On prime and primary avoidance theorem for subsemimodules

Manish Kant Dubey and Poonam Sarohe

Abstract

We study some important results of prime and primary subsemimodules. We also prove the primary avoidance theorem for subsemimodules.

1. Introduction

Prime and primary submodules play crucial role in ring and module theory. These concepts were widely studied in [1], [2], [3], [6], [8], [9]. C. P. Lu in [8], proved the prime avoidance theorem for submodules. El-Atrash and Ashour in [7], proved primary avoidance theorem for submodules. Several authors have studied and explored these concepts in semimodule theory. In this paper, we study the concepts of prime and primary subsemimodules and prove several results analogous to module theory.

By a semiring, we mean an algebraic structure $\left(S,+, 0_{S}\right)$ such that (S, \cdot) is a semigroup and $\left(S,+, 0_{S}\right)$ is a commutative monoid in which the multiplication is distributive with respect to the addition both from the left and from the right and 0_{S} is the additive identity of S and also $0_{S} x=x 0_{S}=0_{S}$ for all $x \in S$. A nonempty subset I of a semiring S is called an ideal of S if $a, b \in I$ and $s \in S$, then $a+b \in I$ and sa, as $\in I$. An ideal I of a semiring S is called subtractive if $a, a+b \in I, b \in S$, then $b \in I$. An ideal I of a semiring S is called prime if $a b \in I$, then either $a \in I$ or $b \in I$. If I is an ideal of S, then the radical of I is defined as $\operatorname{Rad}(I)=\sqrt{I}=\left\{a \in S: a^{2} \in I\right\}$. An ideal I of a semiring S is called a primary ideal of S if $a b \in I$, then either $a \in I$ or $b \in \sqrt{I}$. Let S be a semiring. A left S-semimodule M is a commutative monoid $(M,+)$ which has a zero element 0_{M}, together with an operation $S \times M \rightarrow M$; denoted by $(a, x) \rightarrow a x$ such that for all $a, b \in S$ and $x, y \in M$,

1. $a(x+y)=a x+a y$,
2. $(a+b) x=a x+b x$,
3. $(a b) x=a(b x)$,
4. $0_{S} x=0_{M}=a 0_{M}$.
[^0]A proper subsemimodule N of an S-semimodule M is called subtractive if $a, a+b \in N, b \in M$ then $b \in N$. The associated ideal of a subsemimodule N of M is defined as $(N: M)=\{a \in S: a M \subseteq N\}$. A proper subsemimodule N of an S-semimodule M is said to be strong subsemimodule if for each $x \in N$ there exists $y \in N$ such that $x+y=0$.

We shortly summarize the content of the paper: In the first section, by applying the prime avoidance theorem for subsemimodules [10], we prove the extended version of prime avoidance theorem for subsemimodules. In the second section, we prove some results on primary subsemimodules and by using the technique of efficient covering of subsemimodules, we prove the primary avoidance theorem for subsemimodules.

Throughout this paper, S will always denote a commutative semiring with identity $1 \neq 0$ and S-semimodules means semimodules.

2. Prime subsemimodules

A proper subsemimodule N of an S-semimodule M is called prime if whenever $r m \in N$ then $r M \subseteq N$ or $m \in N$.

We start with the following obvious results
Theorem 2.1. If N is a maximal subsemimodule of an S-semimodule M, then N is a prime subsemimodule of M.
Corollary 2.2. Let M be an S-semimodule and N be a proper subsemimodule of M. If N is a subtractive subsemimodule of M and $m \in M \backslash N$. Then the following statements holds:

1. $(N: M)$ is a subtractive ideal of S.
2. $(0: M)$ and $(N: m)$ are subtractive ideals of S.

Corollary 2.3. Let N be a prime subsemimodule of an S-semimodule M. Then for each $m \in M \backslash N,(N: M)$ and $(N: m)$ are prime ideals of S.
Theorem 2.4. Let $N_{1}, N_{2}, \ldots, N_{n}$ be subsemimodules of an S-semimodule M and let N be a prime subsemimodule of M. If $\bigcap_{i=1}^{n} N_{i} \subseteq N$, then there exists an $1 \leqslant i \leqslant n$ such that $N_{i} \subseteq N$ or $\left(N_{i}: M\right) \subseteq(N: m)$ where $m \in M \backslash N$.

