On irreducible pseudo-prime spectrum of topological le-modules

Manas Kumbhakar and Anjan Kumar Bhuniya

Abstract. An le-module M over a ring R is a complete lattice ordered additive monoid having the greatest element e together with a module like action of R. A proper submodule element n of $_RM$ is called *pseudo-prime* if $(n : e) = \{r \in R : re \leq n\}$ is a prime ideal of R. In this article we introduce the *Zariski topology* on the set X_M of all pseudo-prime submodule elements of M and discuss interplay between topological properties of the Zariski topology on X_M and algebraic properties of M. If $_RM$ is pseudo-primeful, then irreducibility of X_M and $\operatorname{Spec}(R/Ann(M))$ are equivalent. Also there is a one-to-one correspondence between the irreducible components of X_M and the minimal pseudo-prime submodule elements in M. We show that if R is a Laskerian ring then X_M has only finitely many irreducible components.

1. Introduction

Inspired by the theory of multiplicative lattices [1], [17], [18], [19], [20], and lattice modules [7], [8], [9], [10], [11], [14], [21], we introduced the notion of le-modules in [2]. An le-module is a complete lattice ordered monoid endowed with a module like action of a commutative ring. Motivation behind introducing this new notion is to create a new avenue similar to what we do in module theory for studying commutative rings. In [2] and [12] we find several results on the interplay between properties of an le-module M and properties of the ring R acting on M. We considered uniqueness of primary decompositions of the primary submodule elements in a Laskerian le-module in [2].

In this article, we introduce the Zariski topology on the set X_M of all pseudoprime submodule elements of an le-module M over a commutative ring R. Inspiration comes from the enlightening interplay between the Zariski topology on the prime spectrum Spec(R) of a commutative ring R and the ring theoretic properties of R [6], [13], [15], [16]; and interplay between the Zariski topology on the pseudo-prime spectrum of a module A over R and the algebraic properties of $_RA$ and R [4], [5]. Besides basic characterizations of the Zariski topology on X_M , we find several conditions on M under which X_M may be an irreducible topological space.

The organization of this article is as follows. This introduction is followed by

²⁰¹⁰ Mathematics Subject Classification: 54B35, 54B99, 13C05, 13C99, 06F25.

Keywords: pseudo-prime element, Zariski topology, topological le-module, irreducible space.

a section to recap definition and basic properties of le-modules. Also we recall a few notions on rings. In Section 3, we introduce the Zariski topology on X_M and characterize its basic properties. We show that X_M is always T_0 and it is T_1 if and only if each pseudo-prime submodule element of $_RM$ is maximal in X_M . Annihilator of M is an ideal of R, which induces a natural mapping ψ from X_M into Spec(R/Ann(M)). Interplay of the properties of X_M and Spec(R/Ann(M))is reflected prominently in the nature of this natural map ψ . Here we show that if ψ is surjective, then connectedness of X_M implies the connectedness of Spec(R/Ann(M)). Section 4 characterizes irreducibility of X_M . If ψ is surjective then irreducibility of X_M and Spec(R/Ann(M)) are equivalent. As a consequence of the necessary and sufficient characterization of the irreducible closed subsets, presented here, we establish a bijective correspondence between the irreducible components of X_M and the minimal pseudo-prime submodule elements of $_RM$. Also we prove that if a ring R is Laskerian then for every le-module $_RM$, the pseudo-prime spectrum X_M has only finitely many irreducible components.

2. Preliminaries

In this article, every ring R is commutative and contains 1; and \mathbb{N} denotes the set of all natural numbers. An *le-semigroup* $(M, +, \leq, e)$ is such that (M, \leq) is a complete lattice with the greatest element e, (M, +) is a commutative monoid with the zero element 0_M and for all $m, m_i \in M, i \in I$ it satisfies

 $(S) m + (\vee_{i \in I} m_i) = \vee_{i \in I} (m + m_i).$

Let R be a ring and $(M, +, \leq, e)$ be an le-semigroup. Then M is called an *le-module* over R if there is a mapping $R \times M \longrightarrow M$ which satisfies

- (M1) $r(m_1 + m_2) = rm_1 + rm_2$,
- (M2) $(r_1 + r_2)m \leq r_1m + r_2m$,
- (M3) $(r_1r_2)m = r_1(r_2m),$
- (M4) $1_R m = m; \quad 0_R m = r 0_M = 0_M,$
- (M5) $r(\vee_{i\in I}(m_i)) = \vee_{i\in I}(rm_i),$

for all $r, r_1, r_2 \in R$ and $m, m_1, m_2, m_i \in M$, and $i \in I$.

We denote an le-module M over R by $_RM$ or by M. From (M5), we have,

 $(M5)' m_1 \leqslant m_2 \Rightarrow rm_1 \leqslant rm_2$, for all $r \in R$ and $m_1, m_2 \in M$.

