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Normal edge-transitive Cayley graphs

on certain groups of orders 4n and 8n

Mohammad Reza Darafsheh and Majid Abdollahi

Abstract. Normal edge-transitive Cayley graph Cay(G,S) where G is the generalized quater-

nion group Q4n of order 4n or a certain group V8n of order 8n is investigated. It is shown that up

to isomorphism there is only one tetravalent normal edge-transitive Cayley graph when G ∼= Q4n

is the generalized quaternion group and its automorphism group is found. In the case of V8n we

show that there is no normal edge-transitive Cayley graph on V8n.

1. Introduction

We will be concerned with simple graphs, which mean graphs with no multiple
edges and loops. Let Γ = (V,E) be a graph with vertex set V and edge set E.
The edge joining the vertices u and v is denoted by e = {u, v}. The group of the
automorphisms of the graph is denoted by A = Aut (Γ), and Γ is called vertex

or edge transitive if A acts transitively on V or E respectively. Let G be a �nite
group and S be a subset of G such that S = S−1 and 1 /∈ S. The Cayley graph
of G on S is denoted by Γ = Cay(G,S) and has its vertex set G and edge set
e = {x, sx} where x ∈ G and s ∈ S. Therefore Γ is a regular graph of valency |S|,
and it is connected if and only if S generates G. For g ∈ G the mapping de�ned
by ρg : G → G, ρg(x) = xg, x ∈ G is a permutation of G preserving the edges of
Γ, hence it is an automorphism of Γ. It can be veri�ed that R(G) = {ρg | g ∈ G}
is a subgroup of Aut(Γ) isomorphic to G which acts regularly on the vertices of Γ,
hence Γ is a vertex transitive graph.

For the Cayley graph Γ = Cay(G,S) we de�ne the group Aut(G,S) by putting
Aut(G,S) = {σ ∈ Aut(G) |σ(S) = S}. It can be veri�ed that Aut(G,S) is a sub-
group of A = Aut(Γ) which acts on R(G) by ρσg := ρσ−1(g), where σ ∈ Aut(G,S)
and ρg ∈ R(G). Therefore the semi-direct product R(G)oAut(G,S) is a subgroup
of A.

It is proved in [3] that NA(R(G)) = R(G) o Aut(G,S), where NA(R(G))
denotes the normalizer of R(G) in A. In [7] the graph Γ is called normal if R(G) is
a normal subgroup of A and obviously in this case we have A = R(G)oAut(G,S).
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The normality of Cayley graphs has been studied by various authors from
di�erent point of views. If one is interested to study the normality of the Cayley
graphs it su�ces to consider the connected normal Cayley graphs, because in [5]
all the disconnected normal Cayley graphs are determined. The research on edge-
transitive Cayley graphs of small valency is of interest to many authors. In [6]
the authors determined all the tetravalent edge-transitive Cayley graphs on the
group PSL2(p) and Brian P. Corr et al. in [1] determined normal edge-transitive
Cayley graphs of Frobenius group of order a product of two di�erent primes.
In [8] tetravalent non-normal Cayley graphs of order 4p, p a prime number, are
determined. In [2] the authors studied normal edge-transitive Cayley graphs on
group of order 4p where p is an odd prime. Motivated by [2] we are interested
to investigate normal edge-transitive Cayley graphs on the generalized quaternion
group of order 4n and a certain group of order 8n, where n is an arbitrary natural
number. In particular we obtain:

Main result 1. Let Q4n = 〈a, b | a2n = b4 = 1, an = b2, b−1ab = a−1〉 be the

generalized quaternion group of order 4n. Then up to isomorphism there is only

one normal edge-transitive tetravalent Cayley graph of G and its automorphism

group is isomorphic to GoD8 if n is even and isomorphic to Go (Z2 × Z2) if n
is odd.

Main result 2. Let V8n = 〈a, b | a2n = b4 = 1, (ab)2 = (a−1b)2 = 1〉 be a group

of order 8n. Then there is no normal edge-transitive Cayley graph on V8n.

2. Preliminary results

Let G be a group and S be a subset of G such that 1 /∈ S. The Cayley di-graph

(directed graph) Cay(G,S) of G relative to S has G as its vertex set and (x, sx)
as its edge set, where x ∈ G and s ∈ S. If S is an inverse closed subset of G, i.e.,
S = S−1, then Cay(G,S) is an undirected graph that is simply called a Cayley
graph. The following result can be found for example in [4].

