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On prime and primary avoidance theorem

for subsemimodules

Manish Kant Dubey and Poonam Sarohe

Abstract. We study some important results of prime and primary subsemimodules. We also

prove the primary avoidance theorem for subsemimodules.

1. Introduction

Prime and primary submodules play crucial role in ring and module theory. These
concepts were widely studied in [1], [2], [3], [6], [8], [9]. C. P. Lu in [8], proved
the prime avoidance theorem for submodules. El-Atrash and Ashour in [7], proved
primary avoidance theorem for submodules. Several authors have studied and
explored these concepts in semimodule theory. In this paper, we study the con-
cepts of prime and primary subsemimodules and prove several results analogous
to module theory.

By a semiring, we mean an algebraic structure (S,+, 0S) such that (S, ·) is
a semigroup and (S,+, 0S) is a commutative monoid in which the multiplication
is distributive with respect to the addition both from the left and from the right
and 0S is the additive identity of S and also 0Sx = x0S = 0S for all x ∈ S. A
nonempty subset I of a semiring S is called an ideal of S if a, b ∈ I and s ∈ S,
then a + b ∈ I and sa, as ∈ I. An ideal I of a semiring S is called subtractive if
a, a+ b ∈ I, b ∈ S, then b ∈ I. An ideal I of a semiring S is called prime if ab ∈ I,
then either a ∈ I or b ∈ I. If I is an ideal of S, then the radical of I is de�ned as
Rad(I) =

√
I = {a ∈ S : a2 ∈ I}. An ideal I of a semiring S is called a primary

ideal of S if ab ∈ I, then either a ∈ I or b ∈
√
I. Let S be a semiring. A left

S-semimodule M is a commutative monoid (M,+) which has a zero element 0M ,
together with an operation S ×M →M ; denoted by (a, x)→ ax such that for all
a, b ∈ S and x, y ∈M ,

1. a(x+ y) = ax+ ay,

2. (a+ b)x = ax+ bx,

3. (ab)x = a(bx),

4. 0Sx = 0M = a0M .
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A proper subsemimodule N of an S-semimodule M is called subtractive if
a, a + b ∈ N , b ∈ M then b ∈ N . The associated ideal of a subsemimodule N of
M is de�ned as (N : M) = {a ∈ S : aM ⊆ N}. A proper subsemimodule N of an
S-semimodule M is said to be strong subsemimodule if for each x ∈ N there exists
y ∈ N such that x+ y = 0.

We shortly summarize the content of the paper: In the �rst section, by applying
the prime avoidance theorem for subsemimodules [10], we prove the extended
version of prime avoidance theorem for subsemimodules. In the second section,
we prove some results on primary subsemimodules and by using the technique of
e�cient covering of subsemimodules, we prove the primary avoidance theorem for
subsemimodules.

Throughout this paper, S will always denote a commutative semiring with
identity 1 6= 0 and S-semimodules means semimodules.

2. Prime subsemimodules

A proper subsemimodule N of an S-semimodule M is called prime if whenever
rm ∈ N then rM ⊆ N or m ∈ N .

We start with the following obvious results

Theorem 2.1. If N is a maximal subsemimodule of an S-semimodule M , then

N is a prime subsemimodule of M .

Corollary 2.2. Let M be an S-semimodule and N be a proper subsemimodule of

M . If N is a subtractive subsemimodule of M and m ∈M \N . Then the following

statements holds:

1. (N : M) is a subtractive ideal of S.

2. (0 : M) and (N : m) are subtractive ideals of S.

Corollary 2.3. Let N be a prime subsemimodule of an S-semimodule M. Then
for each m ∈M \N, (N : M) and (N : m) are prime ideals of S.

Theorem 2.4. Let N1, N2, . . . , Nn be subsemimodules of an S-semimodule M

and let N be a prime subsemimodule of M . If
n⋂

i=1

Ni ⊆ N , then there exists an

1 6 i 6 n such that Ni ⊆ N or (Ni : M) ⊆ (N : m) where m ∈M \N .