Proof. Suppose $N_{i} \nsubseteq N$ and $\left(N_{i}: M\right) \nsubseteq(N: m)$ where $m \in M \backslash N$ and for all $1 \leqslant i \leqslant n$. For particular, $i=k$, we have $N_{k} \nsubseteq N$, then there exists an $m_{k} \in M$ such that $m_{k} \in N_{k}$ but $m_{k} \notin N$. Also, there exist $a_{i} \in\left(N_{i}: M\right)$ such that $a_{i} \notin\left(N: m_{k}\right)$ for all $i \neq k$. This gives $a_{i} m_{k} \in N_{i}$ and $a_{i} m_{k} \notin N$. Therefore, $a_{i} m_{k} \in N_{i} \cap N_{k}$ for all $i \neq k$. So $a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n} m_{k} \in N_{1} \cap \ldots \cap N_{n} \subseteq N$. This implies, $a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n} \in\left(N: m_{k}\right)$. By Corollary 2.3, $\left(N: m_{k}\right)$ is a prime ideal. Therefore, we have $a_{i} \in\left(N: m_{k}\right)$ for $i \neq k$, a contradiction. Hence there exists an i such that $N_{i} \subseteq N$ or $\left(N_{i}: M\right) \subseteq(N: m)$, where $m \in M \backslash N$.

Theorem 2.5. Let M be an S-semimodule, N be an arbitrary subsemimodule of M and $N_{1}, N_{2}, \ldots, N_{n}$ be subtractive prime subsemimodules of M. Suppose $\left(N_{j}: M\right) \nsubseteq\left(N_{i}: m\right)$ for all $m \in M \backslash N_{i}$ with $i \neq j$. If $N \nsubseteq N_{i}$ for all i, then there exists an element $x \in N$ such that $x \notin \cup N_{i}$; hence, $N \nsubseteq \cup N_{i}$.

Proof. Since $N \nsubseteq N_{i}$, then there exists $m_{i} \in N$ such that $m_{i} \notin N_{i}$ for all i. By Corollary 2.3, $\left(N_{i}: m_{i}\right)$ is a prime ideal of S. By the given hypothesis, there exists $r_{j} \in\left(N_{j}: M\right)$ and $r_{j} \notin\left(N_{i}: m_{i}\right)$ for $i \neq j$. Let $s_{i}=r_{1} r_{2} \ldots r_{i-1} r_{i+1} \ldots r_{n}=$ $\prod_{j \neq i} r_{j}$. Let $x_{i}=m_{i} s_{i}$ for all i. Then $x_{i}=m_{i} s_{i} \in N_{j}$ for all $j \neq i$. But $x_{i} \notin N_{i}$ because, if $x_{i} \in N_{i}$ then $m_{i} s_{i} \in N_{i}$, so $s_{i} \in\left(N_{i}: m_{i}\right)$, a contradiction. Let $x=x_{1}+x_{2}+\ldots+x_{n}$. Then $x=x_{i}+\sum_{j \neq i} x_{j}$. Since $\sum_{j \neq i} x_{j} \in N_{i}$, therefore $x \notin N_{i}$ otherwise we would have $x_{i} \in N_{i}$ which is a contradiction, so $x \notin \cup N_{i}$. Also, $m_{i} \in N$ for all i, therefore $x \in N$ and hence $N \nsubseteq \cup N_{i}$.

Let $N_{1}, N_{2}, \ldots, N_{n}$ be subsemimodules of M. Define a covering $N \subseteq N_{1} \cup N_{2} \cup$ $\ldots \cup N_{n}$ is efficient if no N_{i} is superfluous for $1 \leqslant i \leqslant n$. In otherwords, we say $N=N_{1} \cup N_{2} \cup \ldots \cup N_{n}$ is an efficient union if none of the N_{i}^{\prime} s may be excluded. Any cover or union consisting of subsemimodules of M be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms.

Theorem 2.6. (cf. [5]) Let $N=N_{1} \cup N_{2} \cup \ldots \cup N_{n}$ be an efficient union of subtractive subsemimodules of an S-semimodule M. Then $\bigcap_{i=1}^{n} N_{i}=\bigcap_{\substack{i=1 \\ i \neq j}}^{n} N_{i}$ for any $j \in\{1,2, \ldots, n\}$.

Proposition 2.7. (cf. [10]) Let $N \subseteq N_{1} \cup N_{2} \ldots \cup N_{n}$ be an efficient covering consisting of subtractive subsemimodules of an S-semimodule M, where $n \geqslant 2$. If $\left(N_{j}: M\right) \nsubseteq\left(N_{k}: M\right)$ for every $j \neq k$, then no N_{k} for $k \in\{1,2, \ldots, n\}$ is a prime subsemimodule of M.

