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Semigroups in which 2-absorbing ideals

are prime and maximal

Biswaranjan Khanra and Manasi Mandal

Abstract. We characterize commutative semigroups in which 2-absorbing ideals are maximal.
We introduce the concept of 2-AB semigroups in which 2-absorbing ideals are prime and charac-
terize 2-AB semigroups in terms of minimal prime ideal over a 2-absorbing ideal and study some
properties of these semigroups.

1. Introduction

Throughout this paper all semigroups are commutative, prime ideals are proper
and whenever speaking about maximal ideals we suppose, of course, it exists.

The notion of 2-absorbing ideals for commutative ring was introduced as a
generalization of prime ideals by Badwai [1] and later extended to commutative
semigroup by [5] and [3] as follows: A proper ideal I of a semigroup S is said to
be a 2-absorbing ideal of S if for any elements s1, s2, s3 ∈ S, s1s2s3 ∈ I implies
s1s2 ∈ I or s1s3 ∈ I or s2s3 ∈ I. Clearly, every prime ideal is 2-absorbing but the
converse is not true (see Lemma 2.1 and Example 2.2).

In this paper, we prove that every maximal ideal of a commutative semigroup is
2-absorbing but converse is not true (see Theorem 2.3). In [2], D. Bennis character-
ize commutative rings in which 2-absorbing ideals are prime. These observations
prompted us to solve the following two natural questions:

(1) In which class of semigroups 2-absorbing ideals are maximal?
(2) In which class of semigroups 2-absorbing ideals are prime?
We establish an analogues result of Theorem 2.3 in a commutative ring (The-

orem 2.4). Then we characterize the class of semigroups with unity (Theorem
2.7) and without unity (Theorem 2.11), in which 2-absorbing ideals are maximal.
Next, we define the notion of 2-AB semigroup, in which 2-absorbing ideals are
prime and an example of this semigroup is given (Definition 3.1 and Example 3.2).
We study many properties of a 2-AB semigroup S such as 2-absorbing ideals are
linearly ordered, S has atmost one maximal ideal, S is semiprimary and prime
ideals of S are idempotent (Theorem 3.3). Then we characterize 2-AB semigroup
in terms of minimal prime ideal over a 2-absorbing ideal (Theorem 3.5), some
other characterizations have also been established (Theorem 3.6, Theorem 3.7 and
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Theorem 3.9). We study some equivalent conditions for a regular semigroup S to
be 2-AB semigroup (Theorem 3.11). Finally, we prove that a semigroup S will be
2-AB if S is with unity and having no essential congrurence (Corollary 3.12) or
every 2-absorbing ideal of S generated by idempotent (Theorem 3.13).

Before going to the main work we recall some preliminaries which are necessary:
A non-empty ideal P of a semigroup S is said to be prime if AB ⊆ P implies

that A ⊆ P or B ⊆ P , A,B being ideals of S. An ideal P is said to be completely
prime if ab ∈ P implies a ∈ P or b ∈ P , a, b being elements of S. The concepts of
prime and completely prime ideal are coincide if S is commutative.

For an ideal A of a semigroup S, a radical of A, denoted as
√
A, is the set of

all x ∈ S such that some power of x is in A. An ideal A of S is called primary if
ab ∈ A implies either a ∈ A or b ∈

√
A. An ideal I of a semigroup S is said to

be semiprimary ideal if
√
I is a prime ideal of S. A commutative semigroup S is

called fully prime semigroup if every ideal of S is prime and primary if every ideal
of S is primary. Also a semigroup S is said to be semiprimary if every ideal of
S is a semiprimary ideal of S. A semigroup in which every ideal is idempotent is
called a fully idempotent semigroup.

Theorem 1.1. (cf. [7]) A commutative semigroup S is semiprimary if and only
if prime ideals of S are linearly ordered.

A commutative semigroup S is said to be Archimedian if, for any two elements
of S, each divides some power of the other. In [10] it is proved that a commutative
semigroup is archimedian if and only if S has no proper prime ideals.

