo-prime submodule element of M .
Then {p} is closed, hence

{p} = {p} = V (p), by (i).

Thus p is a maximal element in XM .
Conversely, suppose p is a maximal element in XM , then by (i), we have

{p} = V (p) = {p}.

Thus {p} is closed and hence XM is a T1-space.

Let RM be an le-module. Then the ideal (0M : e) of R is called the annihilator
of M . It is denoted by Ann(M). Thus

Ann(M) = {r ∈ R : re 6 0M} = {r ∈ R : re = 0M}.

Consider the canonical epimorphism φ : R → R/Ann(M). The image of every
element r and every ideal I of R such that Ann(M) ⊆ I under φ : R→ R/Ann(M)
will be denoted by r and I respectively. It is well known in quotient rings that for
every prime ideal P of R such that Ann(M) ⊆ P , the ideal P = P/Ann(M) is
prime in R = R/Ann(M). Hence the mapping ψ : XM → Spec(R) de�ned by

ψ(p) = (p : e) for every p ∈ XM

is well de�ned. We call ψ the natural map on XM . An le-module RM is called
pseudo-primeful if eitherM = 0M orM 6= 0M and the natural map ψ is surjective.
Also RM is called pseudo-injective if the natural map ψ is injective.

Recall that if I is an ideal of a ring R, then the radical of I is de�ned by

Rad(I) = {a ∈ R : an ∈ I, for some positive integer n}

Since R is commutative Rad(I) is also an ideal of R and I ⊆ Rad(I). Also Rad(I)
is the intersection of all prime ideals P such that I ⊆ P . An ideal I of R is called
a radical ideal if I = Rad(I).

Proposition 3.5. Let RM be a nonzero pseudo-primeful le-module and I be a

radical ideal of R. Then (Ie : e) = I if and only if Ann(M) ⊆ I. In particular, Pe
is pseudo-prime submodule element of M for every prime ideal P of R containing

Ann(M).

Proof. Assume that Ann(M) ⊆ I. Since I is a radical ideal, Ann(M) ⊆ I =
∩I⊆Pi

Pi, where Pi are prime ideals of R. Since RM is a pseudo-primeful le-module
and Ann(M) ⊆ Pi, there exists a pseudo-prime submodule element pi of M such
that (pi : e) = Pi. Therefore I ⊆ (Ie : e) = ((∩I⊆Pi

Pi)e : e) ⊆ ∩I⊆Pi
(Pie : e) =

∩I⊆Pi
Pi = I. Hence (Ie : e) = I.
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It is well known that the prime spectrum Spec(R) of a ring R is connected if
and only if R contains no idempotents other than 0 and 1 [3]. Now we have the
following:

Theorem 3.6. Let RM be a pseudo-primeful le-module and the pseudo-prime

spectrum XM be connected. Then Spec(R) is connected and hence the ring R
contains no idempotents other than 0 and 1.

Proof. First we show that the natural map ψ : XM → Spec(R) is continuous. Let

I be an ideal of R such that Ann(M) ⊆ I and p ∈ ψ−1(V R(I). Then there exists

J ∈ V R(I) such that ψ(p) = J , i.e, (p : e) = J . This implies that (p : e) = J ⊇ I

and so Ie 6 (p : e)e 6 p. Hence p ∈ V (Ie). Therefore ψ−1(V R(I)) ⊆ V (Ie).
Now let q ∈ V (Ie). Then I ⊆ (Ie : e) ⊆ (q : e) implies that I ⊆ (q : e). Hence

q ∈ ψ−1(V R(I)). Thus V (Ie) ⊆ ψ−1(V R(I)). Therefore ψ−1(V R(I)) = V (Ie).
Hence ψ is continuous. Thus the theorem follows from the fact that the map ψ is
surjective and the continuous image of a connected set is connected.

4. Irreducible pseudo-prime spectrum

A topological space X is irreducible if and only if for every pair of closed subsets
Y1, Y2 of X, X = Y1 ∪ Y2 implies X = Y1 or X = Y2. A nonempty subset Y
of a topological space X is called an irreducible subset if the subspace Y of X
is irreducible. An irreducible component of a topological space X is a maximal
irreducible subset of X. A subset Y of X is irreducible if and only if its closure Y
is irreducible. Thus irreducible components of X are closed. Since every singleton
subset of XM is irreducible, its closure is also irreducible.

