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Abstract

Explicitly covariant analytical expressions are derived that describe the boundaries of shadows cast

by massive particles scattered by a gravitating object. This covers scenarios with particles having

effectively variable mass, such as photons in plasma, geodesics in higher dimensions, and particles in-

teracting with a scalar field. The derived formula takes advantage of recent advances in understanding

the relationship between slice-reducible Killing tensors and massive particle surfaces that generalize

photon surfaces. The formula allows us to obtain simple approximations of scaling as the particle

energy changes. We illustrate this structure using Kerr-NUT and EMD black holes for both massive

particles and photons in plasma. The versatility of this framework extends beyond astrophysics and

has potential applications in analog models of gravity and condensed matter physics.
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I. INTRODUCTION

Spectacular success of the Event Horizon Telescope (EHT) collaboration in constructing

shadows of supermassive black holes in M87 and our galaxies [1, 2] stimulated rapid development

in the theoretical description of strong gravitation lensing in a closed vicinity of the event

horizon (for review see [3–8]). It was soon realised that crucial role in understanding of the

observed pictures is played by the photon surfaces [9] – compact surfaces outside the event

horizon where the compact photon orbits are located. It turned out that apart of the picture

of these surfaces as filled by compact null geodesics they can be usefully presented as three-

dimensional submanifolds in spacetime satisfying the ubmilicity condition: proportionality of

the induced metric and the extrinsic curvature tensor [10]. This purely geometric property

can serve as a constructive definition of photon surfaces instead of using geodesic equations.

Photon surfaces play crucial role in analyzing the black hole uniqueness [11–14] and area bounds

[15–17].

In further investigations it was found that in spacetimes with rotations such surfaces do not

exist, but can be generalized to partilaly umbilic surfaces filling the volumic photon regions.

A novel mathematical treatment was created [18, 19] presenting these surfaces as satisfying

umbilicity conditions for part of the tangent vectors specified by a certainly defined impact

parameter. With varied impact parameter these surfaces fill the volumic regions where bound

photon orbits exist such as spherical orbits in the Kerr metric (see [20] and references therein).

In turn, this foliation can be used to construct Killing tensors of the second rank, which are

reducible in slices but non-reducible in the complete manifold [21]. The integrability conditions

for the foliation, generating (conformal) Killing tensors, guarantee that slices of the foliation

are photon surfaces. This construction generalizes in a natural way to conformal Killing tensors

[22] and demonstrates a deep connection between the integrability of geodesic equations [23, 24]

and characteristic photon surfaces.

This framework was further generalized to massive particle surfaces which have similar prop-

erties for timelike geodesics corresponding to massive particles scattered by black holes or other

ultracompact objects [25, 26]. Although flows of massive particles are not directly observed

from far away (except probably for neutrino, whose detection is still a big challenge) these

surfaces can be observed indirectly by their proper radiation which can can be visible in some

cases. But more important application of massive particle surfaces lies in relation to photons

propagating in plasma which may surround black holes. In inhomogeneous plasma, in addition
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to gravitational deflection of light, electromagnetic refraction is also present [27–30] which can

be incorporated into a combined lensing theory. Photons in plasma have an effective mass re-

lated to Langmiure plasma frequency depending on electron concentration and thus varying in

space. Strong lensing, both refractive and gravitational, of photons near black holes surrounded

by plasma was intensively studied recently [27, 31–36]. Separability of the corresponding equa-

tions of motion in Kerr metric for certain plasma configurations was discussed in [37, 38]. Thus,

propagation of light in plasmic media gives rise to concept of a particle with variable mass,

whose motion can be described by Polyakov action with coordinate-dependent mass term. For

such an action one can further construct geometrical picture of massive characteristic surfaces

similarly to the case of particles with constant mass. Formation of shadows of black holes

surrounded by plasma was recently discussed in a number of papers [7, 39, 40].

The equation of motion for massive particles lacks the conformal invariance of null orbits

leading to some complications. For instance, in stationary axisymmetric spacetimes, photon

trajectories are determined only by the ratio of azimuthal angular momentum projection to

energy L/E, while trajectories of massive particles with mass m are defined by two ratios:

E/m and L/m. Taking a photo of the optic shadow, each pixel corresponds to its own value

of L/E. But if the photo captures an image of the massive shadow, each pixel corresponds to

one-dimensional family in the parametric space (E/m,L/m) and there is no sharply defined

shadow boundary. One way to solve this issue is to fix an integral of motion, e.g., the specific

energy E/m, so the photo captures the image of the shadow of particles with a fixed specific

energy E/m. This leads to a one-dimensional family of shadows for all possible values of E/m.

Note that the observed particle energy depends on the observer’s four-velocity. Particularly, in

stationary axisymmetric spacetime, if two observers move along two different Killing vectors,

the energy E1 observed by one of them is equal to the linear combination of the energy E2 and

angular momentum projection L2 observed by the second observer.

A family of spherical photon orbits with the same ratio L/E forms a web aligning into a

photon surface (occasionally also called a fundamental photon surface, if each value of L/E

defines a distinct surface like in the Kerr spacetime). The set of all such compact photon

surfaces forms a photon region. The photon region does not depend on the observer’s four-

velocity. However, distinctive feature appears for massive particles when we are attempting

to introduce a massive particle region similarly to the photon region. Massive particle region

does depend on the observer, because it contains a set of massive particle surfaces for a fixed

specific energy E/m defined individually for each observer. All these observations serve as
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the foundation for the development of the geometric theory of massive shadows and regions

presented in this paper.

We anticipate the application of our results not only in astrophysical observations and theo-

retical gravity constructions but also in experimental physics, particularly in analog models of

gravity and condensed matter physics. Analog models of gravity involve the study of laboratory

systems described by equations similar to those in General Relativity [41]. These systems can

encompass sound and fluid waves, oscillating bubbles in sonoluminescence, photons in media

with variable refractive indices, Bose-Einstein condensates, helium super-fluids, slow photons

in fluids, and more. Analog models are employed to analyze phenomena such as Hawking

radiation [42, 43], particle creation [44, 45], quasi-normal modes [46], quantum particles [47],

and quantum fields [48] in curved spacetime. Our results can facilitate the analysis of analog

models of gravity, pushing forward the understanding of the dynamics of waves through tools

like the WKB approximation. In the realm of condensed matter physics, crystal defects can be

described using differential geometry [49, 50] giving the connection to the gravity. Moreover,

in systems where the potential energy is added to the (quasi-)particle mass, they both together

can be combined into one effective variable mass. Also, two dimensional systems can incorpo-

rate non-trivial geometry, contributing to the (quasi-)particle dynamics [51–53]. We see our

tool in the application to studies how particles like phonons, photons, or plasmons move near

crystal defects or in curved low-dimensional systems.

The article is organized as follows. In Sec. II, we determine the observer’s tetrad and the

main observable quantities that affect the structure of the gravitational shadow. We also recall

the main features of the geometric description of the massive particle surfaces/region and slice-

reducible Killing tensors. In Sec. III, we derive a general, explicitly coordinate-independent

expression for the shadow boundaries, including the case of particles with variable mass and

photons in non-magnetized pressureless plasma. In particular, we demonstrate that essentially

the properties of the shadow are concentrated in so-called shadow matrix. We also consider

asymptotic limit of all expressions to obtain compact formulas for the most relevant observer

distant from the black hole. In Sec. IV, we provide all results in coordinates of separation

variables such as Boyer-Lindquist coordinates and consider general metrics in the Benenti-

Francaviglia form and others. Finally, we illustrate the obtained expressions for the shadow

boundary using Kerr-NUT and EMD black hole models and compare them with well-known

results to confirm correctness and universality.
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FIG. 1: Schematic representation of an observer orbiting a black hole. The blue and red curves

depict the geodesics associated with the shadow and scattered particles, respectively. The green curve

represents the geodesic corresponding to the boundary of the shadow, winding along the massive

particle surface. The inset schematically shows the Kerr shadow points corresponding to each of these

curves.

II. SETUP

We assume that the four-dimensional spacetime is stationary and axisymmetric with two

Killing vectors κa
α, where a = 0, 1 is enumerating them index. One can define the Gram matrix

Gab = κa
ακbα and its inverse Gab = (Gab)−1, imposing invertibility. We will use Gab and Gab

to lower and raise indices associated with the Killing subspace. The set of vectors κa
α can

be understood as a matrix projecting any vector to the subspace spanned by Killing vectors.

The signature of Gab assumed to be (−+) to span one timelike and one spacelike directions.

For example, it is common to use κ0
α∂α = ∂t and κ1

α∂α = ∂ϕ. The Levi-Civita connection

∇α acts on subscripts and superscripts a, b as a partial derivative ∂α [22], since they represent

contractions with a Killing vector labeled by a or b, but not tensor components.

A. Observables

We define a “stationary” [54] observer O with four-velocity v̄α = v̄aκ̄a
α (Fig. 1). We will

use bars for those quantities, that are calculated at observer’s position. Accordingly to the rule
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of lowering Killing indices, we have

v̄a = Ḡabv̄b = κ̄aαv̄
α. (1)

If the observer follows the geodesic motion, v̄a are the associated conserved quantities.

Now, consider a set of all possible geodesics γ(s) captured by the observer following the

worldline parametrized with an affine parameter s such that s = 0 corresponds to observer’s

point O. The set of tangent vectors to such geodesics can be parametrized as follows [55–58]

γ̇α(0) = Nē0
α +

√
N2 −m2 (sinΦ sinΘ ē1

α + cosΦ sinΘ ē2
α + cosΘ ē3

α) , (2)

where γ̇α(s) denotes the derivative of γ(s) with respect to the affine parameter s, N is some

function to be determined, ēi
α is an orthonormal tetrad. The term

√
N2 −m2 is introduced in

order to ensure the correct norm γ̇αγ̇α = −m2. The angles Φ ∈ [0, 2π] and Θ ∈ [0, π] encode

the azimuth and altitude of the observer’s celestial sphere, respectively. On the celestial sphere,

one can define the zenith (Θ = 0), the astronomical horizon (Θ = π/2), and the nadir (Θ = π).