We will use the following theorems proved in [11].

Theorem 1.2. If I and J are any two ideals of a commutative semigroup S, then
the following statements are true;

(1) IJ ⊆ I ∩ J ⊆ I.
(2) I ⊆

√
I.

(3) I ⊆ J ⇒
√
I ⊆
√
J ,

(4)
√
IJ =

√
(I ∩ J) =

√
I ∩
√
J ,

(5) If A is a prime ideal of S, then
√
A = A and if A is a primary ideal of S,

then
√
A is a prime ideal of S.

Theorem 1.3. Let A be an ideal of a commutative semigroup S with unity. If√
A = M , where M is a maximal ideal of S, then A is a primary ideal of S.

Theorem 1.4. In a commutative semigroup S with unity, the unique maximal
ideal M is prime, which is the union of all proper ideals of S;

√
Mn = M for

every positive integer n and Mn is a primary ideal for every positive integer n.

Theorem 1.5. The radical of an ideal I in a commutative semigroup is the in-
tersection of all prime ideals containing I.

Theorem 1.6. Any prime ideal containing an ideal I in a semigroup contains a
minimal prime ideal belonging to I.
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Also the following theorem will be used.

Theorem 1.7. (cf. [12]) If M is a maximal ideal of a semigroup S such that the
complement of M contains either more than one element, or an idempotent, then
M is a prime ideal of S.

2. The case when 2-absorbing ideals are maximal
Lemma 2.1. In a commutative semigroup every prime ideal is 2-absorbing.

Proof. Let I be a prime ideal of S and abc ∈ I with ab /∈ I for some a, b, c ∈ S.
Since I is prime, so c ∈ I, which implies ac ∈ I and bc ∈ I. So I is a 2-absorbing
ideal of S.

The following example shows that the converse of the above lemma is not true:

Example 2.2. The principal ideal I = (6) in the semigroup S = (N, ·) is 2-
absorbing but not prime as 2 · 3 ∈ (6) but neither 2 ∈ (6) nor 3 ∈ (6).

A commutative semigroup with unity has a unique maximal ideal, which is
prime and 2-absorbing. But in a commutative semigroup without unity maximal
ideal need not be prime. For example, the ideal I = {m ∈ N : m > 2} in the
semigroup S = (N,+) is maximal but not prime.

Theorem 2.3. In a commutative semigroup without unity every maximal ideal is
2-absorbing.

Proof. Let M be a maximal ideal of a semigroup S without unity and abc ∈ M
with ab /∈M for some a, b, c ∈ S.

1. If c ∈M then ac ∈M and bc ∈M , since M is an ideal of S. Hence M is a
2-absorbing ideal of S.

2. Let c /∈ M . Since ab /∈ M , then both a, b belongs to S − M . Now if
c 6= ab, then S −M contains two distinct elements c and ab. Again if c = ab and
a 6= b then S−M contains two distinct elements a and b and if a = b then {a, a2}
belongs to S−M , moreover if a = a2, then a is an idempotent element of S. Thus
in either case S −M contains more than one elemenet or an idempotent, hence
M is a prime ideal of S by Theorem 1.7. Consequently, M is a 2-absorbing ideal
of S by Lemma 2.1.

The converse is not true if S has unity. Indeed, the ideal I = {m ∈ S : m > 2}
in S = (N ∪ {0},+) is 2-absorbing but not maximal.

Theorem 2.4. In a commutative ring every maximal ideal is 2-absorbing.

Proof. Let M be a maximal ideal of a commutative ring R and abc ∈ M with
ab /∈ M , for some a, b, c ∈ R. If c /∈ M , then M + (c) = R = M + (ab), where (c)
and (ab) denotes respectively the principal ideal generated by c and ab.
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Since a, b ∈ R, so there exist r, s ∈ R and p, q ∈ Z such that a = m+rc+pc and
b = n+sab+qab, for somem,n ∈M . Therefore ab = (m+rc+pc)(n+sab+qab) =
mn+msab+qmab+nrc+rsabc+qrabc+pnc+psabc+pqabc ∈M , a contradiction.
Hence c ∈M implies ac, bc ∈M and consequently M is 2-absorbing.

