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A note on left loops with WA-property

Natalia N. Didurik and Ivan A. Florja

Abstract. We study properties of WA-quasigroups with a left identity element, i.e., quasi-

groups satisfying two identities: xx · yz = xy · xz and xy · zz = xz · yz.

1. Introduction

We start from some de�nitions and examples. Other basic facts about quasigroups
and loops can be found in [2] and [13].

De�nition 1.1. (cf. [5, 8]) A groupoid (Q, ·) is called a quasigroup if, on the set
Q, there exist operations "\" and "/" such that in the algebra (Q, ·, \, /) identities

x · (x\y) = y, (1)

(y/x) · x = y, (2)

x\(x · y) = y, (3)

(y · x)/x = y, (4)

are ful�lled.

De�nition 1.2. (cf. [11, 12]) A quasigroup (Q, ·) with the identities

xx · yz = xy · xz and xy · zz = xz · yz (5)

is called a WA-quasigroup or a semi-medial quasigroup (shortly: SM -quasigroup)
(cf. [14, 15]).

Identities (5) are not equivalent.

Example 1.3. This quasigroup satis�es only the �rst of these identities.

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 0 3 2 5 4
2 2 4 0 5 1 3
3 4 2 5 0 3 1
4 3 5 1 4 0 2
5 5 3 4 1 2 0
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Lemma 1.4. In any WA-quasigroup (Q, ·) the following identities are true:

x2\(yz) = (x\y)(x\z), (6)

(yz)/x2 = (y/x)(z/x), (7)

x(y\z) = (xy)\(x2z), (8)

(y/z)x = (yx2)/(zx), (9)

where xy = z ⇔ x\z = y ⇔ z/y = x.

Proof. (6). It is clear that there exists an element z′ such that x2\yz′ = (x\y)(x\z).
We must prove that z′ = z. From the de�nition of the operation \ we have

yz′ = x2((x\y)(x\z)) (5)
= x(x\y) · x(x\z) (1)

= yz.

Therefore, z′ = z.
(7). It is clear that there exists an element z′ such that yz′/x2 = (y/x)(z/x).

We must prove that z′ = z. From the de�nition of the operation / we have

yz′ = (y/x)(z/x) · x2 (5)
= (y/x)x · (z/x)x (2)

= yz.

Therefore, z′ = z.
(8). It is clear that there exists an element z′ such that x(y\z) = (xy)\(x2z′).

We must prove that z′ = z. We have

x2z′ = (xy) · x(y\z) (5)
= x2 · y(y\z) (1)

= x2z.

Therefore, z′ = z.
(9). It is clear that there exists an element y′ such that (y/z)x = (y′x2)/(zx).

We must prove that y′ = y. As in previous cases

y′x2 = (y/z)x · (zx) (5)
= (y/z)z · x2 (2)

= yx2.

Therefore, y′ = y.

De�nition 1.5. (cf. [2]) Let λ and ρ be two maps Q → Q. A quasigroup (Q, ·)
is called an LIP-quasigroup if it satis�es the identity

λx · (x · y) = y,

and an RIP-quasigroup if it satis�es the identity

(x · y) · ρy = x.

A quasigroup which is simultaneously an LIP- and RIP-quasigroup is called an
IP-quasigroup.



Left loops with WA-property 189

De�nition 1.6. (cf. [9]) A quasigroup (Q, ·) is called a left Bol quasigroup, if it
satis�es the identity

x(y · xz) = R−1ex (x · yx) · z.

It is called a right Bol quasigroup, if it satis�es the identity

(yx · z)x = yL−1fx (xz · x),

where xex = x = fxx.

De�nition 1.7. (cf. [2]) A quasigroup (Q, ·) is called a Moufang quasigroup, if in
(Q, ·) the following identities are true

(xy · z)y = x(y(eyz · y)), (10)

y(x · yz) = ((y · xfy)y)z (11)

where yey = y = fyy.

In his PhD thesis (see also [4]) I.A. Florja proved that in quasigroups the
identities (10) and (11) are equivalent, so Moufang quasigroups can be de�ned as
quasigroups satisfying one of these identities.

We will need the following two lemmas. The �rst was proved by I.A. Florja in
his PhD thesis, the second is proved in the Belousov's book [2].

Lemma 1.8. A left and right Bol quasigroup is a Moufang quasigroup.

Lemma 1.9. A loop isotopic to a Moufang quasigroup is an IP-loop.

De�nition 1.10. A commutative loop (Q, ·) with the identity xx · yz = xy · xz is
called a commutative Moufang loop.