Proof. Suppose Ni * N and (Ni : M) * (N : m) where m ∈ M \ N and for all
1 6 i 6 n. For particular, i = k, we have Nk * N , then there exists an mk ∈ M
such that mk ∈ Nk but mk /∈ N . Also, there exist ai ∈ (Ni : M) such that
ai /∈ (N : mk) for all i 6= k. This gives aimk ∈ Ni and aimk /∈ N . Therefore,
aimk ∈ Ni ∩Nk for all i 6= k. So a1a2 . . . ak−1ak+1 . . . anmk ∈ N1 ∩ . . .∩Nn ⊆ N .
This implies, a1a2 . . . ak−1ak+1 . . . an ∈ (N : mk). By Corollary 2.3, (N : mk) is a
prime ideal. Therefore, we have ai ∈ (N : mk) for i 6= k, a contradiction. Hence
there exists an i such that Ni ⊆ N or (Ni : M) ⊆ (N : m), where m ∈M \N .



On prime and primary avoidance theorem for subsemimodules 223

Theorem 2.5. Let M be an S-semimodule, N be an arbitrary subsemimodule

of M and N1, N2, . . . , Nn be subtractive prime subsemimodules of M . Suppose

(Nj : M) * (Ni : m) for all m ∈ M \ Ni with i 6= j. If N * Ni for all i, then
there exists an element x ∈ N such that x /∈ ∪Ni; hence, N * ∪Ni.

Proof. Since N * Ni, then there exists mi ∈ N such that mi /∈ Ni for all i. By
Corollary 2.3, (Ni : mi) is a prime ideal of S. By the given hypothesis, there exists
rj ∈ (Nj : M) and rj /∈ (Ni : mi) for i 6= j. Let si = r1r2 . . . ri−1ri+1 . . . rn =∏

j 6=i rj . Let xi = misi for all i. Then xi = misi ∈ Nj for all j 6= i. But xi /∈ Ni

because, if xi ∈ Ni then misi ∈ Ni, so si ∈ (Ni : mi), a contradiction. Let
x = x1 + x2 + . . . + xn. Then x = xi +

∑
j 6=i xj . Since

∑
j 6=i xj ∈ Ni, therefore

x /∈ Ni otherwise we would have xi ∈ Ni which is a contradiction, so x /∈ ∪Ni.
Also, mi ∈ N for all i, therefore x ∈ N and hence N * ∪Ni.

Let N1, N2, . . . , Nn be subsemimodules of M . De�ne a covering N ⊆ N1∪N2∪
. . . ∪ Nn is e�cient if no Ni is super�uous for 1 6 i 6 n. In otherwords, we say
N = N1 ∪N2 ∪ . . . ∪Nn is an e�cient union if none of the N ′is may be excluded.
Any cover or union consisting of subsemimodules of M be reduced to an e�cient
one, called an e�cient reduction, by deleting any unnecessary terms.

Theorem 2.6. (cf. [5]) Let N = N1 ∪ N2 ∪ . . . ∪ Nn be an e�cient union of

subtractive subsemimodules of an S-semimodule M . Then
n⋂

i=1

Ni =
n⋂

i=1
i6=j

Ni for any

j ∈ {1, 2, . . . , n}.

Proposition 2.7. (cf. [10]) Let N ⊆ N1 ∪ N2 . . . ∪ Nn be an e�cient covering

consisting of subtractive subsemimodules of an S-semimodule M , where n > 2. If

(Nj : M) * (Nk : M) for every j 6= k, then no Nk for k ∈ {1, 2, . . . , n} is a prime

subsemimodule of M .

