162 Poster Session 1

BASIC SCIENCE - ANIMAL EXPERIMENTATION

P622

Inflammation inhibition effects in diabetes induced heart failure

V Cobet¹; M Popovici²; L Ciobanu²; L Tacu¹; V Ivanov²; I Popovici²; I Moraru²; E Cobet³; M Ivanov¹; E Panfile²; V Rotaru¹

¹State University of Medicine and Pharmacy, Chisinau, Moldova Republic of; ²Institute of cardiology, Chisinau, Moldova Republic of; ³State University of Moldova, Biopharmaceutical chemistry, Chisinau, Moldova Republic of

Background: Inflammation is appreciated as a leading factor regarding cardiovascular disorders triggering and exacerbation. Nevertheless a promising antinflammatory treatment concerning cardiac mismatch improvement is not yet consolidated.

Aim: The in vitro evaluation of cardiac effects of the TNF-alpha antagonist administration during diabetes-induced heart failure (DHF).

Material and methods: DHF was classically reproduced in rats by i/p administration of streprozotocin (50 mg/kg, 5 days) – series 1 (of reference). TNF-alpha antagonist, TNF-McAb (TNF monoclonal antibody, analog of infliximab) has been administered i/p during DHF modeling and 5 days after – series 2. After 10 days animals of both series have been euthanized, and isolated heart was perfused in isovolumic regimen (Langendorff model) or exterior working (Neely-Rovetto model). Cardiac reactivity was assayed in: (1) hemodynamic effort due to pre- and afterload

Poster Session 1 163

increase; (2) neuroendocrine activation modulated by action in diverse concentrations of norepinephrine, angiotensin II and endothelin-1 (ET-1); (3) in ischemia (30 min) followed by reperfusion (45 min) syndrome.

Results: TNF-alpha inhibition led to significant increase of cardiac output (CO) in effort with volume and resistance respectively by 23,7 and 26,2% comparatively to reference indices. Systolic pressure of left ventricle (LV) was in series 1 higher in all induced hemodynamic stress levels, but on a ortic pressure of 100 and 120 \mbox{cm} H20 the increment was significant and a veragely represented 18-19%. DHF was characterized by LV lusitropic function impairment, whose principal parameters, telediastolic pressure (LVTDP) and index of diastolic myocardial rigidity significantly decreased during TNF-alpha inhibition by 26-28%. The norepinephrine action led in DHF to inotrop-chronotropic effect dissociation, but endothelin-1 (ET-1) induced a negative inotropic effect, associated by CO reducing by 10,3%. TNF-alpha inhibition led to appearance of positive inotropic effect to ET-1 action and cardiac output increase by 11%. Myocardial ischemic contracture assayed after 30 min of ischemia thereby of LVTDP is doubly more in DHF vs control pattern (56,3 \pm 3,6 vs 28,4 \pm 1,9 mm Hg) and remains above on 45th min of reperfusion $(39.2\pm2.5 \text{ vs } 18.8\pm1.2 \text{ ms})$ mm Hg). TNF-McAb notably attenuated consequences of ischemia-reperfusion syndrome, leading to LVTDP drop by 29,3% at finish of ischemia and by 26,8% at finish of reperfusion.

Conclusions: 1. TNF-alpha inhibition during diabetes-induced heart failure improved cardiac functionality, confirming t he p athogenical r ole o f inflammation and, on the other hand, the therapeutic relevance of TNF-McAb regarding outworn heart functioning in hemodynamic and neuroendocrine efforts.

2. Most conspicuous TNF-McAb benefit has referred to a ppearance of positive inotropic effect to ET-1 action and significant decrease of LV telediastolic pressure by around 29% in ischemia-reperfusion syndrome.