From De�nitions 1.2 and 1.10 it follows that any commutative Moufang loop
is a WA-quasigroup.

Theorem 1.11. (cf. [7, 12, 15]) Each loop isotopic to a WA-quasigroup is a

commutative Moufang loop.

2. Properties of left WA-loops

Lemma 2.1. Any WA-quasigroup with a left identity element is a left Bol quasi-

group.

Proof. If f is a left identity element of a quasigroup (Q, ·), then ff = f , Lfx = x
for all x ∈ Q and Lf = ε. From Theorem 1.11 it follows that an isotope of the
form

x ◦ y = R−1f x · L−1f y = R−1f x · y (12)
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of a quasigroup (Q, ·) is a commutative Moufang loop. Any commutative Moufang
loop (Q, ◦) is an IP-loop, i.e., there exists a permutation I such that

Ix ◦ (x ◦ y) = (y ◦ x) ◦ Ix = y (13)

for all x, y ∈ Q.
Going in the equation (13) to the operation · we have R−1f Ix · (R−1f x · y) = y,

R−1f IRfx · (x · y) = y. Hence, Ilx · (x · y) = y for

Il = R−1f IRf . (14)

Thus (Q, ·) is an LIP-quasigroup. This, by results of [9], shows that (Q, ·) is a left
Bol quasigroup.

Corollary 2.2. If f is a left identity element of a WA-quasigroup (Q, ·), then

the translation Rf is an automorphism of (Q, ·), and an automorphism of the

commutative Moufang loop (Q, ◦) de�ned by (12).

Proof. The fact that Rf ∈ Aut(Q, ·) follows from (5) and the equality ff = f .
Further, using the formula (12), we have: Rf (x ◦ y) = Rfx ◦Rfy, Rf (R−1f x · y) =
R−1f Rfx ·Rfy, x ·Rfy = x ·Rfy. Therefore RfI = IRf , and (14) takes the form
Il = I.

Lemma 2.3. Any WA-quasigroup with a right identity element is a right Bol

quasigroup.

Proof. Consider the isotope (Q, ◦) of a WA-quasigroup (Q, ·) given by:

x ◦ y = x · L−1e y,

where e is a right identity of (Q, ·). By Theorem 1.11, (Q, ◦) is a commutative
Moufang loop. Let 1 be the identity element of (Q, ◦) and I be a permutation of
Q such that x ◦ Ix = 1 for all x ∈ Q. Since (y ◦ x) ◦ Ix = y for all x, y ∈ Q, we
have y = (y ◦ x) ◦ Ix = (y ·L−1e x) ·L−1e Ix. Therefore, (y · x) ·L−1e ILex = y, hence
(y · x) · ρx = y for ρ = L−1e ILe. So, (Q, ·) is an RIP-quasigroup. This, by results
of [9] means that (Q, ·) is a right Bol quasigroup.

Lemma 2.4. Any WA-quasigroup (Q, ·) with the left (right) inverse property is a

left (right) Bol quasigroup.

Proof. Since a WA-quasigroup with the left inverse property is an LIP-quasigroup,
the proof of this lemma is very similar to the proof of Lemma 2.1.

For WA-quasigroups with the right inverse property the proof is analogous.

Corollary 2.5. Any WA-quasigroup that is an IP-quasigroup, is a Moufang quasi-

group.

Proof. The proof follows from Lemma 2.4 and Lemma 1.8.
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De�nition 2.6. (cf. [2]) The isotope of the form

x ◦ y = L−1a (Lax · y) (15)

is called a right derivative operation of (Q, ·) generated by a.
The isotope of the form

x ◦ y = R−1a (x ·Ray) (16)

is called a left derivative operation of (Q, ·) generated by a.

Theorem 2.7. Let (Q, ·) be a WA-quasigroup. Then

(i) the right derivative operation (Q, ·) is a left Bol quasigroup,

(ii) the left derivative operation of (Q, ·) is a right Bol quasigroup.

Proof. (i). From (15) it follows that a quasigroup (Q, ◦) has a left identity element,
namely, f = ea, where aea = a. Indeed, ea ◦ y = L−1a (Laea · y) = L−1a Lay = y. In
particular f ◦ f = f .

We consider the following isotope of a quasigroup (Q, ◦):

x+ y = (R◦f )
−1x ◦ y, (17)

where R◦fx = x ◦ f . Then (Q,+) is a loop with the identity element f .