Theorem 2.8. (The prime avoidance theorem, cf. [10])
Let M be an S-semimodule, N1, N2, ..., Nn a �nite number of subtractive subsemi-

modules of M and N be a subsemimodule of M such that N ⊆ N1 ∪N2 . . . ∪Nn,

(n > 2). Assume that at most two of the Ni's are not prime and that (Nj : M) *
(Nk : M) for every j 6= k. Then, N ⊆ Nk for some k.

Now, we come to our main theorem which is a more general form of the above
theorem.

Theorem 2.9. (Extended prime avoidance theorem for subsemimodules)
Let M be an S-semimodules and N1, N2, ..., Nr be subtractive prime subsemimodues

of M such that (Ni : M) * (Nj : M) for i 6= j, r > 1. Let m ∈ M be such that

mS +N *
r⋃

i=1

Ni. Then there exists n ∈ N such that m+ n /∈
r⋃

i=1

Ni.
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Proof. Suppose that m lies in each of N1, . . . , Nk but none of Nk+1, Nk+2, . . . , Nr.

If k = 0, then m = m+0 /∈
r⋃

i=1

Ni and so there is nothing to prove. Assume that it

is true for k > 1. Now, N *
k⋃

i=1

Ni, for otherwise by prime avoidance theorem for

semimodules, we would have a contradiction. Therefore, there exists p ∈ N \(N1∪
N2∪. . .∪Nk). Also, we have Nk+1∩. . .∩Nr * N1∪. . .∪Nk. Otherwise, since Nj is
a prime subsemimodule, by prime avoidance theorem, we haveNk+1∩. . .∩Nr ⊆ Nj

for some 1 6 j 6 k. This implies (Nk+1 ∩ . . . ∩ Nr : M) ⊆ (Nj : M) for some
1 6 j 6 k, that is, (Nk+1 : M) ∩ . . . ∩ (Nr : M) ⊆ (Nj : M) for some 1 6 j 6 k.
Therefore, (Ni : M) ⊆ (Nj : M) where k + 1 6 i 6 r and 1 6 j 6 k, which
contradicts to the hypothesis that (Ni : M) * (Nj : M) for i 6= j. Thus, there
exists b ∈ (Nk+1 : M)∩ . . .∩(Nr : M)\(N1 : M)∪ . . .∪(Nk : M). Let n = bp ∈ N .

Also, n ∈
r⋂

j=k+1

Nj and n = bp /∈ N1 ∪ . . . ∪ Nk (if n = bp ∈ N1 ∪ . . . ∪ Nk, then

we have n ∈ Ni for some i ∈ {1, 2, . . . k}, since Ni is prime, either b ∈ (Ni : M) or
p ∈ Ni for 1 6 i 6 k), a contradiction. Thus, n ∈ (Nk+1∩. . .∩Nr)\(N1∪. . .∪Nk).

Consequently, m+ n /∈
r⋃

i=1

Ni.

Next, we prove that if N is a �nitely generated subsemimodule of an S-
semimodule M satisfying the assumption of prime avoidance theorem for sub-
semimodules, then there is a linear combination of the generators of N also avoids
n⋃

i=1

Ni.

Theorem 2.10. Let M be an S-semimodule and N = 〈m1,m2, ...,mr〉 be a �nitely

generated subsemimodule of M . Let N1, N2, . . . , Nn be subtractive prime subsemi-

modules of M such that N * Ni for each i, 1 6 i 6 n and (Ni : M) * (Nn : M) for
each i 6= j. Then there exist b2, . . . , br ∈ S such that x = m1+ b2m2+ ...+ brmr /∈
n⋃

i=1

Ni.

Proof. We prove assertion by induction on n. Without loss of generality, we sup-
pose that Ni * Nj for all i 6= j. If n = 1, then clearly x = m1+b2m2+ ...+brmr /∈
N1. So, we have done. Assume that the result is true for (n − 1) subtrac-
tive prime subsemimodules of M . Then there exist c2, c3, . . . , cr ∈ S such that

y = m1 + c2m2 + ... + crmr /∈
n−1⋃
i=1

Ni. If y /∈ Nn, then there is nothing to prove.