Instead, stereographic projection coordinates can be introduced by the following transformation

[55, 56]

X = −2 tan(Θ/2) sinΦ, Y = −2 tan(Θ/2) cosΦ. (3)

In what follows, we choose the first two vectors of the orthonormal tetrad to lie in the Killing

vector space as

ē0
α = κ̄a

αv̄a/v̄, ē1
α = κ̄a

ατ̄a/v̄, (4)

where

τ̄a ≡ ḠabĒbcv̄c, v̄ ≡
√
−Ḡabv̄av̄b, Ēab ≡ (− det Ḡab)1/2ϵab, ϵ01 = −ϵ01 = 1, (5)

while the remaining two vectors ē2
α, ē3

α will be specified soon. Indeed, the orthonormality

properties ē0
αē1α = 0 and −ē0αē0α = ē1

αē1α = 1 follows from Eqs. (4) and (5).

As it was discussed above, due to the lack of conformal invariance, we have to fix some

parameters of the observable particle flux. Namely, we define the local observable energy E of

the particles as

Ē ≡ −v̄αγ̇α(0). (6)

This value Ē is the energy seen by an observer with the four-velocity v̄α, and it is positive,

Ē > 0, since the tangential velocities of the particle and the observer are future-directed.
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One can define the energy globally as E ≡ −v̄aκaαγ̇α(s), which is conserved along the geodesic

motion, and coincides with the observable energy E|s=0 = Ē at the observer’s position. Of

course, if we considered the case of v̄α not along the Killing vectors, we would not be able to

introduce such a globally defined conserved energy. Fixing the observable energy allows us to

construct images of shadows for massive particle fluxes in a reasonable way from experimental

perspectives. The entire spectrum of energies will create superposition of these individual

images. Once we have fixed the energy, we can determine the function N:

Ē = −v̄αγ̇α(0) = −Nv̄αv̄α/v̄ = v̄N ⇒ N = Ē/v̄. (7)

The entire set of constants of motion associated with the Killing vectors κa
α that are con-

served along the geodesics can be obtained in the form [26]

qa ≡ κaαγ̇
α(s) =

m

mE

v̄a/v̄ +
m

mE

sinΦ sinΘ
√

1−m2
E τ̄a/v̄, mE ≡ v̄m/Ē, (8)

where we used Eq. (2) with Eq. (4), and we remind that τ̄a = Ḡabτ̄ b. Thus, for geodesics with

a given observable energy Ē for the given observer v̄a, we have obtained a family of conserved

quantities parametrized by Φ,Θ. The family is one-dimensional since the observable energy Ē

is already fixed, imposing a linear condition qav̄
a = −Ē. Since, the particle’s four velocity is a

timelike future-directed vector, the following natural inequality on the observable energy arises

0 ≤ mE ≤ 1 ⇔ Ē ≥ mv̄ ≥ 0. (9)

The mass m represents the rest energy of a particle in a static asymptotic observer’s reference

frame, while the quantity mv represents the rest energy observed by a non-static or non-

asymptotic observer. Thus, condition (9) means that the energy of the particle is greater than

the rest energy with respect to the observer’s reference frame. The parameter mE, contained

in the range 0 ≤ mE ≤ 1, is convenient to describe the entire energy spectrum.

In what follows, two special types of observers will be important (defined up to some norm)

• static v̄ast ∼ (1, 0)

• zero angular momentum observer (ZAMO) v̄aZAMO ∼ (Ḡ11,−Ḡ01)

For asymptotically flat spacetimes, ZAMO observer at the asymptotically distant sphere ap-

proaches the static observer v̄aZAMO → v̄ast since G01 = O(1/r). However, as we will show, terms

of the order O(1/r) can be important for the shadow.
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B. Massive particle surfaces

Similarly to the case of photons, Refs. [55–62], the boundary of the massive particle shadow

will be formed by particles which are asymptotically tangent to the massive particle surfaces

with a compact spatial section. The formal definition of massive particle surfaces is given in

Refs. [25, 26] (also, see Ref. [63]). In simple words, a hypersurface S is the massive particle

surface if any worldline with a given set of conserved quantities qa that touches S (at least at

one point) belongs to S entirely. As shown in Ref. [26], the second fundamental form (extrinsic

curvature) of massive particle surfaces for neutral particles with a set of conserved quantities

qa must satisfy the equation

χαβ = χτ
(
hαβ +Habκaακbβ

)
, (10)

where hαβ is the induced metric, χτ is an arbitrary function and Hab is an arbitrary matrix

restricted only by the following constraint

Habqaqb = m2, (11)

and the following inequality for geodesic motion

Gabqaqb +m2 ≤ 0, (12)

and all points of the massive particle surface S must satisfy this condition. As qa represents

a geodesic path passing through the observer’s point, it inherently satisfies the inequalities at

the observer’s point. The maximal connected region containing the observation point is the

observable region [18] (see Ref. [36] for the case of photons in plasma). The gravitational

shadow can be formed only for those particles that are in the observable region containing the

black hole’s event horizon or other trapping surface. Otherwise, such geodesics will create the

boundary of relativistic images [62].

Of our greatest interest will be the axi-stationary massive particle surfaces which are touched

by all the Killing vector fields κa
α, i.e., all Killing vectors κa

α are tangent to the massive particle

surface S. In this case, according to Ref. [22] the matrix Hab is expressed in terms of the Gram

matrix Gab

Hab = − 1

2χτ
nβ∇βGab − Gab. (13)

We will also consider only the massive particle surfaces with a compact spatial section, just like

in the case of fundamental photon surfaces [18].
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The family of conserved quantities qa defined in the previous section corresponds to a family

of massive particle surfaces. We will call this family for all possible Φ and Θ the massive particle

region. In the case of photons, an individual photon is emitted by some source, asymptotically

approaches the corresponding photon surface and moves away from it in the direction of the

observer [55, 59]. Similarly to the case of photons, scattering of massive particles will occur on

individual surfaces in the massive particle region. Thus, this definition is key to the problem

of constructing the gravitational shadow and relativistic images.

C. Killing tensors

In the general case, the problem of finding the massive particle region is very nontrivial.

However, it is significantly simplified in the case of integrable systems [24, 64]. Assume that

there is an exact slice-reducible Killing tensor in the spacetime, defined in Refs. [21, 22].

Recall that Killing tensor is called slice-reducible if there exists at least one foliation of the

spacetime such that tangent projections in all slices are reducible. Although, slice-reducible

Killing tensors do not represent the most general Killing tensors, they are very common among

physical spacetimes. We give here a general theorem about their form and necessary and

sufficient conditions for their existence:

Theorem 2.1: Let the manifold M of dimension m be foliated by slices S and contains a

collection of n ≤ m− 2 Killing vector fields κa
α tangent to the foliation slices S. Let the Gram

matrix Gab be non-degenerate, and the basis of foliation slices be completed by the set of m−n−1

vectors σαi orthogonal to Killing vectors (i.e., κa
ασiα = 0). The unit vector field nα is normal

to slices S. If the second fundamental form of slices possesses the following form

χαβκa
ασβi = 0, χαβσ

α
i σ

β
j = χτhαβσ

α
i σ

β
j , (14)

and the following integrability conditions are met

Dγ (φχτ − φnα∇α lnφ) = 0, (15a)

Dγ

(
1

2χτ
nα∇αGab + Gab

)
= 0, (15b)

Dγ(χτφ
3) = 0, (15c)

then, there is a slice-reducible Killing tensor in the manifold M , which can be constructed as

follows:
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Step one: Obtain Ψ = lnφ2 + Ψ̃ from the equations

nα∇αΨ̃ = 2 (χτ − nα∇α lnφ) , Dτ Ψ̃ = 0. (16)

Step two: Obtain α and γab from the equations

nα∇αα = −2χeΨ, Dτα = 0. (17a)

γab = eΨGab + νab, nα∇αν
ab = 0, Dτγ

ab = 0. (17b)

Step three: Using the functions found in the previous steps, construct the corresponding

KT:

Kαβ = αgαβ + γabκaακbβ + eΨnαnβ. (18)

Here, Dα denotes the covariant derivative tangent to the slices S, and φ is a lapse function

obeying the equation nλ∇λnβ = −Dβ lnφ, more details can be found in Sec. II from Ref. [22].

In Ref. [26], the slices generating the Killing tensors are shown to be massive particle surface.

Indeed, the second integrability condition (15b) can be rewritten in the form DαHab = 0, i.e.,

the matrix Hab is constant in each slice (Refs. [21, 22]). Thus, if equation (11) has a real

solution qa at some point of the slice, then the part of this slice that satisfies inequality (12)

is automatically a massive particles surface. Even more, this slice is shown to allow for a

continuous family of solutions qa instead of an isolated solution (this case is called a glued

surface [26]). If the inequality is not satisfied, e.g., the solution is complex, then the slice is not

a massive particle surface.

In order to make massive particle surfaces a meaningful tool for analyzing shadows, we

assume the compactness of their spatial section. Otherwise, if the massive particle surface were

not compact, the geodesic would have an infinite volume of space to travel. To our knowledge,

all physically meaningful four-dimensional solutions that possess a Killing tensor have two

foliations with slices satisfying the integrability conditions from the theorem – the slices with

cone-like and sphere-like spatial sections. In this paper we use the sphere-like slices because the

spatial section of the corresponding massive particle surfaces are guaranteed to be compact.

To be specific, we choose the outer normal nα pointing to the infinity. As a result the foliation

slices can be seen as flowing out of the compact source, filling the entire space (Fig. 2).

Now we can define themassive particle region. Unlike the previous subsection, it will be more

convenient for us to parameterize the family not by Φ and Θ, but by the foliation parameter
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FIG. 2: Schematic representation of a foliation by slices of the spacetime. Slices fill the entire space-

time.