The converse is not true. In the commutative ring Z[x] with unity the principal
ideal (x) is 2-absorbing but it is not maximal.

Lemma 2.5. The intersection of any two prime ideals is a 2-absorbing ideal.

Proof. Let abc ∈ P1 ∩ P2 for some a, b, c ∈ S. Then abc ∈ P1 and abc ∈ P2. Since
P1 and P2 are prime ideals so either a ∈ P1 or b ∈ P1 or c ∈ P1 and also either
a ∈ P2 or b ∈ P2 or c ∈ P2. Thus in either ab or bc or ac belongs to P1 ∩ P2.

Theorem 2.6. If in a semigroup S all 2-absorbing ideals are maximal, then S
has at most one prime ideal. This ideal is maximal.

Proof. By Lemma 2.5 the intersection of two prime ideals P1 and P2 is a 2-
absorbing ideal. It is maximal and it is contained in both ideal P1 and P2. Hence
P1 = P2.

Theorem 2.7. In a semigroup S with unity every 2-absorbing ideal is maximal
if and only if S is either a group or S has a unique 2-absorbing ideal A such that
S = A ∪H, where H is the group of units and A is an archimedian subsemigroup
of S.

Proof. Let S be a semigroup with unity in which every 2-absorbing ideal is max-
imal. If S is not group, then S has a unique maximal ideal A which is the only
prime as well as 2-absorbing ideal of S. Therefore S = A ∪H, where A is unique
2-absorbing ideal of S and H is the group of units. Since A is the unique prime
ideal in S, for any p,q ∈ A,

√
(p) =

√
(q) = A. Then there exist positive integers

m and n such that pm = qx and qn = py for some x, y ∈ S. So pm+1 = q(px) and
qn+1 = p(qy), where px, qy ∈M . Hence A is an archimedian subsemigroup of S.

Conversely, let A be the unique 2-absorbing ideal of S. Since in a semigroup
with unity has unique maximal ideal and maximal ideals are 2-absorbing, therefore
A is maximal, as desired.

Theorem 2.8. Let S be a regular semigroup with unity such that every 2-absorbing
ideal is of the form Mn, where n is any positive integer and M is the unique
maximal ideal of S. Then an ideal I of S is a primary if and only if I is a
2-absorbing ideal of S.

Proof. Let I be a 2-absorbing ideal of a semigroup S with unity, which is of the
form Mn, where n is any positive integer and M is the unique maximal ideal of
S. Then

√
I =
√
Mn = M by Theorem 1.4. Hence I is a primary ideals of S.

Conversely, let I be a primary ideal of S. Since S is regular so I =
√
I.

Cosequently I is prime and hence I is 2-absorbing ideal of S.
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As a consequence of the above theorem and Theorem 2.1 of [9] we obtain

Corollary 2.9. If in a regular semigroup S with zero and identity every 2-absorbing
ideal has the form Mn, where n ∈ N and M is the maximal ideal of S, then every
non-zero 2-absorbing ideal of S is maximal if and only if

(i) S is the union of two groups with adjoined zero, or
(ii) S = H ∪M, where M = {0, xh : h ∈ H,x2 = 0, x ∈M} and H is the group

of units.

Theorem 2.10. If in a semigroup S with unity all 2-absorbing ideals are maximal,
then

(1) S is a primary semigroup,
(2) M2 = M , where M is the maximal ideal of S,
(3) S has atmost one idempotent different from identity.

Proof. (1). Let S be a semigroup with unity in which all 2-absorbing ideals are
maximal. Then S has a unique maximal ideal, say M, which is the union of all
proper ideals of S and it is also the unique prime ideal of S. Then for any ideal I of
S,
√
I = M , hence I is a primary ideal of S. Therefore S is a primary semigroup.