So assume that y ∈ Nn. If m2, ...,mr ∈ Nn, then from the expression for y, we
have m1 ∈ Nn (as Nn is a subtractive), which is a contradiction to the fact that
N * Nn. So for some i, mi /∈ Nn. Without loss of generality, suppose i = 2.
By given hypothesis (Ni : M) * (Nn : M) for i 6= n. Therefore, there exists
ri ∈ (Ni : M) such that ri /∈ (Nn : M) where i 6= n. Let r = r1r2r3 . . . rn1

.
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Then c = m1 + (c2 + r)m2 + . . .+ crmr /∈
n⋃

i=1

Ni, which is a contradiction to our

assumption.

3. The primary avoidance theorem

In this section, we study some properties of primary subsemimodules and prove
primary avoidance theorem for subsemimodules.

De�nition 3.1. A proper subsemimodule N of an S-semimodule M is called
primary if whenever am ∈ N for some a ∈ S and m ∈ M , then m ∈ N or
a ∈

√
(N : M), where

√
(N : M)= {a ∈ S : atM ⊆ N, for some t ∈ Z+}.

Theorem 3.2. If N is a primary subsemimodule of M and m ∈ M \ N , then√
(N : m)= {r ∈ S : rnm ∈ N, for some n ∈ Z+} is a prime ideal of S.

Proof. Let rs ∈
√
(N : m) for some r, s ∈ S. Then (rs)n ∈ (N : m) for some

positive integer n. Therefore, rn(snm) ∈ N . Since N is primary, we have either
rn ∈ (N : M) or snm ∈ N . Thus, r ∈

√
(N : M) or s ∈

√
(N : m). Since√

(N : M) ⊆
√
(N : m), we get r ∈

√
(N : m) or s ∈

√
(N : m). Hence

√
(N : m)

is a prime ideal of S.

Theorem 3.3. Let N be a primary subsemimodule of an S-semimodule M . Then

(N : M) is a primary ideal of S, and hence
√
(N : M) is a prime ideal of S.

Proof. The proof is easy and hence omitted.

De�nition 3.4. Let N be a primary subsemimodule of an S-semimoduleM . Then
N is called a P -primary subsemimodule of M , when P =

√
(N : M) is a prime

ideal of S.

Proposition 3.5. Let M be an S-semimodule and N be a strong subsemimodule

of M and suppose a ∈ S. If P is a prime ideal of S, a /∈ P such that Q = (N : a)
is a P -primary in M , then N = Q ∩ (N + aM). Furthermore, N is a P -primary

in N + aM , where (N : a) = {m ∈M : am ∈ N}.

Proof. Clearly, N ⊆ Q ∩ (N + aM). Let x ∈ (N + aM) ∩ Q. Then x = n + am
where n ∈ N and m ∈ M . Since N is strong, there exists n1 ∈ N such that
n + n1 = 0. Now, x = n + am implies x + n1 = (n + n1) + am = 0 + am. Thus,
we have x + n1 = am ∈ Q, as x and n1 both are in Q. Since Q is a P -primary
and a /∈ P , we have m ∈ Q, which implies am ∈ N . Therefore, x = n+ am ∈ N .
Hence, (N + aM) ∩Q ⊆ N .

Next, we show that N is a P -primary in (N + aM). Let rx ∈ N for some
r ∈ S and x ∈ (N + aM) \ N . Then x = n + am for some n ∈ N and m ∈ M .
Since N is a strong subsemimodule of M , therefore there exist n1 ∈ N such that
n + n1 = 0. Now, adding n1 on both sides, we have x + n1 = n + n1 + am. This
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implies, rx + rn1 = ram where r ∈ S. Since ram ∈ N gives rm ∈ (N : a) = Q
and Q is P -primary. If m ∈ Q, then x = n + am ∈ N, which is a contradiction.
Hence, m /∈ Q. Therefore, r ∈ P . Therefore, N is a P - primary in (N + aM).