Theorem 2.8. (The prime avoidance theorem, cf. [10])
Let M be an S-semimodule, $N_{1}, N_{2}, \ldots, N_{n}$ a finite number of subtractive subsemimodules of M and N be a subsemimodule of M such that $N \subseteq N_{1} \cup N_{2} \ldots \cup N_{n}$, $(n \geqslant 2)$. Assume that at most two of the N_{i} 's are not prime and that $\left(N_{j}: M\right) \nsubseteq$ ($N_{k}: M$) for every $j \neq k$. Then, $N \subseteq N_{k}$ for some k.

Now, we come to our main theorem which is a more general form of the above theorem.

Theorem 2.9. (Extended prime avoidance theorem for subsemimodules)
Let M be an S-semimodules and $N_{1}, N_{2}, \ldots, N_{r}$ be subtractive prime subsemimodues of M such that $\left(N_{i}: M\right) \nsubseteq\left(N_{j}: M\right)$ for $i \neq j, r \geqslant 1$. Let $m \in M$ be such that $m S+N \nsubseteq \bigcup_{i=1}^{r} N_{i}$. Then there exists $n \in N$ such that $m+n \notin \bigcup_{i=1}^{r} N_{i}$.

Proof. Suppose that m lies in each of N_{1}, \ldots, N_{k} but none of $N_{k+1}, N_{k+2}, \ldots, N_{r}$. If $k=0$, then $m=m+0 \notin \bigcup_{i=1}^{r} N_{i}$ and so there is nothing to prove. Assume that it is true for $k \geqslant 1$. Now, $N \nsubseteq \bigcup_{i=1}^{k} N_{i}$, for otherwise by prime avoidance theorem for semimodules, we would have a contradiction. Therefore, there exists $p \in N \backslash\left(N_{1} \cup\right.$ $\left.N_{2} \cup \ldots \cup N_{k}\right)$. Also, we have $N_{k+1} \cap \ldots \cap N_{r} \nsubseteq N_{1} \cup \ldots \cup N_{k}$. Otherwise, since N_{j} is a prime subsemimodule, by prime avoidance theorem, we have $N_{k+1} \cap \ldots \cap N_{r} \subseteq N_{j}$ for some $1 \leqslant j \leqslant k$. This implies $\left(N_{k+1} \cap \ldots \cap N_{r}: M\right) \subseteq\left(N_{j}: M\right)$ for some $1 \leqslant j \leqslant k$, that is, $\left(N_{k+1}: M\right) \cap \ldots \cap\left(N_{r}: M\right) \subseteq\left(N_{j}: M\right)$ for some $1 \leqslant j \leqslant k$. Therefore, $\left(N_{i}: M\right) \subseteq\left(N_{j}: M\right)$ where $k+1 \leqslant i \leqslant r$ and $1 \leqslant j \leqslant k$, which contradicts to the hypothesis that $\left(N_{i}: M\right) \nsubseteq\left(N_{j}: M\right)$ for $i \neq j$. Thus, there exists $b \in\left(N_{k+1}: M\right) \cap \ldots \cap\left(N_{r}: M\right) \backslash\left(N_{1}: M\right) \cup \ldots \cup\left(N_{k}: M\right)$. Let $n=b p \in N$. Also, $n \in \bigcap_{j=k+1}^{r} N_{j}$ and $n=b p \notin N_{1} \cup \ldots \cup N_{k}$ (if $n=b p \in N_{1} \cup \ldots \cup N_{k}$, then we have $n \in N_{i}$ for some $i \in\{1,2, \ldots k\}$, since N_{i} is prime, either $b \in\left(N_{i}: M\right)$ or $p \in N_{i}$ for $\left.1 \leqslant i \leqslant k\right)$, a contradiction. Thus, $n \in\left(N_{k+1} \cap \ldots \cap N_{r}\right) \backslash\left(N_{1} \cup \ldots \cup N_{k}\right)$. Consequently, $m+n \notin \bigcup_{i=1}^{r} N_{i}$.

Next, we prove that if N is a finitely generated subsemimodule of an S semimodule M satisfying the assumption of prime avoidance theorem for subsemimodules, then there is a linear combination of the generators of N also avoids $\bigcup_{i=1}^{n} N_{i}$.

Theorem 2.10. Let M be an S-semimodule and $N=\left\langle m_{1}, m_{2}, \ldots, m_{r}\right\rangle$ be a finitely generated subsemimodule of M. Let $N_{1}, N_{2}, \ldots, N_{n}$ be subtractive prime subsemimodules of M such that $N \nsubseteq N_{i}$ for each $i, 1 \leqslant i \leqslant n$ and $\left(N_{i}: M\right) \nsubseteq\left(N_{n}: M\right)$ for each $i \neq j$. Then there exist $b_{2}, \ldots, b_{r} \in S$ such that $x=m_{1}+b_{2} m_{2}+\ldots+b_{r} m_{r} \notin$ $\bigcup_{i=1}^{n} N_{i}$.