Ω that generates the Killing tensor (e.g., for many solutions, such a foliation parameter is just

the coordinate r in Boyer–Lindquist coordinates [55, 59]). This is motivated by the fact that

in most cases the product sinΦ sinΘ is expressed through some high-order polynomials of the

foliation parameter, which cannot be resolved in the opposite direction in radicals [55].

Since the slices are massive particle surfaces they obviously satisfy Eq. (11) for some qa.

Keeping in mind that using the equations for the slice-reducible tensor, we can get an alternative

representation for Hab [22]

Hab = − 1

2χτ
nα∇αGab − Gab = −n

α∇α(e
ΨGab)

nβ∇βeΨ
, (19)

which allows us to rewrite equation (11) as

(eΨGab)′qaqb + (eΨm2)′ = 0, (20)

where the prime ′ means the derivative with respect to the foliation parameter φnα∇α. As in

the case of photons, this equation can be represented in the homogeneous form with respect to

the impact parameter vector ρa [21, 22](
Sab
)′
ρaρb = 0, (21)

where we have defined an object that will be called shadow matrix :

Sab ≡ eΨ
(
Gab +m2

E · v̄av̄b/v̄2
)
, (22)

and the original conserved quantities qa in (20) are expressed through

qa = −mv̄

mE

· ρa/(v̄bρb). (23)

Relation (23) is chosen in such a way that the identity v̄aqa = −Ē holds automatically. It is seen

from Eq. (23), that the impact parameter vector ρ has an arbitrary norm. By choosing ρ0 = −1,
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its second component becomes a conventional impact parameter of a geodesic ρ1 = −q1/q0.

According to Eq. (17b), the derivative along directions tangent to the slices is also zero

Dγ

[(
Sab
)′]

= 0. (24)

Furthermore, comparing Eqs. (23) and (8) and contracting with vector τ̄a, one will find the

solution for sines:

sinΦ sinΘ = − 1√
1−m2

E

· (τ̄aρa)/(ρbv̄b). (25)

Obviously, Eq. (21) does not always have solutions which also satisfies Eq. (12). Thus some

slices of the foliation does not contain massive particle surfaces with a given value of the

observed energy Ē. The following existence conditions can be identified. First, the matrix(
Sab
)′

must be indefinite, that is, its determinant must be non-positive det{
(
Sab
)′} ≤ 0. The

second condition follows from the natural inequality | sinΦ sinΘ| ≤ 1

(τ̄aρa)
2 ≤

(
1−m2

E

) (
v̄bρb

)2
. (26)

The last condition follows from (12), which can be rewritten as (assuming eΨ > 0)

Sabρaρb ≤ 0. (27)

Summarizing, when a slice-reducible Killing tensor exists, we have the following simple

coordinate independent recipe for constructing a massive particle region. For each slice with

compact spatial section on which the Killing tensor is reducible, find the corresponding shadow

matrix Sab and ρa if the latter exists. Then, find the part of the slice that satisfies the condition

Sabρaρb ≤ 0. The union of all such submanifolds of all slices constitutes the massive particle

region. This time the massive particle region is parameterized by the foliation parameter

Ω. In the case of photons, it will exactly coincide with the well-known photon region, Refs.

[3, 55, 59, 61].

The advantage over the classical approach of solving geodesic equations for construction of

massive particle region is that we no longer need to go through the procedure of solving geodesic

equations by explicitly selecting a suitable coordinate system at all. For example, in the Kerr’s

case we do not need to work in the Boyer–Lindquist coordinate system (or any other coordinate

system that provides separability) to define the massive particle region. The only job we have

to do is to find slices on which the Killing tensor becomes reducible. In the general case, such

slices may differ from the standard surfaces r = const. This can be particularly advantageous in
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spacetimes where the coordinates that provide separation of variables are unknown, or when the

non-separating coordinates yield more concise expressions. The only necessary and sufficient

conditions that allow applying the results of this paper are the integrability conditions (15)

along with (14).

III. MASSIVE PARTICLE SHADOWS

A. Basic definitions

Having defined the massive particle region, we can take the final step towards obtaining a

formula for the boundary of the gravitational shadow, or at least the boundary of relativistic

images. Just established relationship between geodesics that go through the observer O with

a fixed ρa and the corresponding massive particle surface S can be interpreted by considering

the four following cases, tracking the geodesics in the inverse direction (i.e., from the observer

to the source) [55, 59–62]:

(i) If a geodesic goes far away from the surface, it flies-by the massive gravitating object with

a small distortion of its path (red curve in Fig. 1).

(ii) If a geodesic is about to touch the surface, it wraps around the surface several times and

fly away. This is the effect of the relativistic images formation [31, 62].

(iii) If a geodesic is infinitely close to touching the surface, it wraps the surface an infinite

number of times (green curve in Fig. 1). It corresponds to the boundary of the shadow.

(iv) If a geodesic intersects the surface, it falls inside the surface and get trapped by the

massive gravitating object (blue curve in Fig. 1). As it will be mentioned below, this

may be not fair for some objects like naked singularities. In the case of regular black

holes without exotic matter, all the geodesics that get inside the surface are caught by

the horizon forming a dark spot – a gravitational shadow of the black hole.

If the scenario (iv) is realized, the boundary of the gravitational shadow coincides with the

boundary of relativistic images described in the scenario (iii). This is true if we assume that

the geodesic approaching the object closer and closer suffers a stronger gravitational attraction.

However, in the case of superextremal solutions, naked singularities and wormholes, the scenario

(iv) can fail. In particular, geodesics can also turn back inside the massive particle surfaces.

13



In the latter case, light spots may be observed inside the shadow or the shadow may disappear

completely, but the boundary of the relativistic images remains unchanged [57].

Of course, to determine the entire boundary of the shadow, it is not enough to know the

vector ρa. Fortunately, the presence of the Killing tensor allows us to establish another connec-

tion between the massive particle surface and the observed parameters of the particle through

the conserved Carter’s constant [65–67]

C ≡ Kαβγ̇
α(s)γ̇β(s) = −αm2 + γabqaqb + eΨ (nαγ̇

α(s))2 , (28)

where we have applied Eq. (18) for slice-reducible Killing tensors. By calculating this expression

at the observation point and at the arbitrary point of geodesic tangent to the massive particle

surface with a given set of conserved quantities qa we get

−ᾱm2 + γ̄abqaqb + (m/mE)
2(1−m2

E)e
Ψ̄ cos2Θ = −αm2 + γabqaqb, (29)

where we have chosen the tetrad vector ē3
α = −nα (since we choose the outer normal vectors of

the surface, observer’s zenith points towards the black hole). Substituting explicitly Eq. (23)

gives the following equation

(1−m2
E)e

Ψ̄ cos2Θ = −(α− ᾱ)m2
E + v̄2(γab − γ̄ab) · ρaρb/(v̄cρc)2. (30)

According to Ref. [22], matrix γab can be decomposed onto the following parts

γab = eΨGab + νab, (31a)

nα∇αν
ab = 0, (31b)

Dτγ
ab = 0. (31c)

The condition (31c) states that γab is constant on the surface. In particular, the expression (30)

does not actually depend on the point on the massive particle surface. However, according to

the condition (31b), the term νab does not change along the integral curves of the normal vector

field nα. Thus, it is reasonable to evaluate the expression on the surface at the point, which is

connected with the observer by the integral curve (Fig. 3). Though, it may sound difficult for

general foliations, in practice we deal with foliations with slices defined by the constant radius

in Boyer-Lindquist coordinates [55], so two points are connected by the integral curve along nα

if they have the same coordinates at their surfaces. So the following difference can be written

as

(γab − γ̄ab)ρaρb =
(
eΨGab − eΨ̄Ḡab

)
ρaρb, (32)
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FIG. 3: Schematic representation of an integral curve along normal vectors of slices from the observer

to the massive particle surface. In the general case, the integral curve may be not straight line.

where now the expressions without a bar must be evaluated in the slice point which lies in the

orbit of observer positions generated by integral curve of normals nα (Fig. 3).

The sum α+ eΨ is constant along the integral curves along nα either. To check this, we act

on the sum with the derivative along nα:

nα∇α

(
α + eΨ

)
= −2χτe

Ψ + eΨnα∇αΨ = −2χτe
Ψ + eΨ · (2χτ ) = 0, (33)

where we take into account Eqs. (17a), (16). This sum, calculated at the observer’s position,

ᾱ + eΨ̄, can be compared with its value α + eΨ at any other arbitrary point along the integral

curve along the normal vector nα:

α + eΨ − (ᾱ + eΨ̄) = 0 ⇒ α− ᾱ = eΨ̄ − eΨ. (34)

Substituting Eqs. (32) and (34) into Eq. (30), we get an equivalent expression

(1−m2
E)e

Ψ̄ cos2Θ = −(eΨ̄ − eΨ)m2
E + v̄2

(
eΨGab − eΨ̄Ḡab

) ρaρb
(v̄cρc)2

= v̄2
(
Sab − Sab

) ρaρb
(v̄cρc)2

, (35)

where quantities with no bars are calculated at the point lying at the same integral curve as

the observer does. This expression allows us to get cosΘ in terms of Ψ̄, Sab and ρa (taken in

observer’s point and the point on the massive particle surface connected with the observer by

the integral normal curve). Collecting Eqs. (35), (25) together gives the final expressions for

the shadow boundary in coordinates (Φ,Θ)

cosΘ = ±
v̄e−Ψ̄/2

√(
Sab − Sab

)
ρaρb√

1−m2
E · (v̄cρc)

, sinΦ · sinΘ = − (τ̄aρa)√
1−m2

E · (ρbv̄b)
. (36)
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In terms of the stereographic projection coordinates (X, Y ), the shadow boundary reads

X = − 2B

1∓ A
, Y = ±2

√
1− A2 −B2

1∓ A
, A ≡ |cosΘ| , B ≡ sinΦ · sinΘ. (37)

The expression from the square root has a simple form

1− A2 −B2 = 1−
v̄2e−Ψ̄

(
Sab − Sab

)
ρaρb + (τ̄aρa)

2

(1−m2
E) · (v̄cρc)2

= − v̄2e−Ψ̄Sabρaρb
(1−m2

E) · (v̄cρc)2
, (38)

where we have used the identity

Sabρaρb = −eΨ̄(1−m2
E) · (v̄cρc)2/v̄2 + eΨ̄(τ̄aρa)

2/v̄2, (39)

that follows from orthogonality of v̄a and τ̄ c:

Gabρaρb = −(v̄aρa)
2/v̄2 + (τ̄aρa)

2/v̄2. (40)

Thus, the final expression for the shadow boundary is

X =
2τ̄aρa√

1−m2
E · ρav̄a ∓ v̄e−Ψ̄/2

√(
Sab − Sab

)
ρaρb

, (41a)

Y = ± 2v̄e−Ψ̄/2
√
−Sabρaρb√

1−m2
E · ρav̄a ∓ v̄e−Ψ̄/2

√(
Sab − Sab

)
ρaρb

. (41b)

In Eq. (41), the shadow boundary is described parametrically by the foliation parameter. The

foliation parameter takes all values corresponding to the massive particle region. We will come

back to the discussion of this result after we generalize it to the case of variable mass.