The following result is a direct consequence of Proposition 3.4(i) and hence we
omit the proof.

Lemma 4.1. V (l) is an irreducible closed subset of XM for every pseudo-prime

submodule element l of an le-module RM .

Theorem 4.2. Let RM be a nonzero pseudo-primeful le-module. Then the fol-

lowing statements are equivalent:

(i) XM is an irreducible space;

(ii) Spec(R) is an irreducible space;

(iii) V R(Ann(M)) is an irreducible space;

(iv) Rad(Ann(M)) is a prime ideal of R;

(v) XM = V (Ie) for some I ∈ V R(Ann(M)).
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Proof. (i) ⇒ (ii). In the proof of Theorem 3.6, we have seen that the mapping
ψ : XM → Spec(R) is continuous. Thus (ii) follows from the fact that ψ is surjec-
tive and continuous image of an irreducible space is irreducible.

(ii)⇒ (iii). Note that the mapping φ : Spec(R)→ Spec(R) de�ned by P 7→ P is
a homeomorphism. Hence V R(Ann(M)) is an irreducible space.

(iii)⇒ (iv). Obvious.

(iv) ⇒ (v). Assume that Rad(Ann(M)) is a prime ideal of R. Then by Propo-
sition 3.5, (Rad(Ann(M)))e is a pseudo-prime submodule element of M . Let
p ∈ XM . Then Rad(Ann(M)) ⊆ (p : e) which implies that (Rad(Ann(M)))e 6
(p : e)e 6 p. Thus p ∈ V ((Rad(Ann(M)))e) and hence XM = V (Ie), where
I = Rad(Ann(M)) ∈ V R(Ann(M)).

(v)⇒ (i). This is a direct consequence of the Proposition 3.5 and Lemma 4.1.

For a submodule element n of M , the pseudo-prime radical of n, denoted by
Prad(n), is the meet of all pseudo-prime submodule elements of M containing n,
that is,

Prad(n) = ∧p∈V (n)p.

If V (n) = ∅, then we set Prad(n) = e. Note that n 6 Prad(n) and that
Prad(n) = e or Prad(n) is a pseudo-semiprime submodule element of M . Also
V (n) = V (Prad(n)). A submodule element n of M is said to be a pseudo-prime

radical submodule element if n = Prad(n).
It is well-known that in a ring R, a subset Y of Spec(R) is irreducible if and

only if =(Y ) is a prime ideal of R [3]. The next theorem is a analogue of this fact
for topological le-modules.

Theorem 4.3. Let RM be an le-module and Y ⊆ XM . Then =(Y ) is a pseudo-

prime submodule element of M if and only if Y is irreducible in XM .

Proof. Let Y be irreducible, I and J be two ideals of R such that IJ ⊆ (=(Y ) : e).
Then (IJ)e 6 =(Y ). Now, we have

Y ⊆ V (=(Y )) ⊆ V ((IJ)e) = V (Ie) ∪ V (Je), by Lemma 2.1.

Since Y is irreducible, so either Y ⊆ V (Ie) or Y ⊆ V (Je). Hence, either Ie 6
(Prad(Ie)) = =(V (Ie)) 6 =(Y ) or Je 6 (Prad(Je)) = =(V (Je)) 6 =(Y ). This
implies that I ⊆ (=(Y ) : e) or J ⊆ (=(Y ) : e). Thus =(Y ) is a pseudo-prime
submodule element of M .

Conversely let =(Y ) be a pseudo-prime submodule element of M and let Y ⊆
Y1∪Y2, where Y1 and Y2 are two closed subset of XM . Then there exist submodule
elements n and l of M such that Y1 = V (n) and Y2 = V (l). Hence

Prad(n) ∧ Prad(l) = =(V (n)) ∧ =(V (l)) = =(V (n) ∪ V (l)) = =(Y1 ∪ Y2) 6 =(Y ).
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Since RM is a topological le-module, =(Y ) is an extraordinary submodule element.
Hence, We have prad(n) 6 =(Y ) or Prad(l) 6 =(Y ). Thus Y ⊆ V (=(Y )) ⊆
V (Prad(n)) = V (n) = Y1 or Y ⊆ Y2. Therefore Y is irreducible.

