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Note on the power graph of �nite simple groups

Narges Akbari and Ali Reza Ashra�

Abstract. A graph Γ is said to be 2−connected if Γ does not have a cut vertex. The power graph

P(G) of a group G is the graph which has the group elements as vertex set and two elements

are adjacent if one is a power of the other. In an earlier paper, it is conjectured that there is

no non-abelian �nite simple group with a 2−connected power graph. Bubboloni et al. [3] and

independently Doostabadi and Farrokhi D. G. [11], presented counterexamples for this conjecture.

The aim of this paper is to �rst modify this conjecture and then prove this modi�ed conjecture

for the sporadic groups, Ree groups 2F4(q) and 2G2(q), the Chevalley groups A1(q), B2(q), C3(q)

and F4(q), the unitary group U3(q), the symplectic group S4(q) and the projective special linear

group PSL(3, q), where q is a prime power.

1. Introduction

The investigation of graphs related to groups is an important topic in algebraic
combinatorics. This paper is devoted to the study of power graphs, which were
introduced by Kelarev and Quinn in [13]. These authors in [16, 14, 15] studied the
same structures on a semigroup. The power graph P(G) of a �nite group G is a
simple graph in which V (P(G)) = G and two vertices are adjacent if and only if
one of them is a power of the other. We encourage the interested reader to consult
[1] for a survey of all recent results on this topic.

Let us review some facts on power graphs of a �nite group. Chakrabarty et al.
[6] classi�ed the complete power graphs and obtained a formula for the number
of edges in a power graph. Cameron and Ghosh [4] proved that non-isomorphic
�nite groups may have isomorphic power graphs, but that �nite abelian groups
with isomorphic power graphs must be isomorphic. It is also conjectured that [4]
two �nite groups with isomorphic power graphs have the same number of elements
of each order. Later Cameron [5] responded a�rmatively to this conjecture.

Mirzargar et al. [20] considered some graph invariants of the power graphs
into account and conjectured that the power graph of a cyclic group of order n has
the maximum number of edges between the power graphs of all groups of order n.
This conjecture recently proved by Curtin and Pourgholi [9]. Moghaddamfar et
al. [21] de�ned the proper power graph P?(G) as a graph constructed from P(G)
by deleting the identity element of G. They provided necessary and su�cient
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conditions for a proper power graph P?(G) to be a strongly regular graph, a
bipartite graph or a planar graph. In a recent paper [22], the authors determined,
up to isomorphism, the structure of a �nite group G whose power graph has exactly
n spanning trees, n < 53, and obtained a new characterization of the alternating
group A5 by tree-number of its power graph. Finally in [19], the second author
of the present paper computed the automorphism group of the power graphs of
cyclic groups.

A graph Γ is said to be 2−connected if Γ does not have a cut vertex. It is easy
to see that P?(G) is connected if and only if P(G) is 2−connected. Pourgholi et
al. [23], proved some results about characterization of simple groups by power
graphs. They proposed the following open question:

Question. Does there exist a non-abelian simple group with a 2−connected power

graph?

Following Bubboloni et al. [3], we assume that P is the set of prime numbers
and b, c ∈ N, where N denotes the set of all positive integers. Set

bP + c = {x ∈ N | x = bp+ c, for some p ∈ P}
and de�ne

A = P ∪ (P + 1) ∪ (P + 2) ∪ (2P ) ∪ (2P + 1).

They proved that P(An) is 2−connected if and only if n = 3 or n 6∈ A. In
Theorems 3.6 and 3.7 of [11], the authors proved that the proper power graphs of
the projective special linear group PSL(2, q), q is prime power, and the Suzuki
group Sz(22n+1) are disconnected. This shows that their power graphs are not
2−connected. They also reproved [3, Theorem A] with a di�erence in the case
that n−2

2 is prime. We conjecture that:

Conjecture. The power graph of a non-abelian simple group G is 2−connected if

and only if G is isomorphic to the alternating group An, where n = 3 or n 6∈ A.

The aim of this paper is to prove this conjecture for some classes of �nite simple
groups. For a �nite group G, we denote by πe(G) a set of all element orders of
group G. This set is closed under divisibility and hence is uniquely determined by
a set µ(G) of elements in πe(G) which are maximal under the divisibility relation.
The set of all divisors of a natural number n is denoted by β(n). Our other
notations are standard and taken mainly from [8].

We will prove the following theorem:

Main Theorem. Let q be a power of a prime number. The proper power graphs

of the sporadic groups, Ree groups 2F4(q) and 2G2(q), the Chevalley groups A1(q),
A2(q), B2(q), C3(q) and F4(q), the projective unitary group U3(q) and the projec-

tive symplectic group S4(q) are disconnected.
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2. Proof of the main theorem

The aim of this section is to prove our main theorem. We separated our proof into
four subsections. In the �rst subsection, it is proved that the power graph of spo-
radic groups are not 2−connected. In the second subsection, the 2−connectivity
of P(2F4(q)) and P(2G2(q)) are investigated. Our third subsection is devoted to
connectedness of the proper power graph of the Chevalley groups A1(q), A2(q),
B2(q), C2(q) and F4(2m). In our �nal subsection, the power graphs of U3(q) and
S4(q) are taken into account.