Lemma 2.1. Let Γ = Cay(G,S) be the Cayley graph of G with respect to S. Then

the following hold:

(i) NA(R(G)) = R(G) oAut(G,S).

(ii) R(G) E A if and only if A = R(G) oAut(G,S).

(iii) Γ is normal i� A1 = Aut(G,S), where A1 denotes the stabilizer of the vertex

1 under A.

We set N = NA(R(G)) = R(G)oAut(G,S) and we remark that for the normal
edge-transitivity of Cay(G,S) the group N need only be transitive on undirected
edges, and may or may not be transitive on ordered pairs of adjacent vertices.
From [4] we have the following result which is useful in our investigation.
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Lemma 2.2. Let Γ = Cay(G,S) be an undirected Cayley graph of the group G on

S and let N = NA(R(G)) = R(G)oAut(G,S). Then the following are equivalent:

(i) Γ is normal edge-transitive.

(ii) S = T ∪ T−1 where T is an orbit of Aut(G,S) on S.

(iii) There exist a subgroup H of Aut(G) and g ∈ G such that S = gH ∪ (g−1)H ,

where gH = {gh |h ∈ H}.

3. Cayley graphs on a certain group of order 4n

First we consider the generalized quaternion group. The generalized quaternion
group of order 4n has the following presentation:

Q4n = 〈a, b | a2n = b4 = 1, an = b2, b−1ab = a−1〉.

It is easy to verify that the center Z of Q4n has order 2 generated by an = b2 and
Q4n

Z
∼= D2n. The elements of Q4n are of the form aibj , 0 6 i 6 2n − 1, j = 0, 1.

Element orders of Q4n is as follows:

O(ak) = 2n
(k,2n) , 0 6 k 6 2n− 1, (0, 2n) = 2n,

O(akb) = 4, 0 6 k 6 2n− 1.

Proposition 3.1. The automorphism group of Q4n is of order 2nϕ(2n) and is

isomorphic to the semi-direct product Z2n o Φ2n, where Φ2n is the group of units

of Z2n.

Proof. Let ϕ ∈ Aut(Q4n). Then ϕ is completely determined by de�ning ϕ(a) and
ϕ(b). Since ϕ preserves order of elements we have O(ϕ(a)) = 2n and O(ϕ(b)) = 4.
Therefore ϕ(a) = ak, where 1 6 k < 2n, (k, 2n) = 1. If ϕ(b) = alhas order 4,
then ϕ(〈a, b〉) ⊆ 〈a〉 or G ⊆ 〈a〉 which is a contradiction. Therefore ϕ(b) = alb,
0 6 l < 2n. It can be veri�ed that ϕ in fact de�nes an automorphism of Q4n and
if we set ϕk,l(a) = ak, ϕk,l(b) = alb with k, l satisfying the above conditions, then
ϕk,lϕk′,l′ = ϕkk′,l+kl′ , hence:

Aut(Q4n) = {ϕk,l | k ∈ Φ2n, l ∈ Z2n}

∼=
{[

k l
0 1

]
: k ∈ Φ2n, l ∈ Z2n

}
But if we set

N =

{[
1 l
0 1

]
: l ∈ Z2n

}
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and

H =

{[
k 0
0 1

]
: k ∈ Φ2n

}
,

then Aut(Q4n) = N oH ∼= Z2noΦ2n, where the group Φ2n has order ϕ(2n). The
proof is completed now.

Now let S be a subset of Q4n such that 1 /∈ S, S = S−1 and 〈S〉 = Q4n. Our
aim is to consider normal edge-transitive Cayley graphs Q4n on S. By Lemma
2.2, elements of S have the same order d and S = T ∪ T−1 where T is an orbit of
Aut(G,S). If S contains an element of order 2 this element must be b2 which is a
central element and invariant under Aut(G,S) and S can not break as S = T∪T−1.
This implies that |S| should be even. Since 〈a〉is a cyclic group of order 2n, for
each divisor d of 2n there is a unique subgroup of 〈a〉with order d and elements of
order d of 〈a〉 lie in this subgroup. If d 6= 4, elements of order d of Q4n lie in 〈a〉
and obviously can not generate Q4n.

Next we assume elements of S are of order d = 4. Keeping �xed the above
notations we state the following:

Proposition 3.2. S can not contain elements of order 4 contained in 〈a〉.