B. Particles with variable mass and separability

It is known that photons in non-magnetized pressureless plasma acquire an effective descrip-

tion by the Hamiltonian [37–39, 56, 58]:

H =
1

2

(
gαβπαπβ + ω2

p

)
, (42)

where ωp is the plasma electron frequency which equals, up to a scalar factor, the electron

density. Plasma frequency ωp in the Hamiltonian (42) can be interpreted as effective mass

m = ωp of the photons. Since plasma generically is inhomogeneous, the effective mass can

vary in spacetime, i.e., photons in plasma are described as particles with variable mass. Other

geodesic systems with variable mass are presented by particles interacting with the scalar field,
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dark matter with time-dependent mass [68], or an effective description of geodesics in higher

dimensions (see App. B in Ref. [69] and Ref. [70]). Unlike the previously noted literature,

instead of the Hamiltonian formalism, we give preference to second-order equations of motion

that are closely related to the massive particle surfaces.

The action for particles with variable mass can be written in a usual Polyakov form [68, 71]:

S =
1

2

∫
{σ−1gαβγ̇

αγ̇β −m2σ}ds, (43)

where σ is a Lagrange multiplier and the massm is considered to be some prescribed coordinate

dependent scalar function m(x). The Hamiltonian for (43) reads

H =
σ

2

(
gαβπαπβ +m2

)
, πα = σ−1gαβγ̇

β. (44)

Variation of the action with respect to σ gives the constraint

gαβγ̇
αγ̇β = −m2σ2. (45)

The parameterization fixing σ = 1 leads to the Hamiltonian (42) and the geodesic equations

with an effective gradient force at the right-hand side:

γ̇α∇αγ̇
β = −mgβλ∇λm, γ̇αγ̇α = −m2. (46)

This dynamical system, with similar equations in the flat space, is considered in various sources,

such as Ref. [72] or lectures on wave propagation in an inhomogeneous plasma.

It is expected that the equilibrium plasma distribution in a stationary axisymmetric gravi-

tational field will inherit these symmetries, so the corresponding mass distributions will also be

stationary and axisymmetric. A more subtle question is whether the Killing tensor symmetry of

spacetime will ensure the separability of the equations of motion of a particle of variable mass.

Particular mass distributions that allow one to generalize the Carter constant were found in

the Kerr metric [37] and some more general metrics [38] (see also [64, 73]) using the Hamilton-

Jacobi equation in Boyer-Lindquist coordinates. Here we formulate a coordinate-independent

method for searching mass distributions that ensure Killing tensor symmetries of the dynam-

ics of variable mass particles. We do this generalizing technique for slice-reducible exact and

conformal Killing tensors in suitably foliated spacetimes.

Basic constructions of the previous section and Ref. [26] can be generalized to the case

of the variable effective mass in different ways, and the simplest one is to combine the Weyl

transformation of the metric tensor with the geodesic reparameterization [37]. This will bring us
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back to the case of constant mass and allow us to apply all previous formulas without changes.

Indeed, performing the Weyl transformation g̃αβ = e2ψgαβ supplemented by the mass and the

Lagrange multiplier redefinitions m̃ = e−ψm, and σ̃ = e2ψσ brings the action to the form

S =
1

2

∫ (
σ−1e−2ψg̃αβγ̇

αγ̇β −m2σ
)
ds =

1

2

∫ (
σ̃−1g̃αβγ̇

αγ̇β − m̃2σ̃
)
ds. (47)

We choose the transformation function ψ such that m̃ is some constant (of the same sign as

m), ψ = ln(m/m̃). The parameterization choice σ̃ = 1 results in the relation between old and

new geodesics ˙̃γα = e−2ψγ̇α. Then, the equations of motion in the new frame read

˙̃γα∇̃α
˙̃γβ = 0, g̃αβ ˙̃γ

α ˙̃γβ = −m̃2, (48)

where ∇̃α is a Levi-Civita connection for the metric tensor g̃αβ.

Thus, we have reduced the motion of particles with the coordinate-dependent mass to the

motion of constant mass particles in the Weyl transformed metric. However, the new metric

g̃αβ may not have the same set of symmetries as the original one. On one hand, we can

require that the new metric g̃αβ possesses the required symmetries independently, without

any direct reference to the original metric gαβ. On the other hand, if the original metric gαβ

already exhibits certain symmetries, the mass function m(x) must somehow share these same

symmetries. Therefore, for correct application of the previously obtained results, it is necessary

to present a number of requirements on the distribution of mass.

First, an arbitrary Weyl transformation ψ, preserves the exact Killing vectors κa
α if and

only if κa
α∇αψ = 0 which implies κa

α∇αm = 0. If the original metric is axi-stationary, then

the mass function m(x) must be axi-stationary too. In this case, integrals of motion coincide

q̃a = κa
αg̃αβ ˙̃γ

α = κa
αgαβγ̇

α = qa. (49)

Second, conformal Killing tensors are preserved by Weyl transformations, but exact Killing

tensors become conformal Ref. [22]. If we want the transformed metric g̃αβ to posses an exact

Killing tensor of rank two, then the original one must posses at least a conformal Killing tensor

of rank two. Since we have used an assumption of slice-reducibility of the Killing tensor for

the shadow description, we have to analyze the case of slice-reducible both conformal and

exact Killing tensors. To find general condition on Weyl transformation that allows for a

slice-reducible exact Killing tensor, we write down the condition from Ref. [22]

Dγ(χ̃τ φ̃
3) = 0. (50)
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Substituting the quantities associated with the original metric tensor and the Weyl transfor-

mation ψ = lnm/m̃, the condition will read:

Dγ(χ̃τ φ̃
3) = Dγ

(
φ3e2ψ(χτ + nα∇αψ)

)
=

1

2
Dγ

(
φ3e−Ψnα∇α(e

Ψ(m/m̃)2)
)

=
1

2
Dγ(φ

2e−Ψ)
(
φnα∇α(e

Ψ(m/m̃)2)
)
+

1

2
φ2e−ΨDγ

(
φnα∇α(e

Ψ(m/m̃)2)
)
,

In the first transition we used the following relations [22]

φ̃ = eψφ, χ̃τ = eψ (χ̃τ + nα∇αψ) , (51)

while in the second transition we used the expression for ψ and Eq. (16) which is fair for a

conformal tensor as well [22]. The first term is zero Dγ(φ
2e−Ψ) = φ2e−Ψ{Dγ lnφ

2 −DγΨ} = 0

due to Eq. (16) again. The remaining term gives us a condition of the existence of an exact

Killing tensor of rank two:

Dγ

[(
eΨm2

)′]
= 0 or Dγ

[
m2φ3χτ +

1

2
φ2
(
m2
)′]

= 0. (52)

Since we assumed the existence of a slice-reducible conformal Killing tensor in the original

metric, the integrability conditions (15a), (15b) hold automatically. Since we did not use the

condition for the existence of an exact tensor in the original metric, but only a conformal one,

we can consider the motion of photons in plasma and particles of variable mass even for systems

without an exact tensor, if the distribution m2 has a suitable form. However, if the original

metric already has an exact Killing tensor, the term Dγ (φ
3χτ ) is zero, and the mass function

must obey the condition Dγ(m
2)φ3χτ +Dγ

(
φ2 (m2)

′)
= 0.

Generalization of Eq. (41) can be performed by replacing all the quantities associated with

the original spacetime with the metric gαβ by the new quantities associated with the transformed

spacetime g̃αβ and expressing them back in terms of the quantities with no tilde. Recall that

according to Ref. [22] the quantity eΨGab is invariant and

G̃αβ = e−2ψGαβ, ˜̄va = v̄a, ˜̄v = eψ̄v̄, ˜̄τa = τ̄a, ˜̄E = Ē, m̃E = m̄E, Ψ̃ = 2ψ +Ψ, (53)

and

S̃ab = eΨ{Gab + eΨe2(ψ−ψ̄)m̄2
E · v̄av̄b/v̄2} = eΨ{Gab + eΨm2

E · v̄av̄b/v̄2}, ˜̄ve−
˜̄Ψ/2 = v̄e−Ψ̄/2,

(54)
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where m2
E = v̄2m2/Ē2, m̄2

E = v̄2m̄2/Ē2 are effective masses at the observer’s and massive

particle surface’s point (lying on the same integral curve), respectively. As a result of these

transformations, the only modification we have to do when we move from the system with

constant mass to the system with variable mass is just considering m2
E as variable in shadow

matrix Sab and considering constant m̄2
E in Sab and

√
1− m̄2

E. Moreover, Eq. (21) also remains

unchanged, with the caveat that the mass is variable now and it must be differentiated. Since

we do not change the foliation, the derivative is also invariant, from Eq. (52) follows the

unchanged form of the condition in Eq. (24)

Dγ

[(
Sab
)′]

= 0. (55)

C. General result and discussion

Summarizing the entire procedure for construction of a gravitational shadow for massive

particles (probably, with variable mass) in spacetimes with slice-reducible Killing tensor of

rank two, one can highlight three steps:

1. Find compact slices S generating the slice-reducible exact Killing tensor (Ref. [22]).

Calculate quantities nα, Ψ, Gab for the slices. If the particles under consideration have

variable mass, the Killing tensor can be conformal and not exact, with two additional

condition imposed on the mass function: Dα

((
eΨm2

)′)
= 0 and κa

α∇αm = 0.