2.1. The sporadic groups

Two positive integers r and s are said to be incomparable if r is not divisible by
s and s is not divisible by r. Suppose G is a �nite group and G \ {e} can be
partitioned into two subsets A and B such that for each element a ∈ A and b ∈ B,
|a| and |b| are coprime. Then the proper power graph P?(G) will be disconnected.
We apply this simple fact to prove that the power graphs of the sporadic groups
are not 2−connected.

De�ne S(M11) = S(M12) = S(M22) = S(McL) = {11}, S(M23) = S(M24) =
{23}, S(J1) = S(J3) = S(HN) = {19}, S(J2) = {7}, S(He) = {17}, S(J4) =
{23, 29, 31, 37, 43}, S(Co1) = S(Co3) = {23}, S(Co2) = {11, 23}, S(O′N) =
{31}, S(Ly) = {67}, S(Ru) = S(Fi24) = {29}, S(HS) = {7, 11}, S(Th) =
{13, 19, 31}, S(Suz) = {11, 13}, S(B) = {31, 47}, S(M) = {41, 71}, S(Fi22) =
{13, 17}, S(Fi23) = {17, 23}. For an arbitrary sporadic group G, we assume
that A(G) = {g ∈ G | |g| ∈ S(G)} and B(G) = G \ (A(G) ∪ {e}). We now apply
computer algebra system GAP [12] to prove that for each x ∈ A(G) and y ∈ B(G),
|x| and |y| are coprime, proving the following result:

Theorem 1. The power graphs of the sporadic groups are not 2−connected.

2.2. The power graph of the Ree groups 2F4(q) and
2G2(q)

The aim of this section is to prove the power graph of 2F4(q) and 2G2(q) are not
2−connected. Suppose µ(G) denotes the set of all maximal elements of πe(G) with
divisibility order. We �rst consider the group 2F4(q), where q = 22m+1 and m > 1.
Deng and Shi [10, Lemma 3] proved that

πe(
2F4(q)) = {1, 2, 4, 8, 12, 16} ∪ β(2(q + 1)) ∪ β(4(q − 1))

∪ β(4(q +
√

2q + 1)) ∪ β(4(q −
√

2q + 1)) ∪ β(q2 − 1) ∪ β(q2 + 1)

∪ β(q2 − q + 1) ∪ β((q − 1)(q +
√

2q + 1)) ∪ β((q − 1)(q −
√

2q + 1))

∪ β(q2 + q
√

2q + q +
√

2q + 1) ∪ β(q2 − q
√

2q + q −
√

2q + 1).

Set α = q2 + q
√

2q + q +
√

2q + 1, X = β(α) \ {1}, Y = πe(G) \ (X ∪ {1}) and
Z = {q+1, q−1, q2+1, q+

√
2q+1, q−

√
2q+1, q2−q+1, q2−q

√
2q+q−

√
2q+1}.
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We claim that for integer γ ∈ Z, (α, γ) = 1. To prove this, it is enough to notice
that by simple divisions of appropriate components, we have:

α = (q +
√

2q)(q + 1) + 1

= (q +
√

2q + 2)(q − 1) + (2
√

2q + 3)

= q(q +
√

2q + 1) + (
√

2q + 1)

= (q2 − q + 1) +
√

2q(q +
√

2q + 1) (1)

= (q2 − q
√

2q + q −
√

2q + 1) + 2
√

2q(q + 1)

= (q + 2
√

2q + 4)(q −
√

2q + 1) + (3
√

2q − 3)

= (1 +
√

2q)(q2 + 1) + (q
√

2q + q − q2
√

2q).

To explain, we choose the case of q −
√

2q + 1. If the prime p divides α and
q −
√

2q + 1 then by the fourth equation in (1),

α = (3
√

2q − 3) + (q + 2
√

2q + 4)(q −
√

2q + 1).

This shows that p|3
√

2q−3 = 3×2m+1−3 and so p|3×22m+1. Since p is odd, p = 3
and 3|q −

√
2q + 1 = 22m+1 − 2m+1 + 1. Thus, 22m+1 − 2m+1 ≡ −1( mod 3). On

the other hand, for each positive integer k, 22k+1 ≡ 2 ( mod 3) which implies that
3|2m+1, a contradiction. Using a similar argument, all cases lead to contradiction.
Hence, we obtain a partition πe(G)X ∪ Y ∪ {1} such that elements of X and Y
are mutually coprime. Therefore, we have proved the following result:

Theorem 2. The power graph of the Ree group 2F4(q) is not 2−connected.