Proof. We prove assertion by induction on n. Without loss of generality, we suppose that $N_{i} \nsubseteq N_{j}$ for all $i \neq j$. If $n=1$, then clearly $x=m_{1}+b_{2} m_{2}+\ldots+b_{r} m_{r} \notin$ N_{1}. So, we have done. Assume that the result is true for $(n-1)$ subtractive prime subsemimodules of M. Then there exist $c_{2}, c_{3}, \ldots, c_{r} \in S$ such that $y=m_{1}+c_{2} m_{2}+\ldots+c_{r} m_{r} \notin \bigcup_{i=1}^{n-1} N_{i}$. If $y \notin N_{n}$, then there is nothing to prove. So assume that $y \in N_{n}$. If $m_{2}, \ldots, m_{r} \in N_{n}$, then from the expression for y, we have $m_{1} \in N_{n}$ (as N_{n} is a subtractive), which is a contradiction to the fact that $N \nsubseteq N_{n}$. So for some $i, m_{i} \notin N_{n}$. Without loss of generality, suppose $i=2$. By given hypothesis $\left(N_{i}: M\right) \nsubseteq\left(N_{n}: M\right)$ for $i \neq n$. Therefore, there exists $r_{i} \in\left(N_{i}: M\right)$ such that $r_{i} \notin\left(N_{n}: M\right)$ where $i \neq n$. Let $r=r_{1} r_{2} r_{3} \ldots r_{n_{1}}$.

Then $c=m_{1}+\left(c_{2}+r\right) m_{2}+\ldots+c_{r} m_{r} \notin \bigcup_{i=1}^{n} N_{i}$, which is a contradiction to our assumption.

3. The primary avoidance theorem

In this section, we study some properties of primary subsemimodules and prove primary avoidance theorem for subsemimodules.
Definition 3.1. A proper subsemimodule N of an S-semimodule M is called primary if whenever $a m \in N$ for some $a \in S$ and $m \in M$, then $m \in N$ or $a \in \sqrt{(N: M)}$, where $\sqrt{(N: M)}=\left\{a \in S: a^{t} M \subseteq N\right.$, for some $\left.t \in Z^{+}\right\}$.
Theorem 3.2. If N is a primary subsemimodule of M and $m \in M \backslash N$, then $\sqrt{(N: m)}=\left\{r \in S: r^{n} m \in N\right.$, for some $\left.n \in \mathbb{Z}^{+}\right\}$is a prime ideal of S.

Proof. Let $r s \in \sqrt{(N: m)}$ for some $r, s \in S$. Then $(r s)^{n} \in(N: m)$ for some positive integer n. Therefore, $r^{n}\left(s^{n} m\right) \in N$. Since N is primary, we have either $r^{n} \in(N: M)$ or $s^{n} m \in N$. Thus, $r \in \sqrt{(N: M)}$ or $s \in \sqrt{(N: m)}$. Since $\sqrt{(N: M)} \subseteq \sqrt{(N: m)}$, we get $r \in \sqrt{(N: m)}$ or $s \in \sqrt{(N: m)}$. Hence $\sqrt{(N: m)}$ is a prime ideal of S.

Theorem 3.3. Let N be a primary subsemimodule of an S-semimodule M. Then $(N: M)$ is a primary ideal of S, and hence $\sqrt{(N: M)}$ is a prime ideal of S.

Proof. The proof is easy and hence omitted.
Definition 3.4. Let N be a primary subsemimodule of an S-semimodule M. Then N is called a P-primary subsemimodule of M, when $P=\sqrt{(N: M)}$ is a prime ideal of S.

Proposition 3.5. Let M be an S-semimodule and N be a strong subsemimodule of M and suppose $a \in S$. If P is a prime ideal of $S, a \notin P$ such that $Q=(N: a)$ is a P-primary in M, then $N=Q \cap(N+a M)$. Furthermore, N is a P-primary in $N+a M$, where $(N: a)=\{m \in M: a m \in N\}$.

Proof. Clearly, $N \subseteq Q \cap(N+a M)$. Let $x \in(N+a M) \cap Q$. Then $x=n+a m$ where $n \in N$ and $m \in M$. Since N is strong, there exists $n_{1} \in N$ such that $n+n_{1}=0$. Now, $x=n+a m$ implies $x+n_{1}=\left(n+n_{1}\right)+a m=0+a m$. Thus, we have $x+n_{1}=a m \in Q$, as x and n_{1} both are in Q. Since Q is a P-primary and $a \notin P$, we have $m \in Q$, which implies $a m \in N$. Therefore, $x=n+a m \in N$. Hence, $(N+a M) \cap Q \subseteq N$.