An element n of M is said to be a submodule element if $n + n, rn \leq n$, for all $r \in R$. We call a submodule element n proper if $n \neq e$. Note that $0_M = 0_R n \leq n$, for every submodule element n of M. Also n + n = n, i.e., every submodule elements of M is an idempotent. Let $\{n_i\}_{i \in I}$ be a family of submodule elements of M. Then their sum is defined by:

$$\sum_{i \in I} n_i = \bigvee \{ (n_{i_1} + n_{i_2} + \dots + n_{i_k}) : k \in \mathbb{N}, and \ i_1, i_2, \dots, i_k \in I \}.$$

It is easy to check that $\sum_{i \in I} n_i$ is a submodule element of M. For an ideal I of R, we define

$$Ie = \bigvee \{ \sum_{i=1}^{k} a_i e : k \in \mathbb{N}; a_1, a_2, \cdots, a_k \in I \}$$

Then Ie is a submodule element of M. Also for any two ideals I and J of R, $I \subseteq J$ implies that $Ie \leq Je$.

Let n be a submodule element of M. We denote

$$(n:e) = \{r \in R : re \leq n\}$$

Then (n : e) is an ideal of R. For any two submodule elements n, l of $M, n \leq l$ implies that $(n : e) \subseteq (l : e)$. Also if $\{n_i\}_{i \in I}$ is an arbitrary family of submodule elements in $_RM$, then $(\wedge_{i \in I}n_i : e) = \cap_{i \in I}(n_i : e)$. For every submodule element n of $_RM$ and ideal I of R, $Ie \leq n$ if and only if $I \subseteq (n : e)$. This result, proved in [2], is useful here.

A proper submodule element n of an le-module $_RM$ is called a *pseudo-prime* submodule element if (n : e) is a prime ideal of R. The *pseudo-prime* spectrum of $_RM$ is the set of all pseudo-prime submodule elements of M and it is denoted by X_M . A pseudo-prime submodule element p of M is said to be maximal if for any pseudo-prime submodule element q of M, $p \leq q$ implies p = q. Minimal pseudoprime submodule elements are defined dually. A submodule element n of M is said to be *pseudo-semiprime* if n is a meet of some pseudo-prime submodule elements of M. A pseudo-prime submodule element p of M is called *extraordinary* if for any two pseudo-semiprime submodule elements n and l of M, $n \wedge l \leq p$ implies that either $n \leq p$ or $l \leq p$. An le-module $_RM$ is said to be *topological* if $X_M = \emptyset$ or every pseudo-prime submodule element of M is extraordinary.

For every submodule element n of M, we denote

$$V(n) = \{l \in X_M : n \leq l\}.$$

The following result have some use in this article.

Lemma 2.1. (cf. [12]) Let $_RM$ be an le-module. Then for any ideals I and J of R, $V((IJ)e) = V(Ie) \cup V(Je) = V((I \cap J)e)$.

Now we recall some notions from rings. We denote the set of all prime ideals of R by $\operatorname{Spec}(R)$. A topology, known as the *Zariski topology* is defined on $\operatorname{Spec}(R)$. The closed sets in the Zariski topology on $\operatorname{Spec}(R)$ are of the form

$$V^{R}(I) = \{P \in Spec(R) : I \subseteq P\}$$

There are many useful characterizations associating arithmetical properties of R and topological properties of Spec(R) [13], [15], [16].

3. Pseudo-prime spectrum of topological le-modules

Here we introduce a topology on X_M analogous to the Zariski topology on the set of all pseudo-prime submodules of a module over a ring.

Lemma 3.1. Let $_RM$ be an le-module. Then

- $(i) V(0_M) = X_M.$
- (*ii*) $V(e) = \emptyset$.
- (*iii*) $\cap_{i \in I} V(n_i) = V(\sum_{i \in I} n_i)$ for any family of submodule elements $\{n_i\}_{i \in I}$ of M.

Proof. (i) and (ii) are obvious.

(*iii*). We have $V(\sum_{i \in I} n_i) \subseteq V(n_i)$ for each $i \in I$, and hence $V(\sum_{i \in I} (n_i)) \subseteq \bigcap_{i \in I} V(n_i)$. Now let $p \in \bigcap_{i \in I} V(n_i)$. Then $n_i \leq p$ for all $i \in I$ implies that $\sum_{i \in I} n_i \leq p$, and so $p \in V(\sum_{i \in I} (n_i))$. Thus $\bigcap_{i \in I} V(n_i) \subseteq V(\sum_{i \in I} n_i)$. Consequently, $\bigcap_{i \in I} V(n_i) = V(\sum_{i \in I} n_i)$.