We now consider the groups 2G2(q), where q = 32m+1 and m ≥ 0. It is well-
known that 2G2(3) ∼= Aut(SL(2, 8)) and for m > 1 the groups 2G2(q) are simple.
Staroletove [26, Lemma 3.5], proved that

µ(2G2(q)) =

{
q +

√
3q + 1, q −

√
3q + 1, q − 1,

q + 1

2
, 6

}
.

Set α = q +
√

3q + 1 and T = {q −
√

3q + 1, q − 1, q+1
2 , 6}. We prove that α

does not have a common prime factor with an element of T . This is an immediate
consequence of the fact that α = (q −

√
3q + 1) + 2

√
3q = (q − 1) + (2 +

√
3q)

= 2 q+1
2 +

√
3q. This shows that by removing the identity element, the resulting

graph will be disconnected. We have proved the following result:

Theorem 3. The power graph of the Ree group 2G2(q) is not 2−connected.

2.3. The power graphs of A1(q), A2(q), B2(q), C2(q) and F4(2
m)

In this section, it is proved that the power graphs of the groups A1(q), A2(q),
B2(q), C2(q) and F4(2m) are not 2−connected. We start by the simple group
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G = A1(q), where q is an odd prime power. Staroletove [26, Lemma 3.5], proved

that µ(A1(q)) =

{
q + 1

2
,
q − 1

2
, p

}
. Since p 6 | q+1

2 and p 6 | q−1
2 , by removing the

identity element, the elements of order p will be separate from other elements.
Thus, we proved the following:

Theorem 4. The graph P(A1(q)) is not 2−connected.
We now consider the simple group A2(q), where q is a prime power. Simpson

[24] proved that

µ(A2(q)) =



{
q − 1, p(q−1)3 , q

2−1
3 , q

2+q+1
3

}
d = 3 and q is odd,{

p(q − 1), q2 − 1, q2 + q + 1
}

d = 1 and q is odd,{
4, q − 1, 2(q−1)3 , q

2−1
3 , q

2+q+1
3

}
d = 3 and q is even,{

4, 2(q − 1), q2 − 1, q2 + q + 1
}
d = 1 and q is even,

where d = (3, q − 1).
We �rst assume that q is odd and d = 3. Set

α =
q2 + q + 1

3
and X =

{
q − 1,

p(q − 1)

3
,
q2 − 1

3

}
.

Since α = (q + 2) q−1
3 + 1 = q q−1

3 + 2q+1
3 , by a similar argument as Proposition

2, α and elements of X are coprime. Hence P(A2(q)) is not 2−connected. Next
assume that q is odd, d = 1, α = q2 + q + 1 and X = {p(q − 1), q2 − 1}. Again
since α = q(q − 1) + (2q + 1), α is coprime with p(q − 1) and q2 − 1 which shows
that P(A2(q)) is not 2−connected.

We now assume that q = 2m and d = 3. De�ne:

α =
q2 + q + 1

3
and X =

{
4,
q − 1

3
,
q2 − 1

3

}
.

Since α = (q + 2) q−1
3 + 1, it can easily prove that α is coprime to all elements of

X which implies that the proper power graph of A2(q) is disconnected. Finally, if
q = 2m, d = 1, α = q2 + q + 1 and X = {4, q − 1, q2 − 1}, then α an elements of
X are coprime. Therefore, we have proved the following:

Theorem 5. The proper power graph of A2(q) is not connected.

We now proceed to consider the simple group G = B2(q), where q is a prime
power. Srinivasan [25] proved that:

µ(B2(q)) =


q2+1

(2,q−1) ,
q2−1

(2,q−1) , p(q + 1), p(q − 1) p > 3

q2+1
(2,q−1) ,

q2−1
(2,q−1) , p(q + 1), p(q − 1), p2 p ∈ {2, 3}

We consider three cases as follows:
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a. q = pm, where p > 3 is prime and m is a natural number. In this case

(2, q − 1) = 2. De�ne α = q2+1
2 and X = {p(q + 1), p(q − 1), q

2−1
2 }. Then α

is coprime with all elements of X and by a similar argument as Proposition
2, P(B2(q)) is not 2−connected.

b. q = 3m, where m is a natural number. In this case we have again (2, q−1) = 2

and by choosing α = q2+1
2 and X = {3(q + 1), 3(q − 1), q

2−1
2 , 9}, we can see

that α does not have a common divisor with an element of X. So, P(B2(q))
is not 2−connected.

c. q = 2m, where m is a natural number. In this case, (2, q − 1) = 1. Set
α = q2 + 1 and X = {p(q + 1), p(q − 1), q2 − 1, 4}. Then a similar argument
as Cases a and b shows that P(B2(q)) is not 2−connected.