Next, we show that N is a P-primary in $(N+a M)$. Let $r x \in N$ for some $r \in S$ and $x \in(N+a M) \backslash N$. Then $x=n+a m$ for some $n \in N$ and $m \in M$. Since N is a strong subsemimodule of M, therefore there exist $n_{1} \in N$ such that $n+n_{1}=0$. Now, adding n_{1} on both sides, we have $x+n_{1}=n+n_{1}+a m$. This
implies, $r x+r n_{1}=r a m$ where $r \in S$. Since $r a m \in N$ gives $r m \in(N: a)=Q$ and Q is P-primary. If $m \in Q$, then $x=n+a m \in N$, which is a contradiction. Hence, $m \notin Q$. Therefore, $r \in P$. Therefore, N is a P - primary in $(N+a M)$.

The following theorem can be proved easily.
Theorem 3.6. Let M and M^{\prime} be S-semimodules, $f: M \longrightarrow M^{\prime}$ be an epimorphism and N is a proper subsemimodue of M^{\prime}. Then N is a primary subsemimodule of M^{\prime} if and only if $f^{-1}(N)$ is a primary subsemimodule of M.

Theorem 3.7. Let M and M^{\prime} be S-semimodules, $f: M \longrightarrow M^{\prime}$ be an epimorphism such that $f(0)=0$ and N be a subtractive strong subsemimodule of M. If N is a primary subsemimodule of M with $\operatorname{ker} f \subseteq N$, then $f(N)$ is a primary subsemimodule of M^{\prime}

Proof. Let N be a primary subsemimodule of M and $a x \in f(N)$ for some $a \in S$ and $x \in M^{\prime}$. Since $a x \in f(N)$, there exists an element $x^{\prime} \in N$ such that $a x=f\left(x^{\prime}\right)$. Since f is an epimorphism and $x \in M^{\prime}$, then there exists $y \in M$ such that $f(y)=x$. As $x^{\prime} \in N$ and N is a strong subsemimodule of M, therefore there exists $x^{\prime \prime} \in N$ such that $x^{\prime}+x^{\prime \prime}=0$, which gives $f\left(x^{\prime}+x^{\prime \prime}\right)=0$. Therefore, $a x+f\left(x^{\prime \prime}\right)=0$ or $f(a y)+f\left(x^{\prime \prime}\right)=0$ implies $a y+x^{\prime \prime} \in \operatorname{ker} f \subseteq N$. Thus, we have $a y \in N$, since N is a subtractive subsemimodule of M. Since N is a primary, we conclude that $a \in \sqrt{(N: M)}$ or $y \in N$. Thus, $a \in f(\sqrt{(N: M)}) \subseteq \sqrt{f(N: M)}$ or $f(y) \in f(N)$ and hence $a \in \sqrt{\left(f(N): M^{\prime}\right)}$ or $x \in f(N)$. Thus, $f(N)$ is a primary subsemimodule of M^{\prime}.

Theorem 3.8. Let $N_{1}, N_{2}, \ldots, N_{n}$ be subsemimodule of an S-semimodule M and let N be a primary subsemimodule of M. If $\bigcap_{i=1}^{n} N_{i} \subseteq N$, then there exists an $1 \leqslant i \leqslant n$ such that $N_{i} \subseteq N$ or $\left(N_{i}: M\right) \subseteq \sqrt{(N: m)}$ where $m \in M \backslash N$.

Proof. Suppose $N_{i} \nsubseteq N$ and $\left(N_{i}: M\right) \nsubseteq \sqrt{(N: m)}$ where $m \in M \backslash N$ and for all $1 \leqslant i \leqslant n$. For, $i=k$, we have $N_{k} \nsubseteq N$, then there exists an $m_{k} \in M$ such that $m_{k} \in N_{k}$ but $m_{k} \notin N$. Also, there exist $a_{i} \in\left(N_{i}: M\right)$ such that $a_{i} \notin \sqrt{\left(N: m_{k}\right)}$ for all $i \neq k$. This gives $a_{i} m_{k} \in N_{i}$ and for every positive integer $p_{i}, a_{i}^{p_{i}} m_{k} \notin N$. Therefore, $a_{i}^{p_{i}} m_{k} \in N_{i} \cap N_{k}$ for all $i \neq k$. So $\left(a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{k-1}^{p_{k-1}} a_{k+1}^{p_{k+1}} \ldots a_{n}^{p_{n}}\right) m_{k} \in$ $N_{1} \cap \ldots N_{n} \subseteq N$. Let $l=\max \left\{p_{1}, p_{2}, \ldots, p_{k-1}, p_{k+1}, \ldots, p_{n}\right\}$. Therefore, $\left(a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n}\right)^{l} m_{k} \in N$. This implies, $\left(a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n}\right)^{l} \in$ ($N: m_{k}$) and hence $a_{1} a_{2} \ldots a_{k-1} a_{k+1} \ldots a_{n} \in \sqrt{\left(N: m_{k}\right)}$. By Theorem 3.2, $\sqrt{\left(N: m_{k}\right)}$ is a prime ideal. Therefore, we have $a_{i} \in \sqrt{\left(N: m_{k}\right)}$ for $i \neq k$, a contradiction. Hence there exists an i such that $N_{i} \subseteq N$ or $\left(N_{i}: M\right) \subseteq \sqrt{(N: m)}$ where $m \in M \backslash N$.