Let us denote

 $\mathcal{V}_R(M) = \{V(n): n \text{ is a submodule element of } M\}.$

In general, $\mathcal{V}_R(M)$ is not closed under finite unions. If $\mathcal{V}_R(M)$ is closed under finite unions, then the le-module $_RM$ is called a *top le-module* [12]. Thus an le-module $_RM$ is a *top le-module* if and only if for every submodule elements n, l of M there is a submodule element k of M such that $V(n) \cup V(l) = V(k)$. Also we assume that every le-module $_RM$ such that $X_M = \emptyset$ is a top le-module. Following result shows that the classes of top and topological le-modules are same and establishes an useful characterization of the le-modules in this class.

Theorem 3.2. The following statements are equivalent for an le-module $_RM$.

- (i) $_{R}M$ is a top le-module.
- (ii) Every pseudo-prime submodule element of M is extraordinary.
- (iii) $V(n) \cup V(l) = V(n \wedge l)$, for any pseudo-semiprime submodule elements n and l of M.

Proof. If $X_M = \emptyset$ then the results hold trivially. Suppose $X_M \neq \emptyset$. $(i) \Rightarrow (ii)$. Let p be any pseudo-prime submodule element of M and let n and l be two pseudo-semiprime submodule elements of M such that $n \land l \leq p$. Since $_RM$ is a top le-module, there exists a submodule element k of M such that $V(n) \cup V(l) = V(k)$. Now $n = \land p_i$, for some collection of pseudo-prime submodule elements p_i of M. Then $n \leq p_i$ implies that $p_i \in V(n) \subseteq V(k)$ for each $i \in I$. It follows that $k \leq p_i$ for each $i \in I$ and hence $k \leq n$. Similarly $k \leq l$. Thus $k \leq n \land l$ which implies that $V(n \land l) \subseteq V(k)$. Now $V(n) \cup V(l) \subseteq V(n \land l) \subseteq V(k) = V(n) \cup V(l)$. So, $V(n) \cup V(l) = V(n \land l)$. Also $p \in V(n \land l) = V(n) \cup V(l)$ shows that either $p \in V(n)$ or $p \in V(l)$, i.e., either $n \leq p$ or $l \leq p$. Hence p is extraordinary.

 $(ii) \Rightarrow (iii)$. Let n and l be two pseudo-semiprime submodule elements of M. We have $V(n) \cup V(l) \subseteq V(n \wedge l)$. Let $p \in V(n \wedge l)$. Then p is a pseudo-prime submodule element and $n \wedge l \leq p$. Since p is extraordinary, either $n \leq p$ or $l \leq p$, equivalently, either $p \in V(n)$ or $p \in V(l)$. Hence $p \in V(n) \cup V(l)$. Consequently, $V(n) \cup V(l) = V(n \wedge l)$.

 $(iii) \Rightarrow (i)$. Let n and l be any two submodule elements of M. If $V(n) = \emptyset$, then $V(n) \cup V(l) = V(l)$ and the result holds. Assume that both V(n) and V(l) are nonempty. Then $V(n) \cup V(l) = V(\wedge_{p \in V(n)} p) \cup V(\wedge_{p \in V(l)} p) = V((\wedge_{p \in V(n)} p) \wedge (\wedge_{p \in V(l)} p))$, by (iii). Thus $_RM$ is a top le-module.

From the equivalence of (i) and (ii) in the above result, we have:

Corollary 3.3. An le-module $_RM$ is a top le-module if and only if it is a topological le-module.

Thus in view of Lemma 3.1, it follows that $\mathcal{V}_R(M)$ satisfies the axioms of a topological space for the closed subsets if and only if $_RM$ is topological. If $_RM$ is a topological le-module, then this topology is said to be the *Zariski topology* on X_M .

Henceforth, in this article, we assume that every le-module $_RM$ is a topological le-module.

Recall that a topological space X is T_1 if and only if every singleton subset of X is a closed subset. For each subset Y of X_M , we denote the closure of Y in X_M by \overline{Y} , and meet of the elements of Y by $\mathfrak{I}(Y)$, i.e., $\mathfrak{I}(Y) = \wedge_{p \in Y} p$. If $Y = \emptyset$, then we take $\mathfrak{I}(Y) = e$.

A subset Y of a topological space X is called *dense* in X if Y has non-empty intersection with every non-empty open subset of X. Equivalently, Y is dense in X if and only if $\overline{Y} = X$.

Proposition 3.4. Let $_RM$ be an le-module and $Y \subseteq X_M$.

- (i) Then $\overline{Y} = V(\Im(Y))$. Hence Y is closed if and only if $Y = V(\Im(Y))$. In particular, $\overline{\{l\}} = V(l)$, for every $l \in X_M$.
- (ii) If $0_M \in Y$, then Y is dense in X_M .
- (iii) X_M is a T_0 -space.
- (iv) X_M is a T_1 -space if and only if each pseudo-prime submodule element of M is a maximal element in X_M .