2. Define an observer at some point O with the four-velocity vector v̄a and fix the particle

energy Ē detected by the observer. Construct an integral curve of the normal field nα

passing through the observation point.

3. Calculate X and Y for each slice at the point related to the observer through the integral

curve using formulas (or Eq. (36)):

X =
2τ̄aρa√

1− m̄2
E · v̄aρa ∓ v̄e−Ψ̄/2

√(
Sab − Sab

)
ρaρb

, (56a)

Y = ± 2v̄e−Ψ̄/2
√
−Sabρaρb√

1− m̄2
E · v̄aρa ∓ v̄e−Ψ̄/2

√(
Sab − Sab

)
ρaρb

, (56b)

where ρa is an arbitrary non-trivial solution to the equation(
Sab
)′
ρaρb = 0, Sab = eΨ

(
Gab +m2

E · v̄av̄b/v̄2
)
, m2

E = v̄2m2/Ē2, (56c)
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and the prime ′ means the derivative with respect to the foliation parameter φnα∇α

(keep in mind that the observer’s coordinate are not differentiated). The solution ρa

must satisfy Eqs. (26) and (27), otherwise X and Y become imaginary. Coordinates

X and Y of the boundary are parameterized as a function of the foliation parameter

Ω. The resulting curve should be analyzed to determine whether it corresponds to the

shadow boundary or the boundary of relativistic images (further details will be provided

in examples of Section IV).

There are several distinctive features related to the choice of signs in the expressions (56):

• The sign ∓ in the denominator refers to different stereographic projections of the shadow

image related by inversion ρa → −ρa. For the future-directed case ρav̄
a < 0 in most

cases we can choose the sign −. Moreover, Eq. (56) is invariant under transformations

ρa → sρa for some arbitrary s > 0.

• The general sign ± in front of the fraction Y is independent and provides a mirror

symmetry of the shadow with respect to the line Y = 0 [3]. While this symmetry is

expected when the observer is located at the equatorial plane, it seems counter-intuitive

when the observer is off-plane. However, the mirror symmetry of the shadow for any

observers arises due to the independence of the Killing tensor from the choice of the

direction tangent vector ē2
α (e.g., ē2

α ∼ ∂θ in Kerr spacetime). So, considering the

geodesic curve with γ̇αē2
α → −γ̇αē2α leads to the same integrals of motion and the same

massive particle surface, where these geodesics wind up.

• The expression for shadow also has the symmetry eΨ → const · eΨ. This symmetry

is associated with the freedom to multiply the Killing tensor by an arbitrary positive

constant.

• Another feature is that the Killing tensor (18) does not contain terms linear in the nor-

mal vector nα. This leads to appearance of the symmetry nα → −nα in all obtained

expressions. As a result, we can unambiguously determine the image of a shadow only

on the projective celestial sphere, in which the opposite points are identified. In order

to obtain a real image of the shadow, it is necessary to discard an extra piece of the

image using additional physical considerations. For example, for a far away observer, the

shadow will be located in the vicinity of the zenith (if the normal and the tetrad are
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chosen as described above, i.e., the observer’s camera is pointing towards the gravitating

object). So, we must choose the + sign of cosΘ, resolving the ambiguity.

As a result of applying Eq. (56a), we get the curve describing the boundary of the relativistic

images [31, 62] parameterized by the foliation parameter Ω. For black hole objects, this cor-

responds to the boundary of the shadow. The described procedure is completely independent

on the coordinate choice, though a special choice may be more convenient. Moreover, the task

of solving geodesic equations is no longer necessary and the construction of the final formula

comes down to simple calculations. Of course, the main problem is now concentrated in the

construction of the slice-reducible Killing tensor and the corresponding slices. However, this

problem was formulated in a coordinate-independent way in Refs. [21, 22]. The expression

for the boundary itself is simpler and explicitly coordinate independent than, for example, in

Refs. [34, 37, 38, 40, 56, 58, 73] and can be studied analytically from various points of view. In

particular, the properties of the shadow matrix are closely related to the geometric properties

of massive particle surfaces. Similarly to the photon surfaces [15–17], massive particle surfaces

are subject to various geometric restrictions. These restrictions can ultimately lead to rather

universal restrictions on the shadows parameters in presence of plasma [16, 17, 74].

There is one more useful property of expressions in Eq. (56). Namely, despite the fact

that the expressions are not tensors indexed by a, b, they are invariant under transformation

of the basis in the space of Killing vectors with constant coefficients κa′
α = Λaa′κa

α. Indeed,

if the transformation matrix Λaa′ is constant, all contractions are invariant, including those

with derivatives (e.g.,
(
Sab
)′
ρaρb), or involving vectors from different points (e.g., Sabρaρb).

Expressions (56) are not invariant under a more general transformation, since we calculate

contractions of tensors and vectors (of the Killing vector space) at different points of spacetime.

In general, such contractions are not valid. In our case it is only possible because we can transfer

vectors using combinations of Killing vectors with constant coefficients along the integral curves

of the foliation normals. As an exception, we can use a transformation that does not depend

on the foliation parameter, (Λaa′)
′ = 0, but in this case we lose the property from Eq. (55).

D. Shadows for distant observers in asymptotically flat spacetimes

As a rule, we are interested in shadows that are seen by an observer far away from the

gravitating object, i.e., the distance from the observer to the gravitating object is much larger

than the gravitational radius of the object. In this case, it is reasonable to consider the observer
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asymptotically distant. At large distances, the gravitating object is seen as a point source of

mass with all higher multipoles suppressed. Asymptotically, slices tend to be convex spheres

with χτ > 0. The parameter measuring the distance from the object is chosen in the form

of a foliation parameter Ω, tending to infinity for the slice where the asymptotically distant

observer Ω̄ → ∞ lives (here Ω̄ — Ω value for a slice with an observer). In many particular

examples, the parameter Ω coincide with the Boyer-Lindquist radius r. Though, the situation

can be less obvious for solutions with the gravimagnetic mass (NUT parameter) and causality

violation, the following calculations are fair for them as well. In what follows, we assume for

simplicity that the coordinate systems tends asymptotically to spherical coordinate system with

two Killing vectors ∂t and ∂ϕ, though similar steps can be applyed to more general spacetimes

and coordinates.

Let us pick out bounded and unbounded parts of this limit. The scalar Ψ grows unbounded

due to the equation: nα∇αΨ = 2χτ . Indeed, for asymptotically spherical surfaces, the quantity

associated with the curvature χτ is positive and decreases as ∼ 1/r, where r is a radius in

a coordinate system, which tends to the spherical one. Thus, we expect logarithmic growth:

Ψ ∼ ln r.

We expect that the observer has a finite speed v̄, assuming that vector components v̄a are

bounded either. This allows us to define the following limits

v̄a∞ ≡ lim
Ω̄→∞

(v̄a), v̄∞ ≡ lim
Ω̄→∞

(v̄). (57)

The effective particle mass m̄ must be also bounded

m̄∞ ≡ lim
Ω̄→∞

(m̄), m2
E∞ = v̄2∞m

2/Ē2, m̄2
E∞ = v̄2∞m̄

2
∞/Ē

2, (58)

or even zero m̄∞ = 0 if we consider photons in plasma. Then, the shadow matrix occurs to be

finite:

Sab∞ ≡ lim
Ω̄→∞

(Sab) = eΨ
(
Gab +m2

E∞v̄
a
∞v̄

b
∞/v̄

2
∞
)
. (59)

The solution ρ∞a defined by equation

(
Sab∞
)′
ρ∞a ρ

∞
b = 0, (60)

can also be considered finite. Though, the observer with non-zero finite linear velocity can

have infinite angular momentum, we will not consider this case since it introduces well-known
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aberrations that can be obtained in Special Relativity framework (as a rule, the effect is called

light aberration, but in our case this effect should be considered for massive particles [56]):

v̄∞a ≡ lim
Ω̄→∞

(Ḡabv̄b). (61)

Static and ZAMO observers have finite v̄∞a . Particularly, one can consider a limiting procedure

such that the angular momentum can approach any finite value, though the linear velocity in

the azimuthal direction is zero.

However, vector components τ̄a have det Ḡab in their definition, which can be not finite, e.g.,

for asymptotically spherical coordinate system. Thus, it is reasonable to pick out an explicitly

finite part of the vector components as follows:

τ̄a∞ ≡ lim
Ω̄→∞

(τ̄a
√
− det Ḡab) = ϵabv̄∞a . (62)

In particular, from Eq. (39) follows a non-trivial asymptotic behavior

Sabρ∞a ρ∞b ≈ −eΨ̄(1− m̄2
E) · (v̄c∞ρ∞c )2/v̄2∞ + eΨ̄/

√
− det Ḡab · (τ̄a∞ρ∞a )2/v̄2∞, (63)

Substituting all expressions back into Eq. (56), and keeping only the first non-zero term of the

expansion with respect to Ω̄ → ∞, we find (we retain only the one sign − in the denominator

for future directed directions ρav̄
a < 0, discarding the mirror image on the projective sphere)

X ≈ A(Ω)√
− det Ḡab

, Y ≈ ±B(Ω)e−Ψ̄/2, (64)

where Ω is a finite foliation parameter of the massive particle surface. The observer is placed

infinitely far away from the gravitating object, so the shadow image must be infinitely small.