Theorem 3.9. Let N be a P-primary subsemimodule of M. Then $(N: r)$ is a P-primary subsemimodule of M containing N for all $r \in \sqrt{(N: M)} \backslash(N: M)$.

Proof. Let $r \in \sqrt{(N: M)} \backslash(N: M)$. Clearly, $N \subseteq(N: r)$. Let $s \in S$ and $m \in M$ be such that $s m \in(N: r)$. Therefore, $s r m \in N$. Since N is primary, we have either $s \in \sqrt{(N: M)}$ or $r m \in N$, that is $s^{n} M \subseteq N$ or $m \in(N: r)$ for some positive integer n. Hence $s^{n} \in((N: r): M)$ or $m \in(N: r)$ for some positive integer n. Thus, $(N: r)$ is a primary ideal of M. Next, we show that $\sqrt{(N: M)}=\sqrt{(N: r): M}$. Since, $N \subseteq(N: r)$, we have $(N: M) \subseteq((N: r): M)$ and therefore, $\sqrt{(N: M)} \subseteq \sqrt{((N: r): M)}$. Let $s \in \sqrt{((N: r): M)}$. Therefore, $s^{n} \in((N: r): M)$, for some positive integer n. This gives, $r s^{n} \subseteq(N: M)$. Since N is a primary subsemimodule of $M,(N: M)$ is a primary ideal of S. Therefore, $r s^{n} \subseteq(N: M)$ implies $s \in \sqrt{(N: M)}$, since $r \notin(N: M)$. Thus, $\sqrt{(N: r): M} \subseteq \sqrt{(N: M)}$. Hence, $\sqrt{(N: M)}=\sqrt{(N: r): M}$.

Theorem 3.10. Let N be a subsemimodule of an S-semimodule M such that $N \subseteq N_{1} \cup N_{2}$ for some subtractive subsemimodules N_{1}, N_{2} of M. Then either $N \subseteq N_{1}$ or $N \subseteq N_{2}$.

Proof. The proof is straightforward.
Now, by using Theorem 2.6, we prove the following proposition.
Proposition 3.11. Let $N \subseteq N_{1} \cup N_{2} \cup \ldots \cup N_{n}$ be an efficient union of subtractive subsemimodules of an S-semimodule M, where $n>1$. If $\sqrt{\left(N_{j}: M\right)} \nsubseteq \sqrt{\left(N_{k}: M\right)}$ for every $j \neq k$, then no N_{k} for $k \in\{1,2, \ldots, n\}$ is a primary subsemimodule of M.