(2). Let abc ∈ M2 ⊆ M for some a, b, c ∈ S. Since M is a prime ideal of S
either a or b or c belongs to M . Let a ∈ M . Then bc ∈ M , implies b ∈ M or
c ∈M. Hence ac or ab belongs to M2 and so M2 is a 2-absorbing ideal of S. Since
every 2-absorbing ideal of S is maximal so M2 is a maximal ideal of S. Therefore
M2 = M .

(3). If e and f are idempotents different from the identity, then
√

(eS) =√
(fS) = M , where M is the unique prime as well as unique maximal ideal of S.

Therefore e = ef = f .

Theorem 2.11. Let S be a semigroup without unity. Then 2-absorbing ideals of S
are maximal if and only if complement of each 2-absorbing ideals contains exactly
one non-idempotent element or is a subgroup of S.

Proof. Let S be a semigroup without unity in which 2-absorbing ideals are maxi-
mal. Then S has at most one prime ideal (Theorem 2.6). Let I be a 2-absorbing
ideal of S but not prime. Now if complement of I in S contains more than one el-
ement or an idempotent, then I is prime (Theorem 1.7), a contradiction. Hence in
this case complement of a 2-absorbing ideal contains exactly one non-idempotent
element of S. Again, let a 2-absorbing ideal J is prime. Then a, b ∈ S − I implies
ab ∈ S − I, since I is a prime ideal of S. We know that complement of a maximal
ideal in a commutative semigroup is a H-class (Green’s), and a, b, ab all belong to
same H-class S− I of the semigroup S. Hence S− I is a subgroup of S (Theorem
2.16, [4]), as desired.

Conversely, if complement of a 2-absorbing ideal contains exactly one element
then clearly it is maximal. Now let complement of a 2-absorbing ideal J forms a
subgroup of S. If J is not maximal, then J is contained in a proper ideal K of S.
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Let i be the identity element of S − J . Since J 6= K, there exists p ∈ K − J such
that pq = i for some q ∈ S. Hence i ∈ K. Since K 6= S, there exists m ∈ S −K
such that m = mi ∈ K, a contradiction. Thus, J is a maximal ideal of S.

Since in an archimedian semigroup has no prime ideal, we have

Corollary 2.12. In an archimedian semigroup S without unity all 2-absorbing
ideals are maximal if and only if complement of every 2-absorbing ideal contains
exactly one non-idempotent element.

Corollary 2.13. In a semigroup S without unity all 2-absorbing ideals are prime
as well as maximal if and only if the complement of each 2-absorbing ideal is a
subgroup of S.

3. The case when 2-absorbing ideals are prime
In this section we characterize the class of semigroups in which 2-absorbing ideals
are prime and study some properties of this semigroup.

Definition 3.1. A commutative semigroup S is said to be a 2-AB semigroup if
every 2-absorbing ideal of S is prime.

Example 3.2. In a semigroup S = {a, b} with the multiplication determined by
a2 = a, b2 = b, ab = ba = a, {a} is a 2-absorbing ideal which also is prime. Hence
S is a 2-AB semigroup.

Theorem 3.3. Let S be a 2-AB semigroup. Then
(1) 2-absorbing ideals of S are linearly ordered,
(2) prime ideals of S are linearly ordered,
(3) S has at most one maximal ideal, if exists then it is prime,
(4) S is a semiprimary semigroup,
(5) idempotents in S form a chain under natural ordering,
(6) P = P 2 for every prime ideal P of S,
(7) semiprime ideals of S are prime.

Proof. (1). Let A and B be any two distinct 2-absorbing ideals of a 2-AB semigroup
S. So A ∩ B is 2-absorbing (Lemma 2.5) and hence prime, which implies either
A ⊆ B or B ⊆ A.

(2) Clearly prime ideals of S are linearly ordered.
(3) Let M1 and M2 be two maximal ideal of S. Since every maximal ideal of S

is 2-absobing (Theorem 2.3), so M1 ⊆ M2 or M2 ⊆ M1 which implies M1 = M2.
Hence S has atmost one maximal ideal and if exists clearly it is prime.