Since any aberrations are absent due to our choice of the observer, the image must be placed

right in the zenith without any shifts. This conclusion is confirmed by Eq. (64) if we take

into account that
√

− det Ḡab and eΨ̄/2 tend to infinity. In particular, condition (26) reduces to

ρ∞a v̄
a
∞ ̸= 0. Multiplying X and Y by eΨ̄/2 results in

X∞ ≡ lim
Ω̄→∞

(XeΨ̄/2) =
α∞ · (τ̄a∞ρ∞a )√

1− m̄2
E∞ · (v̄a∞ρ∞a )

, (65a)

Y∞ ≡ lim
Ω̄→∞

(Y eΨ̄/2) = ±
v̄∞ ·

√
−Sab∞ρ∞a ρ∞b√

1− m̄2
E∞ · (v̄a∞ρ∞a )

, (65b)

where

α∞ ≡ lim
Ω̄→∞

(eΨ̄/2/
√
− det Ḡab),

(
Sab∞
)′
ρ∞a ρ

∞
b = 0. (65c)
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Note that the function Ψ is defined up to some additive constant Ψ → Ψ + 2C, which can be

used to control a scale of the image: (X∞, Y∞) → eC(X∞, Y∞). If eΨm2
E∞ can be neglected in

Sab∞ , coordinates X∞, Y∞ scales as

(X∞, Y∞)
∣∣∣
m̄2

E∞

≈
(X∞, Y∞)

∣∣∣
0√

1− m̄2
E∞

. (66)

IV. EXPLICIT FORM AND EXAMPLES

A. Benenti-Francaviglia form

All results obtained above were obtained for an arbitrary coordinate system, and instead

of an explicit search for a separable coordinate system, it is required to know the correspond-

ing foliation. However, an explicit relation between the separable coordinate system and the

foliation is presented in Ref. [22]. Adopting the result for our case, it was shown that if a

slice-reducible conformal Killing tensor of rank two and two commuting Killing vectors exist in

a four-dimensional spacetime, then there is a coordinate system with metric tensor of the form

(see discussion of the Benenti-Francaviglia ansatz in Refs. [75–78])

ds2 = λ(r, θ)
[
(F−1)abdy

adyb + fr(r)dr
2 + fθ(θ)dθ

2
]
, (67)

where matrix Fab(r, θ) = X ab
r (r) + X ab

θ (θ) is separable, functions fr(r), fθ(θ), X ab
r (r), X ab

θ (θ),

λ(r, θ) are arbitrary. We denoted coordinates with letters r and θ to stay connected with

common metrics, but they can be arbitrary in general. Vectors along coordinates ya represent

Killing vectors, usually, representing a timelike vector ∂t and azimuthal spacelike Killing vector

∂ϕ. The foliation slices are determined by r = const with foliation parameter Ω = r. The

corresponding conformal Killing tensor is

Kαβ = α(r, θ)gαβ + X ab
r (r)δa

αδb
β + fr(r)

−1δαr δ
β
r . (68)

The geometric quantities of this foliation are

φnα∇α = ∂r, χτ =
1

2
(λfr)

−1/2∂r ln(λfθ), φ = (λfr)
1/2, (69a)

Ψ = lnλ(r, θ), Gab = λ
(
F−1

)
ab
. (69b)

Additionally, if we are interested in exact slice-reducible Killing tensors, the integrability condi-

tion Dγ(χτφ
3) = 0 gives ∂θ∂rλ = 0, thus the conformal factor λ must be a function of the form
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λ = X λ
r (r) +X λ

θ (θ) resulting in α = −X λ
r (r) (for comparison see Refs. [76–78], where a similar

form of the metric was proposed from other considerations). In the case of massive particles,

we have to consider only exact type of Killing tensors. However, the presence of plasma of a

suitable type allows one to consider conformal tensors. In this case, following Eq. (52), we

must have (see Refs. [37, 38, 58])

λm2
E = ME(r, θ) = ME

r (r) +ME
θ (θ). (70)

The shadow matrix reads

Sab = Fab +ME · v̄av̄b/v̄2, (71)

where observer’s velocity v̄a and its dual vector τ̄a read

v̄a =

 v̄t
v̄ϕ

 , τ̄a =
F̄abϵbcv̄

c

√
− det F̄ab

, v̄ =
√

−λ̄(F̄−1)abv̄av̄b. (72)

To find ρa explicitly, the shadow matrix Sab can be expanded into a Killing basis with the

following norm fixation

ρa =

−1

ρϕ

 . (73)

As a consequence of Eq. (23), in this norm we have ρϕ = −qϕ/qt, i.e. ρϕ is an ordinary impact

parameter of the geodesic. From Eq. (56c), we obtain a quadratic equation, the solution to

which is:

ρ±ϕ =

(
Stϕ
)′ ∓√− det{(Sab)′}

(Sϕϕ)′
, det{

(
Sab
)′} =

(
Stt
)′ (Sϕϕ)′ − (Stϕ)′ (Stϕ)′ . (74)

We get two solutions ρ+ϕ , ρ
−
ϕ and in general we should hold both of them. However, for numerous

examples, one of the solutions may not correspond to any massive particle region, yielding non-

real values for X and Y , and should therefore be discarded (see Ref. [58] for details). The

formula for the boundary is obtained by directly substituting these expressions into (56), and

using Eq. (39). After some simplifications we get

X =
2τ̄aρa√

1− m̄2
E v̄

aρa ∓
√

(1− m̄2
E)(v̄

cρc)2 − (τ̄aρa)2 +
v̄2

λ̄
· Sabρaρb

, (75a)

Y = ±
2
√
− v̄2

λ̄
· Sabρaρb√

1− m̄2
E v̄

aρa ∓
√

(1− m̄2
E)(v̄

cρc)2 − (τ̄aρa)2 +
v̄2

λ̄
· Sabρaρb

, (75b)
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where

Sabρaρb = −
(
Sϕϕ
)2

(Sϕϕ)′

[(
Stt

Sϕϕ

)′

− 2

(
Stϕ

Sϕϕ

)′

ρ±ϕ

]
. (75c)

Eqs. (75) represent a general expression for the shadow boundary of an arbitrary metric that can

be written in Benenti-Francaviglia form or its conformal generalization. This family includes

the Plebanski-Demianski solution [79, 80], EMD [81], EMDA [82], STU rotating black holes

[83]. In asymptotically spherical coordinates, the asymptotics of the functions are as follows:

Gab →

 −1 −N∞(θ)

−N∞(θ) r2 sin2 θ

 , λ(r, θ)fr(r) → 1, λ(r, θ)fθ(θ) → r2, (76)

where N∞(θ) = 2N(cos θ + CN), N is the NUT parameter, and CN is a constant for the NUT

gauge. This asymptotic implies that fθ → C, fr → C/r2, λ → r2/C for some unimportant

constant C, which is natural to choose equal to 1.

Let us asymptotically expand quantities related to the stationary observer at the point (r̄, θ̄).

The requirement that the speed v̄ and the observer’s conserved quantities v̄a are bounded leads

to the following general expression (static, ZAMO)

v̄a =

 1

w∞/r̄
2

 , (77)

where w∞ is a constant and the length of the vector is chosen to be equal to unity v̄ = 1 for

simplicity, since it does not influence the final result. This gives us the following limits

v̄a∞ =

1

0

 , v̄∞a =

−1

W

 , τ̄a∞ =

−W

−1

 , α∞ = sin−1 θ̄, (78)

where W = w∞ sin2 θ̄ −N∞. Then from (60) for ρ∞a in the same norm fixation (73) we find

ρ∞±
ϕ =

(
F tϕ
)′ ∓√(F tϕ)′2 − (F tt +ME)′ (Fϕϕ)′

(Fϕϕ)′
. (79)

By collecting everything together and simplifying the expressions, we find

X∞ = lim
r→∞

(Xr) =
ρ∞±
ϕ −W

sin θ̄
√
1− m̄2

E∞
, Y∞ = lim

r→∞
(Y r) = ∓

√
−Sab∞ρ∞a ρ∞b√
1− m̄2

E∞
, (80a)

where

Sab∞ρ∞a ρ∞b = −
(
Fϕϕ

)2
(Fϕϕ)′

[(
F tt +ME

Fϕϕ

)′

− 2

(
F tϕ

Fϕϕ

)′

ρ∞±
ϕ

]
, m̄2

E∞ = lim
r→∞

(λ−1ME). (80b)

Note that changing w∞ leads to the usual shift of the shadow along axis X since the shadow

matrix is independent of w∞ in asymptotic limit.
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B. Boyer-Lindquist coordinates

Let us commence with the simplest example of the Kerr metric and similar solutions, in-

cluding EMD, EMDA, and STU black holes [79–83]. In Boyer-Lindquist coordinates [79], the

metric assumes the following straightforward form

ds2 = −∆− a2 sin2 θ

Σ
(dt− ωdϕ)2 + Σ

(
dr2

∆
+ dθ2 +

∆sin2 θ

∆− a2 sin2 θ
dϕ2

)
. (81)

It is well-known that these solutions possess at least conformal Killing tensors reducible on

slices r = const. Thus, we can represent these solutions in the form (67). Initially, we can

readily identify the factor λ = Σ and determine the matrix:

Fab =
∆− a2 sin2 θ

sin2 θ∆

ω2 ω

ω 1

+

− Σ2

∆−a2 sin2 θ 0

0 0

 . (82)

From the existence of the Killing tensor we know that this matrix is separable, but we do not

need to separate variables explicitly. Instead we need to calculate the derivative:

(
Fab
)′
=
a2∆′

∆2

ω2 ω

ω 1

+
∆− a2 sin2 θ

sin2 θ∆

2ω 1

1 0

ω′ +

−
(

Σ2

∆−a2 sin2 θ

)′
0

0 0

 . (83)

Since the general expression (75) is rather cumbersome, we will give an explicit form for the

asymptotic formula (80) only. Applying Eqs. (79) and (80) allows obtaining an expression of

the shadow boundary for an asymptotically distant observer

X∞ =
1

sin θ̄
√
1− m̄2

E∞

(
ω −W +

{
Rω′ ∓

√
(Rω′)2 +

∆2Y ′

a2∆′

})
, (84a)

Y∞ =± 1√
1− m̄2

E∞

(
Y −RY ′ − 2∆′a2

∆2
R2ω′

{
Rω′ ∓

√
(Rω′)2 +

∆2Y ′

a2∆′

})1/2

, (84b)

where

R ≡ ∆− a2 sin2 θ̄

a2 sin2 θ̄

∆

∆′ , Y ≡ Σ2

∆− a2 sin2 θ̄
−ME, (84c)

and m̄2
E∞ = m̄∞/Ē and m̄∞ is an asymptotic mass of the particle. The massive particle region

is described by the inequality

Y −RY ′ ≥ 2∆′a2

∆2
R2ω′

{
Rω′ ∓

√
(Rω′)2 +

∆2Y ′

a2∆′

}
. (85)

These formulas generalize results from Refs. [37, 38, 55, 56, 58, 59, 61], since we do not specify

the expression for ω explicitly, which can vary from model to model. They clearly express the

contour of the shadow through the components of the metric in the usual form.
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FIG. 4: Shadows cast by particles with non-zero constant mass in the Kerr-NUT spacetime with

parameters M = 1 and a = 0.98. (a) Illustrates shadows produced by particles with m̄E∞ ranging

from 0 to 0.9 in a spacetime with N = 0; the inset presents the same set of shadows, rescaled by

the factor
√
1− m̄2

E∞. (b) Depicts shadows formed by massive particles (solid lines) and massless

particles (dashed lines) for varying observer angles in the spacetime with N = 0. (c) Exhibits shadows

cast by massive particles (solid lines) and massless particles (dashed lines) for diverse values of the

NUT parameter.

1. Kerr-NUT spacetime

We begin our exploration with the vacuum Kerr-NUT spacetime, characterized by essential

parameters: mass M , rotational Kerr parameter a, and the Newman-Unti-Tomburino param-

eter N representing the gravimagnetic mass. The choice of the vacuum Kerr-NUT spacetime

serves a dual purpose. Firstly, it provides a familiar foundation for evaluating the developed

framework by leveraging well-known results [37, 40, 73]. Secondly, we illuminate the versatil-

ity and robustness of the framework introduced in this paper. This solution, denoted by the

Kerr-NUT metric, assumes the form (81) with the following functions:

∆ = r(r − 2M) + a2 −N2, Σ = r2 + (a cos θ +N)2, (86a)

ω = −
2
(
a sin2 θ (Mr +N2) + ∆N cos θ

)
∆− a2 sin2 θ

. (86b)

The shadows cast by massive particles with constant mass are depicted in Fig. 4. In Fig.

4a, the red line corresponds to the standard photon shadow with m̄E∞ = 0. Unlike photons,

the shadows of massive particles exhibit an increase in size as the particle energy decreases,

i.e., as m̄E∞ increases. Notably, the growth in shadow size from m̄E∞ = 0 to 0.8 is comparable

to the increase from 0.8 to 0.9, aligning well with the prediction from Eq. (66), which yields
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(R0.9 −R0)/(R0.8 −R0) ≈ 1.94. The inset of Fig. 4a presents the same set of shadows rescaled

by a factor
√

1− m̄2
E∞, revealing that the right side closely follows the approximation (66),

while the left side shows appreciable deviations. In Fig. 4b, the evolution of the shadow for

m̄E∞ = 0.9 remains similar to the evolution of the photon shadow (m̄E∞ = 0) as the observer

changes its angle θ. A notable feature of the shadows is the presence of fixed points at X = 0

for different angles. Similarly, in Fig. 4c the evolution of massive shadows for different N

mimics the progression of photon shadows. As N increases, the shadow tends to become more

circular, mitigating the effects of rotation since a/
√
M2 +N2 decreases.

To preserve the integrability of the dynamical system, we confine our attention to a specific

class of plasma distributions, which gives rise to the following variable effective mass function

[38, 56, 58]

m2 =
M(r, θ)

r2 + (a cos θ +N)2
, M(r, θ) = Mr(r) +Mθ(θ), ME = M/Ē2, (87)

which tends to zero in the distant regions away from the black hole. We exclusively examine the

scenario where there is no gravimagnetic mass, N = 0, focusing our attention on more plausible

astrophysical systems. We will explore four distinct types of plasma distributions, as illustrated

in Figs. 5 and 6. In all instances, the plasma density is modulated by a multiplicative constant

µ.

The first type is characterized by the function M = µ2 cos16 θ, reminiscing jets emanating

from the black hole poles (Fig. 5g). The shadow boundary, governed by Eq. (84a), depends on

M and its derivative M′ evaluated at the observer’s angle. When the observer resides in the

equatorial plane (θ = π/2), both M and M′ equal zero, rendering no effect of plasma on the

shadow boundary. However, for observers at other positions, the presence of plasma becomes

discernible. Shadows for various µ/E values with the observer at θ = π/4 and shadows for

different observer angles for µ/E = 40 are presented in Fig. 5a and Fig. 5d, respectively. In

denser plasma with higher µ values, the shadow contracts and takes on a more circular shape.

Additionally, with an increased observer altitude, the shadow exhibits further contraction. This

behavior can be attributed to the prolonged interaction of photons with the plasma medium at

higher altitudes, where the plasma exerts a focusing effect on photons, as discussed in Ref. [37].

The inset of Fig. 5g illustrates the impact of plasma on the massive particle region, revealing

that the plasma, confined to the vicinity of the polar axis, primarily induces smoothing and

shrinkage near the polar axes.

The second type of plasma, reminiscent of an accretion disk, is characterized by the function
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FIG. 5: (a-c) Depiction of shadows formed by photons in plasma for varying values of the parameter

µ. (d-f) Illustration of shadows cast by photons in plasma at different observer angles, with a fixed

parameter µ indicated in each respective panel. (g-i) Visualization of the distribution of the function

m2
E/µ

2 in spacetime, where the blue disk represents the event horizon. The insets in panels (g-i)

show the region of massive particles for various values of µ, red color corresponds to the absence of

plasma. Each column corresponds to a separate plasma distribution: (a,d,g) M = µ2 cos16 θ, (b,e,h)

M = µ2 sin16 θ, (c,f,i) M = µ2r. The parameters are set to M = 1, a = 0.98, and N = 0.
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M = µ2 sin16 θ (Fig. 5h). Analogous to the first type of plasma, for photons with lower energy

(higher µ/E), the shadow contracts and assumes a more circular shape (Fig. 5b). However,

in contrast to the first type, in this scenario, the shadow observed by an equatorial observer is

smaller than that for non-equatorial observers (Fig. 5e). The massive particle region associated

with this plasma type may manifest topologically nontrivial features, as depicted in the inset of

Fig. 5h. This arises because photons may lack sufficient energy to penetrate the high-density

plasma near the equator.

The first two types of plasma were characterized by a function M dependent solely on θ.

In contrast, the third type is described by an r-dependent function M = µ2r reminiscent of

nearly-spherical nebulae (Fig. 5i). This scenario exhibits a similar focusing effect (Fig. 5c), but

the size of the shadow remains almost constant for observers at different altitudes (Fig. 5f).

This observation is not surprising, considering that the plasma distribution weakly depends on

θ through the function Σ, specifically m2 = µ2r/(r2 + a2 cos2 θ). The massive particle region

is subtly displaced from the near-horizon region, where the plasma density is higher (inset in

Fig. 5i).

The fourth type of considered plasma is characterized by a shell-like distribution with the

function M = 10−5µ2r8 exp
{
−1

2
(r − 2)2

}
(Fig. 6g-l). To elucidate the dynamics of photons in

plasma, one can construct the effective potential at the equator θ = π/2:

ṙ2 =
gtt

grr
E2
(
1− V +

eff/E
) (

1− V −
eff/E

)
, (88)

where functions V ±
eff/E are functions of the parameter r parameterized by Lz/E and µ/E (Fig.

6m-r). The boundaries of the shadow correspond to the maxima of V +
eff/E located at the line

V +
eff/E = 1 (green points in Fig. 6m-r). For µ/E = 0, we have the standard boundary of the

photon shadow (Fig. 6a) with the massive particle region depicted in Fig. 6g (in this case, it

degenerates to the photon region).

The effective potential shown in Fig. 6m has a maximum A (B) corresponding to the positive

(negative) impact parameter ρϕ = Lz/E and the right (left) point of the shadow boundary at

Y = 0. For µ/E = 4 and 9, the shadow boundary (Fig. 6b,c), the massive particle region

(Fig. 6h,i), and the effective potential (Fig. 6n,o) are almost the same, except for the following

feature: there is a new maximum and a new minimum of V +
eff/E between points A and B.

However, these new extrema do not play any role because they correspond to particles with

lower energy than the energy fixed by the condition µ/E = 4 or 9.