Proof. (i). Clearly $Y \subseteq V(\mathfrak{F}(Y))$. Let V(n) be any closed subset of X_M containing Y. Since $\mathfrak{F}(V(n)) \leq \mathfrak{F}(Y)$, we have $V(\mathfrak{F}(Y)) \subseteq V(\mathfrak{F}(V(n))) = V(n)$. Thus $V(\mathfrak{F}(Y))$ is the smallest closed subset of X_M containing Y. Hence, $\overline{Y} = V(\mathfrak{F}(Y))$. (ii). This is clear by (i).

(*iii*). Let n and l be two distinct elements of X_M . Then by (i),

$$\overline{\{n\}} = V(n) \neq V(l) = \overline{\{l\}}.$$

Now by the fact that a topological space is a T_0 -space if and only if the closures of distinct elements are distinct, we conclude that X_M is a T_0 -space.

(*iv*). Let X_M be a T_1 -space and let p be a pseudo-prime submodule element of M. Then $\{p\}$ is closed, hence

$$\{p\} = \{p\} = V(p),$$
by $(i).$

Thus p is a maximal element in X_M .

2

Conversely, suppose p is a maximal element in X_M , then by (i), we have

$$\overline{\{p\}} = V(p) = \{p\}.$$

Thus $\{p\}$ is closed and hence X_M is a T_1 -space.

Let $_RM$ be an le-module. Then the ideal $(0_M : e)$ of R is called the *annihilator* of M. It is denoted by Ann(M). Thus

$$Ann(M) = \{ r \in R : re \leq 0_M \} = \{ r \in R : re = 0_M \}.$$

Consider the canonical epimorphism $\phi : R \to R/Ann(M)$. The image of every element r and every ideal I of R such that $Ann(M) \subseteq I$ under $\phi : R \to R/Ann(M)$ will be denoted by \overline{r} and \overline{I} respectively. It is well known in quotient rings that for every prime ideal P of R such that $Ann(M) \subseteq P$, the ideal $\overline{P} = P/Ann(M)$ is prime in $\overline{R} = R/Ann(M)$. Hence the mapping $\psi : X_M \to Spec(\overline{R})$ defined by

$$\psi(p) = (p:e)$$
 for every $p \in X_M$

is well defined. We call ψ the natural map on X_M . An le-module $_RM$ is called *pseudo-primeful* if either $M = 0_M$ or $M \neq 0_M$ and the natural map ψ is surjective. Also $_RM$ is called *pseudo-injective* if the natural map ψ is injective.

Recall that if I is an ideal of a ring R, then the *radical* of I is defined by

 $\operatorname{Rad}(I) = \{a \in R : a^n \in I, \text{ for some positive integer } n\}$

Since R is commutative $\operatorname{Rad}(I)$ is also an ideal of R and $I \subseteq \operatorname{Rad}(I)$. Also $\operatorname{Rad}(I)$ is the intersection of all prime ideals P such that $I \subseteq P$. An ideal I of R is called a radical ideal if $I = \operatorname{Rad}(I)$.

Proposition 3.5. Let $_RM$ be a nonzero pseudo-primeful le-module and I be a radical ideal of R. Then (Ie:e) = I if and only if $Ann(M) \subseteq I$. In particular, Pe is pseudo-prime submodule element of M for every prime ideal P of R containing Ann(M).

Proof. Assume that $Ann(M) \subseteq I$. Since I is a radical ideal, $Ann(M) \subseteq I = \bigcap_{I \subseteq P_i} P_i$, where P_i are prime ideals of R. Since ${}_RM$ is a pseudo-primeful le-module and $Ann(M) \subseteq P_i$, there exists a pseudo-prime submodule element p_i of M such that $(p_i : e) = P_i$. Therefore $I \subseteq (Ie : e) = ((\bigcap_{I \subseteq P_i} P_i)e : e) \subseteq \bigcap_{I \subseteq P_i} (P_ie : e) = \bigcap_{I \subseteq P_i} P_i = I$. Hence (Ie : e) = I.

It is well known that the prime spectrum Spec(R) of a ring R is connected if and only if R contains no idempotents other than 0 and 1 [3]. Now we have the following:

Theorem 3.6. Let $_{R}M$ be a pseudo-primeful le-module and the pseudo-prime spectrum X_{M} be connected. Then $Spec(\overline{R})$ is connected and hence the ring \overline{R} contains no idempotents other than $\overline{0}$ and $\overline{1}$.