For every I ∈ Spec(R), we denote

XM,I = {p ∈ XM : (p : e) = I}.

Corollary 4.4. Let RM be an le-module, n be a submodule element of M and

I ∈ Spec(R). Then

(i) V (n) is irreducible in XM if and only if Prad(n) is a pseudo-prime submodule

element of M .

(ii) XM is an irreducible topological space if and only if Prad(0M ) is a pseudo-

prime submodule element of M .

(iii) If XM,I 6= ∅ then XM,I is an irreducible space.

Proof. (i). Since Prad(n) = =(V (n)), the result follows from Theorem 4.3.

(ii). This is obvious.

(iii). We have (=(XM,I) : e) = (∧p∈XM,I
p : e) = ∩p∈XM,I

(p : e) = I ∈ Spec(R)
and hence the result follows from Theorem 4.3.

Corollary 4.5. Let RM be an le- module such that 0M ∈ XM . Then XM is an

irreducible space.

Let Y be closed subset of a topological space X. An element y ∈ Y is called a
generic point of Y if Y = {y}. In Proposition 3.4, we have seen that every element
l of XM is a generic point of the irreducible closed subset V (l). The next theorem
shows that the irreducible closed subset of XM are determined completely by the
pseudo-prime submodule elements ofM . Also there is a one-to-one correspondence
between the set of minimal pseudo-prime submodule elements of M and the set
of irreducible components of XM .

Theorem 4.6. Let RM be an le-module and Y ⊆ XM .

(i) Then Y is an irreducible closed subset of XM if and only if Y = V (p) for

some p ∈ XM . Thus every irreducible closed subset of XM has a generic

point.

(ii) The correspondence V (p) 7→ p is a bijection of the set of all irreducible com-

ponents of XM onto the set of all minimal pseudo-prime submodule elements

of M .

Proof. (i). Let Y be an irreducible closed subset of XM . Then there exists a
submodule element n of M such that Y = V (n). By Theorem 4.3,
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=(Y ) = =(V (n)) = Prad(n) ∈ XM .

Hence Y = V (n) = V (Prad(n)). Converse part follows from the Lemma 4.1.

(ii). Let Y be an irreducible component of XM . Then Y is an irreducible closed
subset of XM and so by (i), we have Y = V (p) for some p ∈ XM . Since each
irreducible component is a maximal irreducible closed subset, V (p) is a maximal
irreducible closed subset of XM . Let q be a pseudo-prime submodule element of
M such that q 6 p. Then V (q) is an irreducible closed subset and V (p) ⊆ V (q)
implies that V (p) = V (q). Thus p = q. Hence p is a minimal element of XM .

Now let p be a minimal element of XM . Then by Corollary 4.1, V (p) is an
irreducible closed subset of XM . Let V (p) ⊆ V (q) for some q ∈ XM . Then

q = Prad(q) = =(V (q)) 6 =(V (p)) = Prad(p) = p,

and hence p = q. Therefore V (p) = V (q). Thus V (p) is an irreducible component
of XM .

Theorem 4.7. Let RM be a pseudo-primeful le-module. Then the mapping φ :
V (p) 7→ (p : e) is a bijection from the set of all irreducible components of XM onto

the set of all minimal prime ideals of R.

Proof. Let V (p) be an irreducible component of XM . Then by Theorem 4.6(ii),
p is a minimal pseudo-prime submodule element of M and so (p : e)/Ann(M) is
a prime ideal of R. We show that (p : e)/Ann(M) is a minimal prime ideal of R.
Let J/Ann(M) ∈ Spec(R/Ann(M)) be such that J/Ann(M) ⊆ (p : e)/Ann(M).
Then Je 6 (p : e)e 6 p. Since RM is pseudo-primeful and Je is a proper
submodule element of M , Je is a pseudo-prime submodule element of M with
(Je : e) = J , by Proposition 3.5. By the minimality of p, Je = p and hence
(p : e)/Ann(M) = J/Ann(M). Thus (p : e)/Ann(M) is a minimal prime ideal of
R. Thus φ is well-de�ned.

