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Abstract. For multifrequency system of differential equations with a discrete and
integral delay we find conditions for the existence and uniqueness of the solution. Linear
multipoint conditions are set for the solution. An estimate of the error of the averaging
method is obtained, which clearly depends on the small parameter.
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Medierea ı̂n sistemele multifrecvenţă cu condiţii multi-punct
şi ı̂ntârziere

Rezumat. Pentru sistemul multifrecvenţă de ecuaţii diferenţiale cu o ı̂ntârziere integrală şi
discretă găsim condiţii pentru existenţa şi unicitatea soluţiei. Condiţiile liniare multipunct
sunt stabilite pentru soluţie. Se obţine o estimare a erorii metodei de mediere, care depinde
ı̂n mod clar de parametrul mic.
Cuvinte-cheie: sistem multifrecvenţă, metoda medierii, rezonanţă, ı̂ntârziere integrală,
argument transformat liniar.

1. Introduction

In many cases, mathematical models of oscillating systems are described with
differential equations of the form

𝑑𝑎

𝑑𝜏
= 𝑋 (𝜏, 𝑎, 𝜑), 𝑑𝜑

𝑑𝜏
=
𝜔(𝜏, 𝑎)

Y
+ 𝑌 (𝜏, 𝑎, 𝜑), (1)

where 0 ≤ Y𝑡 = 𝜏 – slow time, Y – positive small parameter, 𝑎 ∈ D ⊂ R𝑛, 𝜑 ∈ R𝑚.
The system (1) is rigid, its research and construction of both analytical and numerical
solutions is a complex and not always solvable task. Therefore, to simplify the system (1),
the averaging procedure for fast variables 𝜑1, . . . , 𝜑𝑚 is used, which greatly simplifies it,
reducing it to the form

𝑑𝑎

𝑑𝜏
= 𝑋0(𝜏, 𝑎),

𝑑𝜑

𝑑𝜏
=
𝜔(𝜏, 𝑎)

Y
+ 𝑌0(𝜏, 𝑎). (2)
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In the general case, the deviation of solutions ∥𝑎(𝜏, Y) − 𝑎(𝜏)∥ can become 𝑂 (1) on a
finite segment [0, 𝐿] or R+ = (0,∞) due to frequency resonance, the condition of which
is

(𝑘, 𝜔(𝜏, 𝑎)) := 𝑘1𝜔1(𝜏, 𝑎) + · · · + 𝑘𝑚𝜔𝑚(𝜏, 𝑎) ≃ 0, 𝑘 ≠ 0. (3)

Therefore, in order to justify the averaging method, additional conditions are imposed
on the frequency vector 𝜔(𝜏, 𝑎) for the system to exit from a small circumference of
resonance. The works of V. I. Arnold [1], E. O. Grebenikov [2], A. M. Samoilenko and
R. I. Petryshyn [3] and many others are devoted to this issue.

The monograph [3] presents a new method of studying multifrequency systems (1),
which is based on estimates of the corresponding oscillatory integrals, which made it
possible to justify a wide class of multifrequency systems with initial and boundary
conditions.

For adequate modeling of oscillating systems, it is also important to take into account
informational, technological and other delays. Multifrequency systems with constant and
variable delay were studied in the works [4, 5, 6]. In particular, systems in which the
delay is specified with a linearly transformed argument of the form _𝜏, 𝜏 > 0, 0 < _ ≤ 1
in [6, 7, 8]. A new resonance condition was obtained, including for systems with linearly
transformed arguments and a frequency vector 𝜔(𝜏) in fast variables 𝜑(\a𝜏) of the form

𝛾𝑘 (𝜏) :=
𝑞∑︁

a=1
\a

(
𝑘a , 𝜔(\a𝜏)

)
= 0. (4)

The works [6, 7, 8, 9] are devoted to the substantiation of the averaging method for
such systems with initial multipoint and integral conditions.