Proof. First we show that the natural map $\psi: X_M \to Spec(\overline{R})$ is continuous. Let I be an ideal of R such that $Ann(M) \subseteq I$ and $p \in \psi^{-1}(V^{\overline{R}}(\overline{I}))$. Then there exists $\overline{J} \in V^{\overline{R}}(\overline{I})$ such that $\psi(p) = \overline{J}$, i.e., $(\overline{p:e}) = \overline{J}$. This implies that $(p:e) = J \supseteq I$ and so $Ie \leq (p:e)e \leq p$. Hence $p \in V(Ie)$. Therefore $\psi^{-1}(V^{\overline{R}}(\overline{I})) \subseteq V(Ie)$. Now let $q \in V(Ie)$. Then $I \subseteq (Ie:e) \subseteq (q:e)$ implies that $\overline{I} \subseteq (q:e)$. Hence $q \in \psi^{-1}(V^{\overline{R}}(\overline{I}))$. Thus $V(Ie) \subseteq \psi^{-1}(V^{\overline{R}}(\overline{I}))$. Therefore $\psi^{-1}(V^{\overline{R}}(\overline{I})) = V(Ie)$. Hence ψ is continuous. Thus the theorem follows from the fact that the map ψ is surjective and the continuous image of a connected set is connected.

4. Irreducible pseudo-prime spectrum

A topological space X is *irreducible* if and only if for every pair of closed subsets Y_1, Y_2 of X, $X = Y_1 \cup Y_2$ implies $X = Y_1$ or $X = Y_2$. A nonempty subset Y of a topological space X is called an *irreducible subset* if the subspace Y of X is irreducible. An *irreducible component* of a topological space X is a maximal irreducible subset of X. A subset Y of X is irreducible if and only if its closure \overline{Y} is irreducible. Thus irreducible components of X are closed. Since every singleton subset of X_M is irreducible, its closure is also irreducible.

The following result is a direct consequence of Proposition 3.4(i) and hence we omit the proof.

Lemma 4.1. V(l) is an irreducible closed subset of X_M for every pseudo-prime submodule element l of an le-module $_RM$.

Theorem 4.2. Let $_RM$ be a nonzero pseudo-primeful le-module. Then the following statements are equivalent:

- (i) X_M is an irreducible space;
- (*ii*) $Spec(\overline{R})$ is an irreducible space;
- (iii) $V^{R}(Ann(M))$ is an irreducible space;
- (iv) Rad(Ann(M)) is a prime ideal of R;
- (v) $X_M = V(Ie)$ for some $I \in V^R(Ann(M))$.

Proof. $(i) \Rightarrow (ii)$. In the proof of Theorem 3.6, we have seen that the mapping $\psi: X_M \to Spec(\overline{R})$ is continuous. Thus (ii) follows from the fact that ψ is surjective and continuous image of an irreducible space is irreducible.

 $(ii) \Rightarrow (iii)$. Note that the mapping $\phi : Spec(\overline{R}) \rightarrow Spec(R)$ defined by $\overline{P} \mapsto P$ is a homeomorphism. Hence $V^R(Ann(M))$ is an irreducible space.

$$(iii) \Rightarrow (iv)$$
. Obvious

 $(iv) \Rightarrow (v)$. Assume that $\operatorname{Rad}(Ann(M))$ is a prime ideal of R. Then by Proposition 3.5, $(\operatorname{Rad}(Ann(M)))e$ is a pseudo-prime submodule element of M. Let $p \in X_M$. Then $\operatorname{Rad}(Ann(M)) \subseteq (p:e)$ which implies that $(\operatorname{Rad}(Ann(M)))e \leq (p:e)e \leq p$. Thus $p \in V((\operatorname{Rad}(Ann(M)))e)$ and hence $X_M = V(Ie)$, where $I = \operatorname{Rad}(Ann(M)) \in V^R(Ann(M))$.

 $(v) \Rightarrow (i)$. This is a direct consequence of the Proposition 3.5 and Lemma 4.1. \Box

For a submodule element n of M, the *pseudo-prime radical* of n, denoted by $\mathbb{P}rad(n)$, is the meet of all pseudo-prime submodule elements of M containing n, that is,

$$\mathbb{P}rad(n) = \wedge_{p \in V(n)} p$$

If $V(n) = \emptyset$, then we set $\mathbb{P}rad(n) = e$. Note that $n \leq \mathbb{P}rad(n)$ and that $\mathbb{P}rad(n) = e$ or $\mathbb{P}rad(n)$ is a pseudo-semiprime submodule element of M. Also $V(n) = V(\mathbb{P}rad(n))$. A submodule element n of M is said to be a *pseudo-prime* radical submodule element if $n = \mathbb{P}rad(n)$.