Indeed, f+y = (R◦f )
−1f ◦y = f ◦y = y, since, if (R◦f )

−1f = z, then f = (R◦f )z,
f = z ◦ f . But, as was mentioned, f ◦ f = f , therefore, z = f . Further we have
x+ f = (R◦f )

−1x ◦ f = R◦f (R
◦
f )
−1x = x.

Using (15) we can re-write (17) as follows:

x+ y = L−1a (La(R
◦
f )
−1x · y).

Thus the loop (Q,+) is an isotope of a WA-quasigroup (Q, ·). By Theorem 1.11
among loop isotopes of a WA-quasigroup (Q, ·) there exists a commutative Mo-
ufang loop. We recall that any loop isotopic to a Moufang loop is a Mofang loop
(cf. [2]). Therefore (Q,+) is a Moufang loop.

Our proof will be complete, if we prove that a quasigroup (Q, ◦) is an LIP-
quasigroup.

From x−1 + (x+ y) = y, using (17), we obtain (R◦f )
−1x−1 ◦ ((R◦f )−1x ◦ y) = y.

Now, denoting (R◦f )
−1x−1 by αx and (R◦f )

−1x by βx, we obtain two permutations
α, β of the set Q, and the possibility to rewrite the last equation in more useful
form αx ◦ (βx ◦ y) = y, which is equivalent to αβ−1x ◦ (x ◦ y) = y.

The last means that (Q, ◦) is an LIP-quasigroup. This completes the proof of
(i).

(ii). From (16) it follows that a quasigroup (Q, ◦) has a right identity element
e = fa, where faa = a. Indeed, x ◦ fa = R−1a (x ·Rafa) = R−1a (x · a) = x.
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We consider the following isotope of the quasigroup (right loop) (Q, ◦):

x+ y = x ◦ (L◦e)−1y, (18)

where L◦ex = e ◦ x. Then (Q,+) is a loop with the identity element e. The proof
is similar to the proof in the case (i) and we omit it.

From (18), using (16), we have

x+ y = R−1a (x ·Ra(L◦e)−1y).

Analogously as in (i) we can prove that (Q,+) is a Moufang loop. Next, from
(y + x) + x−1 = y, using (18), we deduce (y ◦ (L◦e)−1x) ◦ (L◦e)−1x−1 = y. This
shows that (Q, ◦) is an RIP-quasigroup.

3. Automorphisms of left WA-loops

We start with the following lemma which is a quasigroup folklore.

Lemma 3.1. In a quasigroup autotopy any two components uniquely de�ne the

third.

Elements of the group Ih(Q, ·) = {α ∈M(Q, ·) |αh = h}, where M(Q, ·) is the
group generated by all left and right translations of a quasigroup (Q, ·), are called
inner mappings of (Q, ·) relative to the element h ∈ Q (cf. [2]). Belousov proved
(cf. [2]) that the group Ih(Q, ·) is generated by all permutations of the form:

Lx,y = L−1x◦yLxLy , where (x ◦ y)h = x · yh,
Rx,y = R−1x•yRyRx , where h(x • y) = hx · y,
Tx = L−1σxRx , where σ = R−1h Lh.

Lemma 3.2. In a WA-quasigroup (Q, ·) with the left identity element f inner

permutations Lx,y, Rx,y, and Tx relative to the element f are automorphisms of

(Q, ·).

Proof. In our case Lx,y = L−1x◦yLxLy, where x ◦ y = R−1f (x · Rfy) = R−1f x · y, by
Corollary 2.2. Therefore

Lx,y = L−1
R−1

f x·yLxLy. (19)

Moreover, x · y = fx · y = f(x • y) = x • y implies

Rx,y = R−1x·yRyRx. (20)

Since σx = R−1f Lfx = R−1f x, we also have Tx = L−1
R−1

f x
Rx. Thus

Lx,yf = Rx,yf = Txf = f. (21)
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From (5) it follows that for any �xed a ∈ Q the following triplets (La, La, La2)
and (Ra, Ra, Ra2), their inverse and various component-vise products are auto-
topies of (Q, ·). Therefore

(L−1
R−1

f x·y, L
−1
R−1

f x·y, L
−1
(R−1

f x·y)2)(Lx, Lx, Lx2)(Ly, Ly, Ly2) =

(Lx,y, Lx,y, L
−1
(R−1

f x·y)2Lx2Ly2).
(22)

This means that

Lx,yf · Lx,yz = L−1
(R−1

f x·y)2Lx2Ly2(f · z), (23)

whence, applying (21), we obtain

Lx,yz = L−1
(R−1

f x·y)2Lx2Ly2z (24)

for all x, y, z ∈ Q. This, together with (22), shows that Lx,y is an automorphism
of the quasigroup (Q, ·).