This article considers systems with both point and integral delay, which allows taking
into account the background history of the process at some interval. Parabolic equations
with such a delay were studied in [9] for functional differential equations in the monograph
[11] and others.

2. Formulation of the problem

We investigate a system of differential equations with variable delay of the form

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑋
(
𝜏, 𝑎(𝜏), 𝑎_(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠, 𝜑Θ(𝜏)
)
, (5)

𝑑𝜑(𝜏)
𝑑𝜏

=
𝜔(𝜏)
Y

+ Y𝛽𝑌
(
𝜏, 𝑎(𝜏), 𝑎_(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠, 𝜑Θ(𝜏)
)
, (6)
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where 𝜏 ∈ [0, 𝐿], Y ∈ (0, Y0], 𝑎 ∈ D ⊂ R𝑛, 𝜑 ∈ R𝑚; 0 < _ < 1, 𝑎_(𝜏) = 𝑎(_𝜏);
𝜑Θ =

(
𝜑(\1𝜏), . . . , 𝜑(\𝑞𝜏)

)
, 0 < \1 < · · · < \𝑞 ≤ 1, 0 < Δ < 1, 𝛽 > 0. Vector-functions

𝑋 and 𝑌 are 2𝜋-periodic by components of variables 𝜑\a , a = 1, 𝑞.
For the solution of the system (5), (6), multipoint conditions are set

𝑟∑︁
a=1

𝐴a (Y)𝑎 |𝜏=𝜏a = 𝑑1, (7)

𝑟∑︁
a=1

𝐵a (Y)𝜑 |𝜏=𝜏a = 𝑑2, (8)

where 0 ≤ 𝜏1 < 𝜏2 < · · · < 𝜏𝑟 ≤ 𝐿, 𝐴a (Y) and 𝐵a (Y) are given matrices of order 𝑛 and
𝑚, respectively, defined at Y ∈ [0, Y0] and vectors 𝑑1 ∈ R𝑛, 𝑑2 ∈ R𝑚.

The corresponding system (5), (6) averaged over fast variables on the 𝑚𝑞-cube of
periods takes the form

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑋0
(
𝜏, 𝑎(𝜏), 𝑎_(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠
)
, (9)

𝑑𝜑(𝜏)
𝑑𝜏

=
𝜔(𝜏)
Y

+ Y𝛽𝑌0
(
𝜏, 𝑎(𝜏), 𝑎_(𝜏),

𝜏∫
Δ𝜏

𝑔(𝑠)𝑎(𝑠)𝑑𝑠
)

(10)

with multipoint conditions
𝑟∑︁

a=1
𝐴a (Y)𝑎 |𝜏=𝜏a = 𝑑1, (11)

𝑟∑︁
a=1

𝐵a (Y)𝜑 |𝜏=𝜏a = 𝑑2, (12)

Now the problem (9), (11) can be solved separately and we can find the solution 𝑎 =

𝑎(𝜏; 𝑦, Y), 𝑎(0; 𝑦, Y) = 𝑦. Solving the multipoint problem (11) is reduced to integration if
the initial value for the solution component is known 𝜑 = 𝜑(𝜏; 𝑦, 𝜓, Y), 𝜑(0; 𝑦, 𝜓, Y) = 𝜓.

Suppose that the condition is satisfied:
Condition A. There is a unique solution of the averaged problem (9)–(12), whose

component is 𝑎(𝜏; 𝑦, Y), 𝑦 ∈ D1 ⊂ D, at 𝜏 ∈ [0, 𝐿] and Y ∈ (0, Y0] lies in the area D with
some 𝜌-circumference.

In the work, sufficient conditions are established, under which there is a unique differ-
entiable solution of the problem (5)–(8). The method of averaging is stipulated and the
estimate of the deviation error of the solutions is constructed, which clearly depends on
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the small parameter Y and has the form

𝑢(𝜏; Y) := ∥𝑎(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏; 𝑦, Y)∥+

+∥𝜑(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝜑(𝜏; 𝑦, 𝜓, Y)∥ ≤ 𝑐1Y
𝛼.