Thus, we have proved the following result:

Theorem 6. The proper power graph of B2(q) is not connected.

We now consider the group C2(q), where q is an odd prime power. Staroletove
[26, Lemma 3.5] proved that:

µ(C2(q)) =


{

q2+1
2 , q

2−1
2 , p(q + 1), p(q − 1)

}
p 6= 3,{

q2+1
2 , q

2−1
2 , p(q + 1), p(q − 1), 9

}
p = 3.

We consider two separate cases as follows:

a. q = pm, where p > 3 is prime and m is a natural number. In this case, we

de�ne α = q2+1
2 and X = {p(q+1), p(q−1), q

2−1
2 }. Some similar calculations

as above show that α is coprime with all elements of X and so P(B2(q)) is
not 2−connected.

b. q = 3m, where m is a natural number. A similar argument as Case b in the
proof of Proposition 6 completes this case.

Hence, we have proved the following result:

Theorem 7. The proper power graph of C2(q) is not connected.

We end this subsection by investigation of the power graph of the group F4(q),
q = 2m and m ≥ 1. Coa et al. [7, Lemma 1.6] proved that:

µ(F4(q)) = {16, 8(q− 1), 8(q+ 1), 4(q2 − 1), 4(q2 + 1), 4(q2 − q+ 1), 4(q2 + q+ 1),
2(q− 1)(q2 + 1), 2(q+ 1)(q2 + 1), 2(q3− 1), 2(q3 + 1), (q2− 1)(q2− q+ 1), q4− q2 +
1, (q2 − 1)(q2 + q + 1), q4 − 1, q4 + 1}.

De�ne α = q4 − q2 + 1 and

X = {q − 1, q + 1, q2 + 1, q2 − q + 1, q2 + q + 1, q4 − 1, q4 + 1}.
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By using a similar argument as above, one can see that it is possible to partition
the group F4(2m) into the set of all elements that their orders are divisors of α
and its complement. Again by deleting the identity element, the resulting graph
will be disconnected. So, we have:

Theorem 8. The proper power graph of F4(2m) is not connected.

2.4. The power graphs of U3(q) and S4(q)

The aim of this section is to prove the proper power graph of U3(q) and S4(q)
are disconnected. We start by the simple groups U3(q), where q is an odd prime

power. This group is de�ned as U3(q) = SU3(q)
Z(SU3(q))

, where SU3(q) is the set of

all invertible 3× 3 matrices A on GF (q2) such that detA = 1 and AAT = I, and

Z(SU3(q)) denotes its center. It is well-known that |U3(q)| = q3(q3+1)(q2−1)
d , where

d = (3, q − 1). Aleeva [2, Lemma 10] proved that if q is odd then the maximal
element orders of this group is as follows:

µ(U3(q)) =

{{
q2−q+1

3 , q
2−1
3 , p(q+1)

3 , q + 1
}
d = 3,{

q2 − q + 1, q2 − 1, p(q + 1)
}
d = 1.

We now consider the following two cases:

1. d = 3. Suppose α = q2−q+1
3 and X =

{
q + 1, p(q+1)

3 , q
2−1
3

}
. If we partition

U3(q) into the set of all elements such that their orders are divisors of α and
its complement, then by removing the identity element the resulting graph
will be disconnected.

2. d = 1. In this case by choosing α = q2 + q + 1 and X =
{
p(q + 1), q2 − 1

}
,

one can easily prove that α and elements of X are coprime. Thus, U3(q) is
not 2−connected.

We have proved the following:

Theorem 9. The proper power graph of U3(q) is not connected.

We end this paper by considering the simple group S4(q), q = pm and p is an
odd prime. Srinivasan [25] proved that:

πe(S4(q)) = β(
q2 + 1

2
) ∪ β(

q2 − 1

2
) ∪ β(p(q + 1)) ∪ β(p(q − 1)); p 6= 3,

µ(S4(q)) =

{
q2 + 1

2
,
q2 − 1

2
, 3(q + 1), 3(q − 1), 9

}
; p = 3.

We consider two separate cases as follows:
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1. Set α = q2+1
2 and X =

{
q2−1

2 , p(q + 1), p(q − 1)
}
. Then

A = {x ∈ S4(q) | o(x)|α} and B = S4(q) \A

is a partition of S4(q) such that by removing the identity element, the re-
sulting graph will disconnected. This proves that P(S4(q)) is 2−connected.

2. Set α = q2+1
2 and X =

{
q2−1

2 , 3(q + 1), 3(q − 1), 9
}
. A similar argument as

Case (1), completes our argument.

Therefore, the following result is proved.

Theorem 10. The proper power graph of S4(q), q = pm and p is an odd prime,

is not connected.

The proof of the main theorem follows from Theorems 1− 10.
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