When µ/E is 12, there is one more maximum D and a new minimum C between the previous
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FIG. 6: (a-f) Illustration of shadows formed by photons in the Kerr spacetime with plasma, considering

a fixed µ/E at θ = π/2. (g-l) Visualization of the massive particle region and the distribution of the

function m2
E for a fixed µ/E. (m-r) Presentation of the effective potential V ±

eff/E at the equator for

various values of Lz/E with a fixed µ/E. The red vivid line corresponds to points of maxima (solid)

or minima (dashed) of the function V +
eff/E. Green dots represent the shadow boundary, and blue dots

indicate the artefact boundary. In all examples, parameters are set to M = 1, a = 0.98, N = 0, and

the plasma distribution is described by M = 10−5µ2r8 exp{−(r − 2)2/2}. Each column corresponds

to a fixed value of µ/E as indicated in the figure.

maxima A and B (Fig. 6p). This corresponds to the appearance of two disjoint massive particle

regions in Fig. 6j. This leads to an artifact in the calculated shadow boundary, which should be

considered unphysical. Indeed, the minimum should not play a role in the boundary formation,

as it is hidden above the maximum of V +
eff/E and is not achievable by the geodesics connected

with the distant observer. The new maximum is not related to the shadow boundary as well. If

the energy is slightly smaller than the value of the maximum, the corresponding geodesics turn

back from the massive particle surface. If the energy is slightly larger, then the corresponding

geodesic will be turned back somewhere closer to the event horizon, as V +
eff achieves higher

values near the horizon than at the local maximum D.

When µ/E is 16, the situation is different (Fig. 6q). The points corresponding to the real
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shadow are D and B, but A and C correspond to the artifact (Fig. 6e), though the massive

particle region has the same structure (Fig. 6k). Now, maximum A is lower than the outermost

maximum of the same function V +
eff/E, while the maximum D is a global maximum in the region

outside the event horizon.

Finally, at µ/E = 20, there is no shadow at all (Fig. 6f). The outermost massive particle

region disappears (Fig. 6l) with the corresponding maxima B and D (Fig. 6r). At the same

time, maximum A is not achievable, since there is another higher outermost maximum. Note

that the transition of maxima between µ/E equal to 12 and 16 has its manifestation at the

shadow. The right side of the shadow at µ/E = 12 is flat, but the artifact is quite circular,

while for µ/E = 16 it is vice versa. The artifact is not physical in astrophysical applications.

Nevertheless, it may find an application in quantum effects of condensed matter.

2. Einstein-Maxwell-dilaton black holes

The Einstein-Maxwell-dilaton model emerges from the 5D vacuum gravity through Kaluza-

Klein dimensional reduction, wherein the dilaton constant is fixed at α =
√
3. Consequently,

the 5D gravity can be split into 4D gravity, an electromagnetic field Aµ, and a dilaton field φ:

ds25 = e4αφ/3(dχ− 2Aµdx
µ)2 + e−2αφ/3 ds24, (89)

where χ represents the fifth compactified dimension. This model can be interpreted in two

frameworks. In the first framework, 4D gravity and other fields are considered physical, and

geodesics are calculated with respect to ds4. In the second framework, the fields are regarded

as auxiliary, but the 5D spacetime is considered physical, leading to geodesics calculated with

respect to ds5. Four-dimensional geodesics possess only a conformal Killing tensor, while 5D

geodesics are fully integrable thanks to an exact Killing tensor. Nevertheless, 5D geodesic

equations can be reduced to four dimensions (see App. B in Ref. [69]). Such 5D geodesics,

when reduced to 4D, obey the usual 4D geodesic equations, with the only difference being a

variable effective mass, similar to Eq. (46). The momentum along the fifth dimension generates

electric charge, which we set to zero, as we do not consider charged particles in this paper.

Therefore, the effective mass is:

m2
eff = m2e−2αφ/3. (90)

Given that the dynamical system is reduced and properly truncated from another system pos-

sessing an exact Killing tensor, the integrability is inherited from 5D to 4D, as shown below.
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FIG. 7: Shadows formed by massive particles in the EMD black hole spacetime for different mE .

Each panel corresponds to specific solution parameters indicated within. Insets feature images of the

massive particle surface, where blue disks denote the event horizon.

As an illustrative example, we will employ the solution discovered in Ref. [81]:

∆ = r(r − 2M)− 3D2 +Q2 + P 2 + a2, Σ =
√
AB, e−2αφ/3 =

√
A/B, (91)

where the functions A and B take the form of separable quadratic polynomials in terms of r and

cos θ. These functions, along with ω, are detailed in Ref. [81], and they involve five parameters:

mass M , rotation parameter a, electric and magnetic charges Q and P , and dilaton charge D

(note that the dilaton charge here differs from the scalar charge Σ in Ref. [81] by a factor of
√
3). The charges are constrained by the equation:

Q2

D +M
+

P 2

D −M
= 2D, (92)

which has three solutions for D, but it is established in Ref. [69] that only one of them can

appropriately represent a black hole solution. The effective mass is:

m2
eff = m2

√
A

B
, (93)

which satisfies the integrability condition, i.e., Σm2
eff = m2A is separable.

We explore three examples (Fig. 7). In all instances, the deviation of the effective mass,

(m2
eff − m2)/m2, does not exceed ±10%. The first case involves equal electric and magnetic

charges, and zero dilaton charge (Fig. 7a), the second is magnetically charged (Fig. 7b), and the

third one is electrically charged (Fig. 7c). The first example exhibits a regular shadow boundary.

In the second case, a crescent-shaped artifact, as discussed in the Kerr example, is present. The
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third example features a “fishtail” type of artifacts, which has been discussed in Ref. [58] for

photons in plasma in the Kerr spacetime. This type of artifact shares similar roots with the

crescent artifact, i.e., the existence of unachievable minima/maxima of the effective potential.

However, in our case, the “fishtail” appears without plasma, arising from the interaction with

the dilaton field or the existence of the fifth compactified dimension, depending on the model’s

interpretation. More examples of shadows cast by photon in plasma in EMD model are given in

Ref. [84]. Numerous other gravitational models with different plasma distributions have been

reviewed in Refs. [7, 29, 30, 35, 38, 40, 58, 60, 85–88].

V. CONCLUSIONS

The goal of this article was to obtain, for a general spacetime with a slice-reducible exact or

conformal Killing tensor, explicitly coordinate-independent analytical expressions defining the

photon/massive particle regions (27) and the contours of gravitational shadows (36), (56) for

neutral particles with variable mass. This framework is directly applicable to neutral elementary

and composite particles, such as neutrinos, photons, non-ionized atoms, etc. Using the concept

of coordinate-dependent mass it naturally expands to include the important case of photons

in nonmagnetized pressureless plasma whose distribution inherits symmetries of spacetime.

General conditions on the mass function are formulated in coordinate-independent way which

ensure the integrability of the equations of motion in integrable spacetime. In the absence

of electric/magnetic charges of black holes and magnetic fields in their vicinity, the electric

(magnetic) charge of moving particles is irrelevant, effectively expanding the scope to the case of

electrons, protons or alpha particles. The concept of massive particle surfaces can be generalized

to charged particles in presence of electromagnetic fields possessing the same symmetries, so

our framework can be extended in the future to include charged particles more generally.

The presented expressions have the advantage of a completely invariant construction, com-

bining simplicity and universality. Notably, there is no need to explicitly use coordinates ensur-

ing separation of variables such as Boyer-Lindquist coordinates. However, the latter simplifies

the calculations in many cases. In fact, the entire structure of the gravitational shadow and

the massive particles region is determined by a single shadow matrix (22), which has a surpris-

ingly simple form and is deeply connected to the massive particle surfaces. We hope that this

framework will contribute to analytical studies of gravitational shadows and integrable systems,

especially in determining general constraints on shadow size and other observable quantities.
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We also examine the asymptotic behavior of the results and derive shadow formulas for an

asymptotically distant observer (65). It is obvious that the current experimental capabilities

of radio and neutrino astronomy are insufficient to make deep conclusions about the details

of the dynamics of elementary particles in curved spacetime and their deviations from the

Kerr picture, since this requires much greater resolution. Although we hope that the required

resolution will be achievable in the future, the presented structure is promising also for the

analysis of analog models of gravity or the description of (quasi-)particles in crystals. In these

scenarios, either the effective mass is variable, or the crystallographic defects can be effectively

described in terms of differential geometry, or both.

Using separation coordinates, the result simplifies to a shadow formula for the general

Benenti-Francaviglia metric (75) and (80) (including the conformal generalization) and a gen-

eral metric allowing Boyer-Lindquist coordinates (84). The use of these formulas facilitates the

direct construction of shadow images of massive particles and photons in plasma by simply

replacing the explicit components of the metric in its original form without the need for auxil-

iary calculations. This versatility extends to a wide range of solutions in supergravity and the

low-energy limits of string theory.

The developed scheme is illustrated with various examples in spacetime of Kerr-NUT and

EMD black holes, which successfully reproduce the focusing effect of a plasma medium on low-

energy photons. We explore the effects of plasma distributions resembling jets, accretion disks,

and near-spherical nebulae, discussing their impact on the massive particle region. In addition,

we provide an example of 5D geodesics reduced to a 4D system with a variable effective mass,

which can be interpreted as interaction with a scalar field in the EMD model. The framework

reproduces two types of edge artifacts – one crescent-shaped and the other known as a fishtail.

We found that the flattened side of the shadow can be accurately approximated by a scale

factor of (1 − m̄2
E∞)−1/2, while the rounder part exhibits visible deviations described by the

mass-dependent term of the shadow matrix Sab.

We hope that the developed framework will contribute to the understanding of the general

patterns of the formation of shadows cast by both massive and massless particles, both in

vacuum and plasma environments. This concept may find applications in astrophysics, analog

models of gravity, and condensed matter physics.
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245405 (2009).

[53] L. Du, M. Li, J. Gu, L. Zhou, H. Tang, and Q. Chen, arXiv preprint arXiv:2205.14373 (2022).

[54] D. Pugliese and H. Quevedo, Eur. Phys. J. C 78, 69 (2018), 1801.06149.

[55] A. Grenzebach, The Shadow of Black Holes: An Analytic Description, SpringerBriefs in Physics

(Springer International Publishing, 2016), ISBN 9783319300665, URL https://books.google.

md/books?id=0_MgDAAAQBAJ.
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