Proof. Suppose that N_{k} is a primary subsemimodule of M for some $1 \leqslant k \leqslant n$. Since $N \subseteq N_{1} \cup N_{2} \cup \ldots \cup N_{n}$ is an efficient covering, $N=\left(N \cap N_{1}\right) \cup\left(N \cap N_{2}\right) \cup$ $\ldots \cup\left(N \cap N_{n}\right)$ is an efficient union, otherwise for some $i \neq j, N \cap N_{i} \subseteq N \cap N_{j}$ and this imply $N=\left(N \cap N_{1}\right) \cup \ldots \cup\left(N \cap N_{i-1}\right) \cup\left(N \cap N_{i+1}\right) \cup \ldots\left(N \cap N_{n}\right)$ and thus we get $N \subseteq N_{1} \cup \ldots \cup N_{i-1} \cup N_{i+1} \cup \ldots \cup N_{n}$, a contradiction. Hence for every $k \in\{1,2, \ldots, n\}$ there exists an element $\ell_{k} \in N \backslash N_{k}$. Also, by Theorem 2.6, we have $\bigcap_{j \neq k}\left(N \cap N_{j}\right) \subseteq N \cap N_{k}$. Since N_{k} is a primary subsemimodule of M, by Theorem 3.2, we have $\sqrt{\left(N_{k}: M\right)}$ is a prime ideal of S. By hypothesis, if $j \neq k, \sqrt{\left(N_{j}: M\right)} \nsubseteq \sqrt{\left(N_{k}: M\right)}$ so there exists an $s_{j} \in \sqrt{\left(N_{j}: M\right)} \backslash \sqrt{\left(N_{k}: M\right)}$. Now, $s=\prod_{j \neq k} s_{j} \in \sqrt{\left(N_{j}: M\right)}$ but $s=\prod_{j \neq k} s_{j} \notin \sqrt{\left(N_{k}: M\right)}$. Since $s=\prod_{j \neq k} s_{j} \in$ $\sqrt{\left(N_{1}: M\right)} \sqrt{\left(N_{2}: M\right)} \ldots \sqrt{\left(N_{k-1}: M\right)} \sqrt{\left(N_{k+1}: M\right)} \ldots \sqrt{\left(N_{n}: M\right)}$ but $s=\prod_{j \neq k} s_{j} \notin$ $\sqrt{\left(N_{k}: M\right)}$, where $s_{j} \in \sqrt{\left(N_{j}: M\right)}$, where $1 \leqslant j \leqslant n$. Therefore, for some positive integers $m_{1}, m_{2}, \ldots m_{n}$, we have $s_{1}^{m_{1}} \in\left(N_{1}: M\right), s_{2}^{m_{2}} \in\left(N_{2}: M\right), \ldots, s_{n}^{m_{n}} \in$ $\left(N_{n}: M\right)$. Let $l=\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. Then for $j \neq k, s^{l} \in\left(N_{j}: M\right)$ but $s^{l} \notin\left(N_{k}: M\right)$. Therefore, $s^{l} l_{k} \in N \cap N_{j}$ for every $j \neq k$ but $s^{l} l_{k} \notin\left(N \cap N_{k}\right)$ because if $s^{l} l_{k} \in\left(N \cap N_{k}\right)$, then $s l_{k} \in N_{k}$. This gives, $l_{k} \in N_{k}$ or $s \in \sqrt{\left(N_{k}: M\right)}$, since N_{k} is primary. Therefore, $s^{l} l_{k} \notin\left(N \cap N_{k}\right)$, which is a contradiction to the
fact that $\bigcap_{j \neq k}\left(N \cap N_{j}\right) \subseteq N \cap N_{k}$. Therefore, no N_{k} is primary subsemimodule of M.

Now, we come to our main theorem of this paper.
Theorem 3.12. (The Primary Avoidance Theorem)
Let $N_{1}, N_{2}, \ldots, N_{n}$ be subtractive subsemimodules of an S-semimodule M and let N be a subsemimodule of M such that $N \subseteq N_{1} \cup N_{2} \cup \ldots \cup N_{n}$. Suppose that at most two of N_{k} 's are not primary subsemimodule of M and $\sqrt{\left(N_{j}: M\right)} \nsubseteq \sqrt{\left(N_{k}: M\right)}$ for every $j \neq k$. Then $N \subseteq N_{k}$ for some k.

Proof. Assume that the covering is efficient. Then $n \neq 2$. Also by Proposition $3.12, n<2\left(\right.$ as $\sqrt{\left(N_{j}: M\right)} \nsubseteq \sqrt{\left(N_{k}: M\right)}$ for every $\left.j \neq k\right)$. Therefore, $n=1$. Hence $N \subseteq N_{k}$ for some k.

Theorem 3.13. (Extended Version of Primary Avoidance Theorem)
Let M be an S-semimodules and $N_{1}, N_{2}, \ldots, N_{r}$ subtractive primary subsemimodues of M such that $\sqrt{\left(N_{i}: M\right)} \nsubseteq \sqrt{\left(N_{j}: M\right)}$ for $i \neq j, r \geqslant 1$. Let $m \in M$ be such that $m S+N \nsubseteq \bigcup_{i=1}^{r} N_{i}$. Then there exists $n \in N$ such that $m+n \notin \bigcup_{i=1}^{r} N_{i}$.