Similarly from

(R−1x·y, R
−1
x·y, R

−1
(x·y)2)(Ry, Ry, Ry2)(Rx, Rx, Rx2) = (Rx,y, Rx,y, R

−1
(x·y)2Ry2Rx2)

(25)
and

(L−1
R−1

f x
, L−1

R−1
f x

, L−1
(R−1

f x)2
)(Rx, Rx, Rx2) = (Tx, Tx, L

−1
(R−1

f x)2
Rx2) (26)

it follows that Rx,y and Tx are automorphisms of (Q, ·).

Corollary 3.3. In any WA-quasigroup with a left identity element we have

Lx,y = Lx2,y2 , Rx,y = Rx2,y2 , Tx = Tx2 .

Proof. Putting y = z in (5), we obtain

(xy)2 = x2 · y2. (27)

From (19) and (24) it follows that the identity Lx,y = Lx2,y2 will be proved,
if we prove that (R−1f x · y)2 = R−1f x2 · y2. This follows from (27) and the fact
that Rf (and its inverse) are automorphisms of (Q, ·) (see Corollary 2.2). Indeed,
(R−1f x)2 = R−1f x · R−1f x = R−1f (x · x) = R−1f x2. Since Rx,y = R−1(x·y)2Ry2Rx2 , by

(25), from (20) and (27) we obtain Rx,y = Rx2,y2 .
The third identity can be proved in a similar way.

De�nition 3.4. (cf. [10, 13]) Let (Q, ·) be a groupoid. The element a ∈ Q is
called a left nuclear element in (Q, ·) if Lax = LaLx for all x ∈ Q. The set of all
left nuclear elements in (Q, ·) is called the left nucleus of (Q, ·) and is denoted by
Nl.



Left loops with WA-property 194

It is well known (cf. [2, 3]) that in a quasigroup the set Nl forms a subgroup.

Theorem 3.5. In a WA-quasigroup (Q, ·) with the left identity element f the

inner permutations Lx,y, Rx,y, and Tx relative to a ∈ Q are automorphisms of

(Q, ·) if and only if a ∈ Nl and the following identity xy · a = xf · ya is satis�ed.

Proof. In this case Lx,y = L−1x◦yLxLy, where x ◦ y = R−1a (x · Ray), Rx,y =
R−1x•yRyRx, where ax · y = a(x • y) and Tx = L−1σxRx, where σx = R−1a Lfa.

In a similar way as in the proof of Lemma 3.2 (identities (22), (23), and
(24)), we can prove that Lx,y, Rx,y, and Tx are automorphisms of (Q, ·). Then
L−1x◦yLxLyf = f, i.e., LxLyf = Lx◦yf. So, x · yf = Lx◦yf = R−1a (x · Ray)f,
which gives R−1f (x · yf) = R−1a (x · Ray). Since R−1f is an automorphism of (Q, ·)
(Corollary 2.2), from the last identity we obtain R−1f x · y = R−1a (x · Ray), and
consequently, xy = R−1a (Rfx ·Ray). Thus, xy · a = xf · ya for all x, y ∈ Q.

Moreover, R−1x•yRyRxf = f implies RyRxf = Rx•yf. Hence xy = x • y and
ax · y = a(x • y) = a · xy for all x, y ∈ Q. Therefore a ∈ Nl.

The converse statement is obvious.

Lemma 3.6. The permutation LaRa is an automorphism of a WA-quasigroup
(Q, ·) with the left identity element element f if and only if a2 = f .

Proof. Since

(La, La, La2)(Ra, Ra, Ra2) = (LaRa, LaRa, La2Ra2) (28)

is an autotopy of (Q, ·), we have

LaRaf · LaRay = La2Ra2y (29)

for all y ∈ Q. This autotopy is an automorphism if and only if La2Ra2 = LaRa.
The last equality holds if and only if LaRaf = f , i.e., if and only if a2 = f .

Corollary 3.7. Let (Q, ·) be a WA-quasigroup with the left identity element f. If
a2 = f, then LaRa = La2Ra2 = Rf .

Proof. From (28) and the fact that LaRa is an automorphism of (Q, ·) it follows
LaRa = La2Ra2 . From (29), LaRaf = f and a2 = f we obtain LaRa = Rf .

Lemma 3.8. The permutation La2Ra is an automorphism of a WA-quasigroup
(Q, ·) with the left identity element f if and only if a2 · a = f .