Proof. On the contrary suppose ak ∈ 〈a〉∩S has order 4. Then 2n
(k,2n) = 4 implying

n = 2(k, 2n). Hence n must be even and we set n = 2t which implies k is an odd

multiple of t, i.e., k = (2l + 1)t = (2l+1)n
2 . Then from 0 6 k < 2n we obtain l = 0

or 1, hence k = n
2 or 3n2 . This implies that the only elements of order4 in 〈a〉 are

a
n
2 and a

3n
2 .

But in this case if we apply the automorphisms ϕ ofQ4n obtained in Proposition
3.1 we see that {an

2 , a
3n
2 } is invariant under Aut(Q4n) . Again S can not break

as S = T ∪ T−1 with T as an Aut(G,S) orbit and this completes the proof.

By the above proposition if Cay(G,S) is normal edge-transitive, then we will
have S ⊆ {aib | 0 6 i < 2n}.

Proposition 3.3. Let 0 6 i 6= j < 2n. Then 〈aib, ajb〉 = Q4n if and only if

(i− j, 2n) = 1.

Proof. Suppose j < i, (i − j, 2n) = d and H = 〈aib, ajb〉. Then using the
de�ning relations for Q4n we deduce (aib)2 = b2 ∈ H. Therefore ai−j ∈ H. Since
(i − j, 2n) = d we obtain ad ∈ H and d is the least power of a belonging to H.

Now elements of H can be organized as aid, aidb2, 0 6 i <
2n

d
. Hence|H| = 4n

d

and H = Q4n if and only if d = 1 and the proof is complete.

Next we turn on tetravalent Cayley graphs of Q4n. By what we proved earlier
we have S = {aib, ajb, aib−1, ajb−1}, where (i−j, 2n) = 1. We de�ne the following
concept which is needed in the next result.
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If G is a group with two subsets S and T such that 1 /∈ S, 1 /∈ T , and if there
is an automorphism ϕ of G such that ϕ(S) = T , then Cay(G,S) is isomorphic to
Cay(G,T ). In this case S and T are called equivalent.

Proposition 3.4. If (i− j, 2n) = 1, then {b, ab, b−1, ab−1} is equivalent to

{aib, ajb, aib−1, ajb−1}.

Proof. It is enough to apply the automorphism ϕj−i,i of Q4n to one of the above
sets.

Theorem 3.5. There is only one tetravalent normal edge-transitive Cayley graph

of Q4n and the automorphism group of this graph is isomorphic to Q4n oD8 if n
is even and isomorphic to Q4n o (Z2 × Z2) if n is odd.

Proof. By Proposition 3.3 we have S ⊆ {aib | 0 6 i < 2n} and |S| = 4, S = S−1,
〈S〉 = Q4n forces S = {aib, ajb, aib−1, ajb−1} for some i, j where (i − j, 2n) = 1.
Now by Proposition 3.4 we may take S = {b, ab, b−1, ab−1}. This proves that up
to equivalence there is a unique tetravalent normal edge-transitive Cayley graph
of Q4n. Next we determine Aut(Q4n, S).

Since 〈S〉 = Q4n the group Aut(Q4n, S) acts on S faithfully, from which we
deduce Aut(Q4n, S) 6 S4. If Aut(Q4n, S) contains an element σ of order 3, then
σ would �x an element say α ∈ S, but in this case σ(α−1) = α−1 and σ can not
be a 3-cycle. Therefore |Aut(Q4n, S)| is a divisor of 8. It is easy to verify that
the elements ϕ1,n and ϕ2n−1,1 belong to Aut(Q4n, S) and 〈ϕ1,n, ϕ2n−1,1〉 ∼= V4 the
Klein's four group. We distinguish two cases:

Case (i). n is even. In this case ϕn−1,1 is also an element of Aut(G,S)
of order 4 and 〈ϕn−1,1, ϕ2n−1,1, ϕ1,n〉 ∼= D8 is a subgroup of Aut(Q4n, S), hence
Aut(Q4n, S) ∼= D8 therefore the automorphism group of Cay(Q4n, S) is isomorphic
to Q4n oD8.

Case (ii). n is odd. In this case we will prove that Aut(Q4n, S) does not
contain an element of order 4. On the contrary suppose ϕk,l ∈ Aut(Q4n, S) is an
element of order 4. Therefore we have one of the cases ϕk,l(b) = ab, ϕk,l(ab) = b−1

or ϕk,l(b) = ab−1, ϕk,l(ab) = b. In the �rst case we obtain alb = ab and ak+lb =
b−1, hence al−1 = 1, ak+l+n = 1. Since a is of order 2n we obtain k = n− 1, and
because n is odd, 2|(n− 1, 2n) = (k, 2n) = 1, a contradiction. In the second case
we obtain alb = ab−1, ak+lb = b, hence al+n−1 = 1 and al+k = 1. Again from
these relations we obtain k = n− 1, a contradiction.