Proof. Suppose that m lies in each of $N_{1}, N_{2}, \ldots, N_{k}$ but in none of N_{k+1}, N_{k+2}, \ldots , N_{r}. If $k=0$, we have $m=m+0 \notin \bigcup_{i=1}^{r} N_{i}$ and so there is nothing to prove. Assume that it is true for $k \geqslant 1$. Now, $N \nsubseteq \bigcup_{i=1}^{k} N_{i}$, for otherwise by primary avoidance theorem for semimodules, we would have a contradiction. Therefore, there exists $p \in N \backslash\left(N_{1} \cup N_{2} \cup \ldots \cup N_{k}\right)$. Thus, we have $N_{k+1} \cap \ldots \cap N_{r} \nsubseteq N_{1} \cup \ldots \cup N_{k}$. Otherwise, since $N_{j}^{\prime} s$ are primary subsemimodules, by primary avoidance theorem, we have $N_{k+1} \cap \ldots \cap N_{r} \subseteq N_{j}$ for some $1 \leqslant j \leqslant k$. This implies ($N_{k+1} \cap \ldots \cap N_{r}$: $M) \subseteq\left(N_{j}: M\right)$ for some $1 \leqslant j \leqslant k$, gives $\sqrt{\left(N_{k+1}: M\right) \cap \ldots \cap\left(N_{r}: M\right)} \subseteq$ $\sqrt{\left(N_{j}: M\right)}$ for some $1 \leqslant j \leqslant k$. This gives, $\sqrt{\left(N_{k+1}: M\right)} \cap \ldots \cap \sqrt{\left(N_{r}: M\right)} \subseteq$ $\sqrt{\left(N_{j}: M\right)}$ for some $1 \leqslant j \leqslant k$. Therefore, $\sqrt{\left(N_{i}: M\right)} \subseteq \sqrt{\left(N_{j}: M\right)}$, (since $\sqrt{\left(N_{i}: M\right)}$'s are subtractive prime ideals for all i) where $k+1 \leqslant i \leqslant r$ and $1 \leqslant j \leqslant k$, which contradicts to the hypothesis that $\sqrt{\left(N_{i}: M\right)} \nsubseteq \sqrt{\left(N_{j}: M\right)}$ for $i \neq j$. Thus, there exists $b \in\left(N_{k+1}: M\right) \cap \ldots \cap\left(N_{r}: M\right) \backslash\left(N_{1}: M\right) \cup \ldots \cup\left(N_{k}: M\right)$. Let $n=b p$, then $n \in N$. Also, $n \in \bigcap_{j=k+1}^{r} N_{j}$ and $n=b p \notin N_{1} \cup \ldots \cup N_{k}$ (since if $n=b p \in N_{1} \cup \ldots \cup N_{k}$, then $n=b p \in N_{i}$ for some $1 \leqslant i \leqslant k$ and since N_{i} is primary, either $b \in \sqrt{\left(N_{i}: M\right)}$ or $p \in N_{i}$ for $\left.1 \leqslant i \leqslant k\right)$. Thus, $n \in\left(N_{k+1} \cap \ldots \cap N_{r}\right) \backslash\left(N_{1} \cup \ldots \cup N_{k}\right)$. Also, $m \in N_{1}, N_{2}, \ldots N_{k}$, it follows that $m+n \notin \bigcup_{i=1}^{r} N_{i}$.

References

[1] R.E. Atani and S.E. Atani, A note on uniformly primary submodules, Novi Sad J. Math. 38(2) (2008), $83-89$.
[2] R.E. Atani and S.E. Atani, Spectra of semimodules, Bull. Acad. Sti. Rep. Mold. Matematica 3 (2011), $15-28$.
[3] A. Azizi and H. Sharif, On prime submodule, Honam Mathematical J. 21(1) (1999), 1 - 12.
[4] M.K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups and Related Systems 20 (2012), 151 - 156.
[5] M.K. Dubey and P. Sarohe, On 2-absorbing semimodules, Quasigroups and Related Systems 21 (2013), 175 - 184.
[6] M.K. Dubey and P. Sarohe, Generalizations of prime subsemimodules, Southeast Asian Bull. Math. 39 (2015), $469-476$.
[7] M. S. El-Atrash A. E. Ashour, On primary compactly packed modules, J. Islamic University of Gaza $\mathbf{1 3 (2)}$ (2005), $117-128$.
[8] C.P. Lu, Union of prime submodules, Houston J.Math., 23(2) (1997), 203 - 213.
[9] P.F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.
[10] G. Yesilot and K.H. Oral, On prime subsemimodules of semimodules, Internat. J. Algebra 4 (2010), $53-60$.
M.K. Dubey

SAG, DRDO, Metcalf House
Delhi 110054, India
E-mail: kantmanish@yahoo.com
P.Sarohe

Department of Mathematics, Lakshmibai College
University of Delhi, Delhi 110052, India
E-mail: poonamsarohe@gmail.com

[^0]: 2010 Mathematics Subject Classification: 16Y30, 16Y60
 Keywords: Semimodule, aubtractive subsemimodule, prime subsemimodule, primary subsemimodule.