Proof. It is clear that

(La2 , La2 , L(a2)2)(Ra, Ra, Ra2) = (La2Ra, La2Ra, L(a2)2Ra2)

is an autotopy of (Q, ·). Therefore La2Raf · La2Ray = L(a2)2Ra2y is true for all
y ∈ Q. This autotopy is an automorphism if and only if L(a2)2Ra2 = La2Ra, i.e.,
if and only if La2Raf = f. The last condition is equivalent to a2 · a = f .
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4. Pseudoautomorphisms and subloops

A bijection θ of a set Q is called a right pseudoautomorphism of a quasigroup (Q, ·)
if there exists at least one element c ∈ Q such that (c · θx) · θy = c · θ(x · y) for all
x, y ∈ Q, i.e., if (Lcθ, θ, Lcθ) is an autotopy of a quasigroup (Q, ·). The element c
is called a companion of θ (cf. [2]).

A quasigroup with a right pseudoautomorphism has also a left identity element
(cf. [13]).

Lemma 4.1. In a WA-quasigroup with a left identity element f the translation

Ra is a right pseudoautmorphism if and only if the translation La is a right pseu-

doautmorphism and a2 = f .

Proof. Suppose that Ra is a right pseudoautomorphism with the companion k,
i.e., a quasigroup (Q, ·) has an autotopy (LkRa, Ra, LkRa). By Lemma 3.6 , LaRa,
where a2 = f , is an automorphism of (Q, ·).

Therefore

(LkRa, Ra, LkRa)(LaRa, LaRa, LaRa)
−1 = (LkL

−1
a , L−1a , LkL

−1
a )

also is an autotopy of (Q, ·). The last means that L−1a is a right pseudoautomor-
phism of (Q, ·). Since the set of all right pseudoatomorphisms of (Q, ·) forms a
group (cf. [2]), also La is a right pseudoautomorphism of (Q, ·).

The converse statement is obvious.

Lemma 4.2. Let (H, ·) be a subquasigroup of a WA-quasigroup (Q, ·). Then

(aH, ·) is a subquasigroup of (Q, ·) for any a = a2.

Proof. By (5), we have ah1 · ah2 = a2 · h1h2 = a · h1h2 ∈ aH. Thus the set aH is
closed with respect to the quasigroup operation.

The equation ah1 · x = ah2, where h1, h2 ∈ H, has a unique solution x ∈ Q.
Obviously, x = ax′ for some x′ ∈ Q. Thus, ah1 · ax′ = a · h1x′ = ah2. Hence
h1x

′ = h2, and consequently, x′ ∈ H. Therefore x = ax′ ∈ aH.
Analogously we prove that the equation y ·ah1 = ah2 has a solution in aH.

Lemma 4.3. Let (Q, ·) be a WA-quasigroup with the left identity element f and

(Q, ◦) be a loop de�ned by (12). If (Q, ·) satis�es the inverse property, then:

(i) R2
f = ε, where ε is the identity permutation,

(ii) Il = I, Ir = IRf for Ilx · xy = y, xy · Iry = x, Ix ◦ (x ◦ y) = y,

(iii) Il and Ir are automorphisms of a quasigroup (Q, ·) and a loop (Q, ◦),
(iv) IlIr = Rf , IlIr = IrIl.

Proof. (i). Indeed, Ilf = Irf = f . Thus xf · f = x for any x ∈ Q. So, R2
f = ε.

(ii). Since x ◦ y (12)
= R−1f x · y = Rfx · y, by (i), Rf is an automorphism of

(Q, ·) and the corresponding commutative Moufang loop (Q, ◦) (Theorem 1.11
and Corollary 2.2).
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Going now in the equation Ilx(x · y) = y to the loop operation ◦ we obtain
RfIlx ◦ (Rfx ◦ y) = y. Thus RfIlR

−1
f x ◦ (x ◦ y) = y. Consequently, I = RfIlR

−1
f

and Il = R−1f IRf = I, since in (Q, ◦) automorphisms Rf and I commute.
Similarly, going in the equation (x ·y)Iry = x to the loop operation ◦ we obtain

Rf (Rfx◦y)◦Iry = x. Thus, (x◦Rfy)◦Iry = x and (x◦y)◦IrR−1f y = x. Therefore,

I = IrR
−1
f and Ir = IRf .

(iii). It is a consequence of (ii) and (iii).
(iv). Since I = Il and Ir = IRf , we have IlIr = I2Rf = Rf . Analogously,

IrIl = IRfI = Rf .
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