It is well-known that in a ring R, a subset Y of Spec(R) is irreducible if and only if $\mathfrak{F}(Y)$ is a prime ideal of R [3]. The next theorem is a analogue of this fact for topological le-modules.

Theorem 4.3. Let $_RM$ be an le-module and $Y \subseteq X_M$. Then $\mathfrak{S}(Y)$ is a pseudoprime submodule element of M if and only if Y is irreducible in X_M .

Proof. Let Y be irreducible, I and J be two ideals of R such that $IJ \subseteq (\Im(Y) : e)$. Then $(IJ)e \leq \Im(Y)$. Now, we have

$$Y \subseteq V(\Im(Y)) \subseteq V((IJ)e) = V(Ie) \cup V(Je)$$
, by Lemma 2.1.

Since Y is irreducible, so either $Y \subseteq V(Ie)$ or $Y \subseteq V(Je)$. Hence, either $Ie \leq (\mathbb{P}rad(Ie)) = \Im(V(Ie)) \leq \Im(Y)$ or $Je \leq (\mathbb{P}rad(Je)) = \Im(V(Je)) \leq \Im(Y)$. This implies that $I \subseteq (\Im(Y) : e)$ or $J \subseteq (\Im(Y) : e)$. Thus $\Im(Y)$ is a pseudo-prime submodule element of M.

Conversely let $\Im(Y)$ be a pseudo-prime submodule element of M and let $Y \subseteq Y_1 \cup Y_2$, where Y_1 and Y_2 are two closed subset of X_M . Then there exist submodule elements n and l of M such that $Y_1 = V(n)$ and $Y_2 = V(l)$. Hence

$$\mathbb{P}rad(n) \wedge \mathbb{P}rad(l) = \Im(V(n)) \wedge \Im(V(l)) = \Im(V(n) \cup V(l)) = \Im(Y_1 \cup Y_2) \leqslant \Im(Y).$$

Since $_RM$ is a topological le-module, $\mathfrak{T}(Y)$ is an extraordinary submodule element. Hence, We have $rad(n) \leq \mathfrak{T}(Y)$ or $\mathbb{P}rad(l) \leq \mathfrak{T}(Y)$. Thus $Y \subseteq V(\mathfrak{T}(Y)) \subseteq V(\mathbb{P}rad(n)) = V(n) = Y_1$ or $Y \subseteq Y_2$. Therefore Y is irreducible.

For every $I \in Spec(R)$, we denote

$$X_{M,I} = \{ p \in X_M : (p:e) = I \}.$$

Corollary 4.4. Let $_RM$ be an le-module, n be a submodule element of M and $I \in Spec(R)$. Then

- (i) V(n) is irreducible in X_M if and only if $\mathbb{P}rad(n)$ is a pseudo-prime submodule element of M.
- (ii) X_M is an irreducible topological space if and only if $\mathbb{P}rad(0_M)$ is a pseudoprime submodule element of M.
- (iii) If $X_{M,I} \neq \emptyset$ then $X_{M,I}$ is an irreducible space.

Proof. (i). Since $\mathbb{P}rad(n) = \Im(V(n))$, the result follows from Theorem 4.3. (ii). This is obvious.

(*iii*). We have $(\Im(X_{M,I}): e) = (\wedge_{p \in X_{M,I}} p: e) = \cap_{p \in X_{M,I}} (p: e) = I \in \operatorname{Spec}(R)$ and hence the result follows from Theorem 4.3.

Corollary 4.5. Let $_RM$ be an le- module such that $0_M \in X_M$. Then X_M is an irreducible space.

Let Y be closed subset of a topological space X. An element $y \in Y$ is called a *generic point* of Y if $Y = \overline{\{y\}}$. In Proposition 3.4, we have seen that every element l of X_M is a generic point of the irreducible closed subset V(l). The next theorem shows that the irreducible closed subset of X_M are determined completely by the pseudo-prime submodule elements of M. Also there is a one-to-one correspondence between the set of minimal pseudo-prime submodule elements of M and the set of irreducible components of X_M .

Theorem 4.6. Let $_RM$ be an le-module and $Y \subseteq X_M$.

- (i) Then Y is an irreducible closed subset of X_M if and only if Y = V(p) for some $p \in X_M$. Thus every irreducible closed subset of X_M has a generic point.
- (ii) The correspondence $V(p) \mapsto p$ is a bijection of the set of all irreducible components of X_M onto the set of all minimal pseudo-prime submodule elements of M.