Since Aut(Q4n, S) does not contain elements of order 4 we obtain Aut(Q4n, S) ∼=
Z2 × Z2, hence the automorphism group of Cay(Q4n, S) is isomorphic to Q4n o
(Z2 × Z2) and the proof is complete.

4. Cayley graph of a group of order 8n

Next we are going to study the normal edge-transitive Cayley graphs of a certain
group of order 8n whose presentation is given as follows:
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V8n = 〈a, b | a2n = b4 = 1, (ab)2 = (a−1b)2 = 1〉

where n is a natural number. Using similar techniques as used in the previous
section in �nding the automorphism group of Q4n one can prove the following:

Lemma 4.1. Aut(V8n) is a group of order 4nϕ(2n) if n > 1 and it is a group of

order 8 if n = 1.

Proof. In fact if n = 1, the group V1 = D8 is the dihedral group of order 8. To
de�ne an automorphism f of V8n it is enough to de�ne f(a) and f(b) which can be
veri�ed they are of the form:

fi,r,s,t(a) = aibr

fi,r,s,t(b) = a2tbs,

where (i, 2n) = 1, r = 0, 2, s = ±1, 1 6 t 6 n.

Lemma 4.2. For V8n we have

〈a2, b2, ab〉 = {a2k, a2k+1b±1, a2kb2 | 1 6 k 6 n}

Proof. If we set X = {a2k, a2k+1b±1, a2kb2 | 1 6 k 6 n} since {a2, b2, ab} ⊆ X it is
su�cient to show that X is a subgroup of V8n and it is obviously true.

Theorem 4.3. There is no normal edge-transitive Cayley graph Cay(G,S) for

G = V8n if S has an element of order 2.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph and S has an
element of order 2.

Elements of order 2 in V8n are Y = {an, b2, anb2, a2k+1b±1 | 1 6 k 6 n}. Since
all elements of S have the same order we have S ⊆ Y . If n is even then 〈S〉 ⊆
〈Y 〉 ⊆ 〈a2, b2, ab〉 6= V8n, a contradiction. Hence n is odd.

If S ∩ {an, anb2} = ∅ then 〈S〉 ⊆ 〈a2, b2, ab〉 6= V8n a contradiction, hence
S ∩ {an, anb2} 6= ∅. For all f ∈ Aut(G,S) we have f({an, anb2}) = {an, anb2},
therefore S ∩{an, anb2} is an orbit of f ∈ Aut(G,S) on S and it is a contradiction
by Lemma 2.2.

Theorem 4.4. There is no normal edge-transitive Cayley graph Cay(G,S) for

G = V8n if S has an element of order 4.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph and S has
an element of order 4. Elements of order 4 in V8n are a2tb±1 for odd n and are
{an

2 , a
n
2 b2, a2tb±1 | 1 6 t 6 n}.

Since Cay(G,S) is a normal edge transitive Cayley graph all elements of S
have order 4. If (n, 4) = 1 or (n, 4) = 4 then 〈S〉 ⊆ 〈a2, b〉 6= V8n, a contradiction.
Hence (n, 4) = 2 or equivalently n

2 is odd.
If S ∩ {an

2 , a
n
2 b2} = ∅ then 〈S〉 ⊆ 〈a2, b〉 6= V8n a contradiction, hence S ∩

{an
2 , a

n
2 b2} 6= ∅. For all f ∈ Aut(G,S) we have f({an

2 , a
n
2 b2}) = {an

2 , a
n
2 b2}
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therefore S ∩{an
2 , a

n
2 b2} is an orbit of Aut(G,S) on S and it is a contradiction by

Lemma 2.2. unless |S| = 4 and S = {an
2 , a

n
2 b2, a−

n
2 , a−

n
2 b2} and in these case we

also have 〈S〉 6= V8n.

Theorem 4.5. There is no normal edge-transitive Cayley graph on V8n.

Proof. Suppose Cay(G,S) is a normal edge-transitive Cayley graph. By Theorems
3.3 and 3.4 we know that S can not have elements of order 2 or 4, Hence we have
S ⊆ {ai, aib2 | 1 6 i 6 2n} consequently 〈S〉 ⊆ 〈a, b2〉 6= V8n, a contradiction.
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