(4) By Theorem 1.1, a commutative semigroup is semiprimary if and only if
prime ideals are linearly ordered. Hence S is a semiprimary semigroup.
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(5) Since S is a semiprimary semigroup, then for any ideal A of S,
√
A is prime.

Let e and f are any two idempotents of S. Then
√
eS and

√
fS are prime ideals,

so either
√
eS ⊆

√
fS or

√
fS ⊆

√
eS, which proves that the idempotents form a

chain under natural ordering.
(6) Let P be a prime ideal of S and abc ∈ P 2 ⊆ P for some a, b, c ∈ S. Since

P is a prime ideal of S, either a ∈ P or b ∈ P or c ∈ P . Let a ∈ P . Then bc ∈ P ,
implies b or c belogs to P and so ac or ab belongs to P 2. Hence P 2 is a 2-absorbing
ideal of S and so P 2 is a prime ideal of S. Let x ∈ P . Then x2 ∈ P 2 implies
x ∈ P 2 so P ⊆ P 2. Therefore P = P 2.

(7) Let I be a semiprime ideal of S. Then I =
√
I is a prime ideal of S, since

prime ideals of S are linearly ordered, as desired.

Lemma 3.4. Let S be a semigroup with unity and unique maximal ideal M . Then
for every prime ideal P , PM is a 2-absorbing ideal of S. Moreover, PM is prime
if and only if PM = P .

Proof. Let xyz ∈ PM ⊆ P . Since P is prime, either x ∈ P or y ∈ P or z ∈ P . Let
x ∈ P . Then either y ∈ M or z ∈ M , since M is also prime. Hence xy ∈ PM or
xz ∈ PM . Consequently, PM is a 2-absorbing ideal of S. Clearly, PM is prime
if and only if PM = P .

The following is a characterization of a 2-AB semigroup in terms of minimal
prime ideal over a 2-absorbing ideal, which is analogous to (Theorem 2.3, [2]).

Theorem 3.5. A semigroup S with unity is a 2-AB semigroup if and only if
prime ideals of S are linearly ordered and if P is a minimal prime ideal over a
2-absorbing ideal I, then IM = P, where M is the unique maximal ideal of S.

Proof. Let I be a 2-absorbing ideal of a 2-AB semigroup S with unity. Then prime
ideals of S are linearly ordered (Theorem 3.3) and I is prime by hypothesis. Then
IM = I (Lemma 3.4).

Conversely, let I be a 2-absorbing ideal of S. Since prime ideals are linearly
ordered and P = IM , where P is a minimal prime ideal over I, P = IM ⊆
I ∩M = I ⊆ P implies I = P , as desired.

Theorem 3.6. A commutative semigroup S is a 2-AB semigroup if and only if
P = P 2 for every prime ideal P of S and every 2-absorbing ideal of S is of the
form A2, where A is a prime ideal of S.

Proof. Let P be a 2-absorbing ideal of a 2-AB semigroup. Then P is prime and
so P = P 2 (Theorem 3.3(6)).

Conversely, let I be a 2-absorbing ideal of S. Then I = A2 = A, where A is a
prime ideal of S.

Theorem 3.7. A commutative semigroup S is a 2-AB semigroup if and only if
its prime ideals are linearly ordered and A = A2 for every 2-absorbing ideal A of
S.
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Proof. Let S be a 2-AB semigroup. Let P1 and P2 be two prime ideals of S. Then
P1 ∩ P2 is 2-absorbing ideal of S (Lemma 2.5) and so prime, which implies either
P1 ⊆ P2 or P2 ⊆ P1. Again let A be a 2-absorbing ideal of S and so prime.
Therefore A = A2 (Theorem 3.3).

Conversely, let A be any 2-absorbing ideal of S and x ∈
√
A. Then x2 ∈ A =

A2, since A is 2-absorbing ideal of S. This implies x ∈ A, so A =
√
A. Since prime

ideals are linearly ordered so A is prime and hence S is a 2-AB semigroup.