Now suppose that P/Ann(M) is a minimal prime ideal of R/Ann(M). Then
by Proposition 3.5, (Pe : e) = P and Pe is a pseudo-prime submodule element of
M . To show Pe is a minimal pseudo-prime submodule element of M let q 6 Pe
for some pseudo-prime submodule element q of M . Then (q : e)/Ann(M) ⊆
(Pe : e)/Ann(M) = P/Ann(M). By the minimality of P/Ann(M) we have (q :
e)/Ann(M) = P/Ann(M) and so (q : e) = P . Thus Pe = (q : e)e 6 q 6 Pe which
implies that q = Pe. Hence Pe is a minimal pseudo-prime submodule element
of M . Therefore V (Pe) is a irreducible component of XM by Theorem 4.6(ii).
Thus φ is a surjection. Now let V (p) and V (q) be two irreducible components
of XM such that (p : e) = (q : e). Then by Theorem 4.6(ii), both p and q are
minimal pseudo-prime submodule elements of M . It follows from (p : e) = (q : e)
that (p : e) = (q : e) which implies that (p : e)e 6 (q : e)e 6 q. Now by Proposition
3.5, (p : e)e is a pseudo-prime submodule element, and hence, by the minimality
of q, (p : e)e = q. Then q 6 p and so q = p. Therefore, V (p) = V (q). Hence φ is
an injection.
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A ring R is called Laskerian if every proper ideal of R has a primary decom-
position. In the following result we show that if R is a Laskerian ring then the
irreducible components of XM are precisely determined by the primary decompo-
sition of the ideal Ann(M) of R and they are �nite in numbers.

Theorem 4.8. Let RM be a nonzero pseudo-primeful le-module. Then the fol-

lowing statements hold:

(i) The set of all irreducible components of XM is of the form

T = {V (Ie) : I is a minimal element of V R(Ann(M)).

(ii) If R is a Laskerian ring then XM has only �nitely many irreducible compo-

nents.

Proof. (i). Let Y be an irreducible component of XM . Then by Theorem 4.6(i),
Y = V (n) for some n ∈ XM . Now (n : e) is a prime ideal of R containing
Ann(M) so by Proposition 3.5, (n : e)e is a pseudo-prime submodule element of
M . Also (n : e)e 6 n implies that Y = V (n) ⊆ V ((n : e)e). Since Y is irreducible
component of XM , V (n) = V ((n : e)e). Thus (n : e)e = n. We show that
(n : e) is a minimal element of V R(Ann(M)). Let J ∈ V R(Ann(M)) be such that
J ⊆ (n : e). Then J/Ann(M) ∈ Spec(R/Ann(M)). Since RM is a pseudo-primeful
le-module, there exists l ∈ XM such that (l : e) = J . Also (l : e)e is a pseudo-
prime submodule element of M , by Proposition 3.5. Then Y = V (n) ⊆ V ((l : e)e)
and so V (n) = V ((l : e)e), since Y is irreducible component. Thus n = (l : e)e 6 l
which implies that (n : e) ⊆ (l : e) = J ⊆ (n : e). Hence (n : e) = J .

Now let Y ∈ T . Then there exists a minimal element J of V R(Ann(M)) such
that Y = V (Je). Since RM is a pseudo-primeful le-module, Je is a pseudo-prime
submodule element of M and (Je : e) = J , by Proposition 3.5. Thus V (Je) is an
irreducible space, by Lemma 4.1. Let Y = V (Je) ⊆ V (l) for some l ∈ XM . Then
Je ∈ V (l) implies that l 6 Je which implies that (l : e) ⊆ (Je : e) = J . By the
minimality of J we have (l : e) = J . Thus Je = (l : e)e 6 l and so V (l) ⊆ V (Je).
Hence Y = V (Je) = V (l) and so Y is an irreducible component of XM .

(ii). Let R be a Laskerian ring then every proper ideal of R has a primary decom-
position. Let I be a minimal element of V R(Ann(M)) and Ann(M) = ∩ni=1Qi is
a minimal primary decomposition. Then there exists 1 6 i 6 n such that Qi ⊆ I
and hence by minimality of I we have I = Rad(Qi). Thus irreducible components
of XM are V (Rad(Qi)e), by (i).
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