The following theorem can be proved easily.

Theorem 3.6. Let M and M ′ be S-semimodules, f : M −→ M ′ be an epimor-

phism and N is a proper subsemimodue of M ′. Then N is a primary subsemimo-

dule of M ′ if and only if f−1(N) is a primary subsemimodule of M .

Theorem 3.7. Let M and M ′ be S-semimodules, f : M −→ M ′ be an epimor-

phism such that f(0) = 0 and N be a subtractive strong subsemimodule of M . If

N is a primary subsemimodule of M with kerf ⊆ N , then f(N) is a primary

subsemimodule of M ′

Proof. LetN be a primary subsemimodule ofM and ax ∈ f(N) for some a ∈ S and
x ∈ M ′. Since ax ∈ f(N), there exists an element x′ ∈ N such that ax = f(x′).
Since f is an epimorphism and x ∈ M ′, then there exists y ∈ M such that
f(y) = x. As x′ ∈ N and N is a strong subsemimodule of M , therefore there
exists x′′ ∈ N such that x′ + x′′ = 0, which gives f(x′ + x′′) = 0. Therefore,
ax+ f(x′′) = 0 or f(ay) + f(x′′) = 0 implies ay + x′′ ∈ kerf ⊆ N . Thus, we have
ay ∈ N , since N is a subtractive subsemimodule of M . Since N is a primary, we
conclude that a ∈

√
(N : M) or y ∈ N . Thus, a ∈ f(

√
(N : M)) ⊆

√
f(N : M) or

f(y) ∈ f(N) and hence a ∈
√
(f(N) : M ′) or x ∈ f(N). Thus, f(N) is a primary

subsemimodule of M ′.

Theorem 3.8. Let N1, N2, . . . , Nn be subsemimodule of an S-semimodule M and

let N be a primary subsemimodule of M . If
n⋂

i=1

Ni ⊆ N , then there exists an

1 6 i 6 n such that Ni ⊆ N or (Ni : M) ⊆
√

(N : m) where m ∈M \N .

Proof. Suppose Ni * N and (Ni : M) *
√
(N : m) where m ∈M \N and for all

1 6 i 6 n. For, i = k, we have Nk * N , then there exists an mk ∈ M such that

mk ∈ Nk but mk /∈ N . Also, there exist ai ∈ (Ni : M) such that ai /∈
√
(N : mk)

for all i 6= k. This gives aimk ∈ Ni and for every positive integer pi, a
pi

i mk /∈ N .
Therefore, api

i mk ∈ Ni ∩ Nk for all i 6= k. So (ap1

1 ap2

2 . . . a
pk−1

k−1 a
pk+1

k+1 . . . apn
n )mk ∈

N1 ∩ . . . Nn ⊆ N . Let l = max{p1, p2, . . . , pk−1, pk+1, . . . , pn}. Therefore,
(a1a2 . . . ak−1ak+1 . . . an)

lmk ∈ N . This implies, (a1a2 . . . ak−1ak+1 . . . an)
l ∈

(N : mk) and hence a1a2 . . . ak−1ak+1 . . . an ∈
√
(N : mk). By Theorem 3.2,√

(N : mk) is a prime ideal. Therefore, we have ai ∈
√
(N : mk) for i 6= k, a

contradiction. Hence there exists an i such that Ni ⊆ N or (Ni : M) ⊆
√
(N : m)

where m ∈M \N .