Proof. (i). Let Y be an irreducible closed subset of X_M . Then there exists a submodule element n of M such that Y = V(n). By Theorem 4.3,

$$\Im(Y) = \Im(V(n)) = \mathbb{P}rad(n) \in X_M.$$

Hence $Y = V(n) = V(\mathbb{P}rad(n))$. Converse part follows from the Lemma 4.1. (*ii*). Let Y be an irreducible component of X_M . Then Y is an irreducible closed subset of X_M and so by (*i*), we have Y = V(p) for some $p \in X_M$. Since each irreducible component is a maximal irreducible closed subset, V(p) is a maximal irreducible closed subset of X_M . Let q be a pseudo-prime submodule element of M such that $q \leq p$. Then V(q) is an irreducible closed subset and $V(p) \subseteq V(q)$ implies that V(p) = V(q). Thus p = q. Hence p is a minimal element of X_M .

Now let p be a minimal element of X_M . Then by Corollary 4.1, V(p) is an irreducible closed subset of X_M . Let $V(p) \subseteq V(q)$ for some $q \in X_M$. Then

$$q = \mathbb{P}rad(q) = \Im(V(q)) \leqslant \Im(V(p)) = \mathbb{P}rad(p) = p,$$

and hence p = q. Therefore V(p) = V(q). Thus V(p) is an irreducible component of X_M .

Theorem 4.7. Let $_RM$ be a pseudo-primeful le-module. Then the mapping ϕ : $V(p) \mapsto \overline{(p:e)}$ is a bijection from the set of all irreducible components of X_M onto the set of all minimal prime ideals of \overline{R} .

Proof. Let V(p) be an irreducible component of X_M . Then by Theorem 4.6(*ii*), p is a minimal pseudo-prime submodule element of M and so (p:e)/Ann(M) is a prime ideal of \overline{R} . We show that (p:e)/Ann(M) is a minimal prime ideal of \overline{R} . Let $J/Ann(M) \in Spec(R/Ann(M))$ be such that $J/Ann(M) \subseteq (p:e)/Ann(M)$. Then $Je \leq (p:e)e \leq p$. Since $_RM$ is pseudo-primeful and Je is a proper submodule element of M, Je is a pseudo-prime submodule element of M with (Je:e) = J, by Proposition 3.5. By the minimality of p, Je = p and hence (p:e)/Ann(M) = J/Ann(M). Thus (p:e)/Ann(M) is a minimal prime ideal of \overline{R} . Thus ϕ is well-defined.

Now suppose that P/Ann(M) is a minimal prime ideal of R/Ann(M). Then by Proposition 3.5, (Pe:e) = P and Pe is a pseudo-prime submodule element of M. To show Pe is a minimal pseudo-prime submodule element of M let $q \leq Pe$ for some pseudo-prime submodule element q of M. Then $(q : e)/Ann(M) \subseteq$ (Pe:e)/Ann(M) = P/Ann(M). By the minimality of P/Ann(M) we have (q:e)/Ann(M) = P/Ann(M) and so (q:e) = P. Thus $Pe = (q:e)e \leq q \leq Pe$ which implies that q = Pe. Hence Pe is a minimal pseudo-prime submodule element of M. Therefore V(Pe) is a irreducible component of X_M by Theorem 4.6(ii). Thus ϕ is a surjection. Now let V(p) and V(q) be two irreducible components of X_M such that $\overline{(p:e)} = \overline{(q:e)}$. Then by Theorem 4.6(*ii*), both p and q are minimal pseudo-prime submodule elements of M. It follows from (p:e) = (q:e)that (p:e) = (q:e) which implies that $(p:e)e \leq (q:e)e \leq q$. Now by Proposition 3.5, (p:e)e is a pseudo-prime submodule element, and hence, by the minimality of q, (p:e)e = q. Then $q \leq p$ and so q = p. Therefore, V(p) = V(q). Hence ϕ is an injection. \square

A ring R is called *Laskerian* if every proper ideal of R has a primary decomposition. In the following result we show that if R is a Laskerian ring then the irreducible components of X_M are precisely determined by the primary decomposition of the ideal Ann(M) of R and they are finite in numbers.

Theorem 4.8. Let $_RM$ be a nonzero pseudo-primeful le-module. Then the following statements hold:

(i) The set of all irreducible components of X_M is of the form

 $T = \{V(Ie) : I \text{ is a minimal element of } V^R(Ann(M)).$

(ii) If R is a Laskerian ring then X_M has only finitely many irreducible components.

Proof. (i). Let Y be an irreducible component of X_M . Then by Theorem 4.6(i), Y = V(n) for some $n \in X_M$. Now (n : e) is a prime ideal of R containing Ann(M) so by Proposition 3.5, (n : e)e is a pseudo-prime submodule element of M. Also $(n : e)e \leq n$ implies that $Y = V(n) \subseteq V((n : e)e)$. Since Y is irreducible component of X_M , V(n) = V((n : e)e). Thus (n : e)e = n. We show that (n : e) is a minimal element of $V^R(Ann(M))$. Let $J \in V^R(Ann(M))$ be such that $J \subseteq (n : e)$. Then $J/Ann(M) \in Spec(R/Ann(M))$. Since $_RM$ is a pseudo-primeful le-module, there exists $l \in X_M$ such that (l : e) = J. Also (l : e)e is a pseudoprime submodule element of M, by Proposition 3.5. Then $Y = V(n) \subseteq V((l : e)e)$ and so V(n) = V((l : e)e), since Y is irreducible component. Thus $n = (l : e)e \leq l$ which implies that $(n : e) \subseteq (l : e) = J \subseteq (n : e)$. Hence (n : e) = J.