Since in a fully idempotent semigroup S, A = A2 for every ideal A of S, the
following is a simple consequence of above theorems:

Corollary 3.8. A fully idempotent semigroup S is a 2-AB semigroup if and only
if one of the following conditions hols:

(1) Prime ideals are linearly ordered.
(2) Every 2-absorbing ideal is of the form P 2, where P is a prime ideal of S.

Theorem 3.9. A semigroup S is a 2-AB semigroup if and only if its prime ideals
are linearly ordered and A =

√
A for every 2-absorbing ideal A of S.

Proof. Let S be a 2-AB semigroup. Then prime ideals of S are linearly ordered
(Theorem 3.3). Again any 2-absorbing ideal A of S is prime so A =

√
A.

Conversely, let A be a 2-absorbing ideal of S. Then A =
√
A =

⋂
Pi = Pβ , for

some β ∈ Λ and where {Pi : i ∈ Λ} are prime ideals containing A. Hence S is a
2-AB semigroup.

Since in a semiprimary semigroup prime ideals are linearly ordered (Theorem
1.1), the following corollary is an obvious consequence of the above theorem:

Corollary 3.10. A semiprimary semigroup S is a 2-AB semigroup if and only if
A =

√
A for every 2-absorbing ideal A of S.

Theorem 3.11. For a commutative regular semigroup S the following statements
are equivalent:

(1) S is 2-AB semigroup.
(2) 2-absorbing (prime) ideals are linearly ordered.
(3) Idempotents in S form a chain under natural ordering.
(4) All ideals of S are linearly ordered.

(5) S is a fully prime semigroup.
(6) S is a primary semigroup.
(7) S is a semiprimary semigroup.

Proof. (1)⇒ (2)⇒ (3) by Theorem 3.3.
(3)⇒ (4)⇒ (5)⇒ (6)⇒ (7) follows from Theorem 2.4 of [11].
(7) ⇒ (1). Let A be a 2-absorbing ideal of a commutative regular semigroup

S. Then A =
√
A =

⋂
Pα, where {Pα : α ∈ Λ} are the prime ideals of S contaning
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A. Since S is semiprimary, so prime ideals are linearly ordered, which implies
A =

√
A = Pβ for some β ∈ Λ. Therefore S is a 2-AB semigroup.

Let D be the class of commutative semigroups with an identity element and
having no proper essential congruences, i.e. congruences δ such that α ∩ δ 6= i for
every congruence α 6= i, where i is the identity relation on S. Oehmke [8], proved
that if S ∈ D, then the set of ideals of S are linearly ordered by inclusion and
hence the set of prime ideals of S are linearly ordered. Again Khaksari [6], proved
that if S ∈ D, then S is regular i.e. A =

√
A for every ideal A of S. So as a simple

consequence of Theorem 3.9, we have the following result:

Corollary 3.12. If S ∈ D, then S is a 2-AB semigroup.

Theorem 3.13. If every 2-absorbing ideal of a semigroup S has an idempotent
generator, then S is a 2-AB semigroup.

Proof. Let I be a 2-absorbing ideal of S generated by the idempotent e i.e. I =
(e) = eS. Since S is commutative so I = I2. It is clear that I ⊆

√
I. Let x ∈

√
I.

Then x2 ∈ I = I2, since I is 2-absorbing. This implies x ∈ I, so
√
I ⊆ I. Hence

I =
√
I. Again, let P,Q be two prime ideals of S. Then the prime ideal P ∪Q is

2-absorbing, has an idempotent generator e, i.e. P ∪Q = eS. But then e ∈ P or
e ∈ Q. This implies either P = eS or Q = eS and either P ⊆ Q or Q ⊆ P . Hence
by Theorem 3.9, S is a 2-AB semigroup.

Since every principal ideal of a commutative regular semigroup has an idem-
potent generator, the following is an obvious consequence of the above theorem:

Corollary 3.14. If every 2-absorboing ideal of a commutative regular semigroup
S is principal, then S is a 2-AB semigroup.
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