Theorem 3.9. Let N be a P -primary subsemimodule of M . Then (N : r) is a

P -primary subsemimodule of M containing N for all r ∈
√
(N : M) \ (N : M).
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Proof. Let r ∈
√

(N : M) \ (N : M). Clearly, N ⊆ (N : r). Let s ∈ S and
m ∈ M be such that sm ∈ (N : r). Therefore, srm ∈ N . Since N is primary,
we have either s ∈

√
(N : M) or rm ∈ N , that is snM ⊆ N or m ∈ (N : r)

for some positive integer n. Hence sn ∈ ((N : r) : M) or m ∈ (N : r) for some
positive integer n. Thus, (N : r) is a primary ideal of M . Next, we show that√
(N : M) =

√
(N : r) : M . Since, N ⊆ (N : r), we have (N : M) ⊆ ((N : r) : M)

and therefore,
√
(N : M) ⊆

√
((N : r) : M). Let s ∈

√
((N : r) : M). Therefore,

sn ∈ ((N : r) : M), for some positive integer n. This gives, rsn ⊆ (N : M).
Since N is a primary subsemimodule of M , (N : M) is a primary ideal of S.
Therefore, rsn ⊆ (N : M) implies s ∈

√
(N : M), since r /∈ (N : M). Thus,√

(N : r) : M ⊆
√
(N : M). Hence,

√
(N : M) =

√
(N : r) : M .

Theorem 3.10. Let N be a subsemimodule of an S-semimodule M such that

N ⊆ N1 ∪ N2 for some subtractive subsemimodules N1, N2 of M . Then either

N ⊆ N1 or N ⊆ N2.

Proof. The proof is straightforward.

Now, by using Theorem 2.6, we prove the following proposition.

Proposition 3.11. Let N ⊆ N1∪N2∪ . . .∪Nn be an e�cient union of subtractive

subsemimodules of an S-semimodule M , where n > 1. If
√

(Nj : M) *
√
(Nk : M)

for every j 6= k, then no Nk for k ∈ {1, 2, . . . , n} is a primary subsemimodule of

M .

Proof. Suppose that Nk is a primary subsemimodule of M for some 1 6 k 6 n.
Since N ⊆ N1 ∪N2 ∪ . . .∪Nn is an e�cient covering, N = (N ∩N1)∪ (N ∩N2)∪
. . . ∪ (N ∩ Nn) is an e�cient union, otherwise for some i 6= j, N ∩ Ni ⊆ N ∩ Nj

and this imply N = (N ∩ N1) ∪ . . . ∪ (N ∩ Ni−1) ∪ (N ∩ Ni+1) ∪ . . . (N ∩ Nn)
and thus we get N ⊆ N1 ∪ . . . ∪ Ni−1 ∪ Ni+1 ∪ . . . ∪ Nn, a contradiction. Hence
for every k ∈ {1, 2, ..., n} there exists an element `k ∈ N \Nk. Also, by Theorem
2.6, we have

⋂
j 6=k

(N ∩ Nj) ⊆ N ∩ Nk. Since Nk is a primary subsemimodule of

M , by Theorem 3.2, we have
√
(Nk : M) is a prime ideal of S. By hypothesis, if

j 6= k,
√
(Nj : M) *

√
(Nk : M) so there exists an sj ∈

√
(Nj : M) \

√
(Nk : M).

Now, s =
∏
j 6=k

sj ∈
√
(Nj : M) but s =

∏
j 6=k

sj 6∈
√
(Nk : M). Since s =

∏
j 6=k

sj ∈√
(N1 : M)

√
(N2 : M)...

√
(Nk−1 : M)

√
(Nk+1 : M)...

√
(Nn : M) but s =

∏
j 6=k

sj 6∈√
(Nk : M), where sj ∈

√
(Nj : M), where 1 6 j 6 n. Therefore, for some pos-

itive integers m1,m2, ...mn, we have sm1
1 ∈ (N1 : M), sm2

2 ∈ (N2 : M), ..., smn
n ∈

(Nn : M). Let l = max{m1,m2, ...,mn}. Then for j 6= k, sl ∈ (Nj : M) but
sl /∈ (Nk : M). Therefore, sllk ∈ N ∩ Nj for every j 6= k but sllk /∈ (N ∩ Nk)

because if sllk ∈ (N ∩Nk), then slk ∈ Nk. This gives, lk ∈ Nk or s ∈
√

(Nk : M),
since Nk is primary. Therefore, sllk /∈ (N ∩ Nk), which is a contradiction to the
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fact that
⋂
j 6=k

(N ∩Nj) ⊆ N ∩Nk. Therefore, no Nk is primary subsemimodule of

M .