Now let $Y \in T$. Then there exists a minimal element J of $V^R(Ann(M))$ such that Y = V(Je). Since ${}_RM$ is a pseudo-primeful le-module, Je is a pseudo-prime submodule element of M and (Je:e) = J, by Proposition 3.5. Thus V(Je) is an irreducible space, by Lemma 4.1. Let $Y = V(Je) \subseteq V(l)$ for some $l \in X_M$. Then $Je \in V(l)$ implies that $l \leq Je$ which implies that $(l:e) \subseteq (Je:e) = J$. By the minimality of J we have (l:e) = J. Thus $Je = (l:e)e \leq l$ and so $V(l) \subseteq V(Je)$. Hence Y = V(Je) = V(l) and so Y is an irreducible component of X_M .

(*ii*). Let R be a Laskerian ring then every proper ideal of R has a primary decomposition. Let I be a minimal element of $V^R(Ann(M))$ and $Ann(M) = \bigcap_{i=1}^n Q_i$ is a minimal primary decomposition. Then there exists $1 \leq i \leq n$ such that $Q_i \subseteq I$ and hence by minimality of I we have $I = Rad(Q_i)$. Thus irreducible components of X_M are $V(Rad(Q_i)e)$, by (*i*).

References

- [1] D.D. Anderson, Multiplicative lattices, Dissertation, University of Chicago, (1974).
- [2] A.K. Bhuniya and M. Kumbhakar, Uniqueness of primary decompositions in Laskerian le-modules, https://www.researchgate.net/publication/326342684.
- [3] N. Bourbaki, Commutative Algebra, Springer-Verlag, (1998).

- [4] D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Pseudo-prime submodules of modules, Math. Reports 18(68) (2016), 591-608.
- [5] D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Topological dimension of pseudo-prime spectrum of modules, Commun. Korean. Math. Soc. 32 (2017), 553-563.
- [6] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 137 (1969), 43-60.
- [7] J.A. Johnson, a-adic completion of Noetherian lattice module, Fund. Math. 66 (1970), 341-371.
- [8] J.A. Johnson, Quotients in Noetherian lattice modules, Proc. Amer. Math. Soc. 28(1) (1971), 71 - 74.
- J. A. Johnson, Noetherian lattice modules and semi-local comletions, Fund. Math. 73 (1971), 93 - 103.
- [10] E.W. Johnson and J.A. Johnson, Lattice modules over semi-local Noether lattices, Fund. Math. 68 (1970), 187 - 201.
- [11] E.W. Johnson and J.A. Johnson, Lattice modules over principal element domains, Commun. Algebra 31 (2003), 3505 - 3518.
- [12] M. Kumbhakar and A.K. Bhuniya, Pseudo-prime submodule elements of an le-module, https://www.researchgate.net/publication/329339509.
- [13] D. Lu and W. Yu, On prime spectrum of commutative rings, Comm. Algebra 34 (2006), 2667 - 2672.
- [14] H.M. Nakkar and D.D. Anderson, Associated and weakly associated prime elements and primary decomposition in lattice modules, Algebra Universalis 25 (1988), 196-209.
- [15] J. Ohm and R.L. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631-639.
- [16] N. Schwartz and M. Tressl, Elementary properties of minimal and maximal points in Zariski spectra, J. Algebra 323 (2010), 2667 – 2672.
- [17] M. Ward, Residuation in structures over which a multiplication is defined, Duke Math. J. 3 (1937), 627 - 636.
- [18] M. Ward, Structure residuation, Ann. Math. **39** (1938), 558 568.
- [19] M. Ward and R.P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc. 35 (1939), 335 - 354.
- [20] M. Ward and R.P. Dilworth, The lattice theory of Ova, Ann. Math. Soc. 40(3) (1939), 600 - 608.
- [21] D.G. Whitman, On ring theoretic lattice modules, Fund. Math. 70 (1971), 221 229.

Department of Mathematics, Nistarini College, Purulia-723101, India E-mail: manaskumbhakar@gmail.com

A. K. Bhuniya

M. Kumbhakar

Department of Mathematics, Visva-Bharati, Santiniketan-731235, India E-mail: anjankbhuniya@gmail.com

Received August 19, 2018