Now, we come to our main theorem of this paper.

Theorem 3.12. (The Primary Avoidance Theorem)
Let N1, N2, ..., Nn be subtractive subsemimodules of an S-semimodule M and let N
be a subsemimodule of M such that N ⊆ N1 ∪N2 ∪ . . .∪Nn. Suppose that at most

two of Nk's are not primary subsemimodule of M and
√
(Nj : M) *

√
(Nk : M)

for every j 6= k. Then N ⊆ Nk for some k.

Proof. Assume that the covering is e�cient. Then n 6= 2. Also by Proposition
3.12, n < 2 (as

√
(Nj : M) *

√
(Nk : M) for every j 6= k). Therefore, n = 1.

Hence N ⊆ Nk for some k.

Theorem 3.13. (Extended Version of Primary Avoidance Theorem)
Let M be an S-semimodules and N1, N2, ..., Nr subtractive primary subsemimodues

of M such that
√
(Ni : M) *

√
(Nj : M) for i 6= j, r > 1. Let m ∈ M be such

that mS +N *
r⋃

i=1

Ni. Then there exists n ∈ N such that m+ n /∈
r⋃

i=1

Ni.

Proof. Suppose thatm lies in each ofN1, N2, . . . , Nk but in none ofNk+1, Nk+2, . . .

, Nr. If k = 0, we havem = m+0 /∈
r⋃

i=1

Ni and so there is nothing to prove. Assume

that it is true for k > 1. Now, N *
k⋃

i=1

Ni, for otherwise by primary avoidance

theorem for semimodules, we would have a contradiction. Therefore, there exists
p ∈ N \ (N1 ∪ N2 ∪ . . . ∪ Nk). Thus, we have Nk+1 ∩ . . . ∩ Nr * N1 ∪ . . . ∪ Nk.
Otherwise, since N ′js are primary subsemimodules, by primary avoidance theorem,
we have Nk+1 ∩ . . .∩Nr ⊆ Nj for some 1 6 j 6 k. This implies (Nk+1 ∩ . . .∩Nr :

M) ⊆ (Nj : M) for some 1 6 j 6 k, gives
√

(Nk+1 : M) ∩ . . . ∩ (Nr : M) ⊆√
(Nj : M) for some 1 6 j 6 k. This gives,

√
(Nk+1 : M) ∩ . . . ∩

√
(Nr : M) ⊆√

(Nj : M) for some 1 6 j 6 k. Therefore,
√
(Ni : M) ⊆

√
(Nj : M), (since√

(Ni : M)'s are subtractive prime ideals for all i) where k + 1 6 i 6 r and

1 6 j 6 k, which contradicts to the hypothesis that
√
(Ni : M) *

√
(Nj : M) for

i 6= j. Thus, there exists b ∈ (Nk+1 : M)∩. . .∩(Nr : M)\(N1 : M)∪. . .∪(Nk : M).

Let n = bp, then n ∈ N . Also, n ∈
r⋂

j=k+1

Nj and n = bp /∈ N1 ∪ . . . ∪ Nk

(since if n = bp ∈ N1 ∪ . . . ∪ Nk, then n = bp ∈ Ni for some 1 6 i 6 k and
since Ni is primary, either b ∈

√
(Ni : M) or p ∈ Ni for 1 6 i 6 k). Thus,

n ∈ (Nk+1 ∩ . . . ∩Nr) \ (N1 ∪ . . . ∪Nk). Also, m ∈ N1, N2, . . . Nk , it follows that

m+ n /∈
r⋃

i=1

Ni.
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