(13)

Here 𝛼 = 1/(𝑚𝑞), 𝑐1 > 0 and does not depend on Y, 𝑎(0; 𝑦 + `, 𝜓 + b, Y) = 𝑦 + `(Y),
𝜑(0; 𝑦 + `, 𝜓 + b, Y) = 𝜓 + b (Y).

3. Auxiliary Statements

Lemma 3.1. Let the matrix 𝐵(Y) :=
𝑟∑

a=1
𝐵a (Y) be nondegenerate for Y ∈ [0, Y0]. Then

there is a unique solution to the problem (10), (12).

Proof. From the equation (10) we have

𝜑(𝜏a; 𝑦, 0, Y) =
𝜏a∫

0

(𝜔(𝑠)
Y

+ 𝑌0(𝑠, 𝑎, 𝑎_, 𝑣Δ)
)
𝑑𝑠,

where

𝑣Δ(𝜏, Y) =
𝜏∫

Δ𝜏

𝑔(𝑠)𝑎(𝑠; 𝑦, Y)𝑑𝑠.

It follows from the condition (12) that

𝐵(Y)𝜓 = 𝑑2 −
𝑟∑︁

a=1
𝜑(𝜏a; 𝑦, 0, Y),

wherefrom we find the initial value of 𝜓(𝑦, Y). The solution to the problem (10), (12)
takes the form

𝜑(𝜏; 𝑦, 𝜓, Y) = 𝜓(𝑦, Y) + 𝜑(𝜏; 𝑦, 0, Y).

□

Lemma 3.2. Let
1) number 𝑑 ≥ 0, _,Δ ∈ (0, 1);
2) 𝑓1, 𝑓2 and 𝑔 – continuous functions on [0,L] with value in R+ = [0,∞);

0 ≤ 𝑢(𝜏) ≤ 𝑑 +
𝜏∫

0

𝑓1(𝑠)𝑢(𝑠)𝑑𝑠 +
_𝜏∫

0

𝑓2(𝑠)𝑢(𝑠)𝑑𝑠 +
𝜏∫

0

( 𝑠∫
Δ𝑠

𝑔(𝑧)𝑢(𝑧)𝑑𝑧
)
𝑑𝑠. (14)

Then

𝑢(𝜏) ≤ 𝑑 · 𝑒𝑥𝑝
( 𝜏∫

0

(
𝑓1(𝑠) + _ 𝑓2(𝑠)

)
𝑑𝑠 +

𝜏∫
0

( 𝑠∫
Δ𝑠

𝑔(𝑧)𝑑𝑧
)
𝑑𝑠

)
, 0 ≤ 𝜏 ≤ 𝐿. (15)
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Proof. We denote by 𝑤(𝜏) the right-hand side of the inequality (14). Then 𝑤(0) = 𝑑,
𝑢(𝜏) ≤ 𝑤(𝜏) and 𝑤

′ (𝜏) ≥ 0 for 𝜏 ∈ [0, 𝐿].
Then we have

𝑣
′ (𝜏) = 𝑓1(𝜏)𝑢(𝜏) + _ 𝑓2(_𝜏)𝑢(_𝜏) +

𝜏∫
_𝜏

𝑔(𝑠)𝑢(𝑠)𝑑𝑠 ≤

≤ 𝑓1(𝜏)𝑣(𝜏) + _ 𝑓2(_𝜏)𝑣(_𝜏) +
𝜏∫

_𝜏

𝑔(𝑠)𝑣(𝑠)𝑑𝑠 ≤

≤
(
𝑓1(𝜏) + _ 𝑓2(_𝜏) +

𝜏∫
_𝜏

𝑔(𝑠)𝑑𝑠
)
𝑣(𝜏).

After integrating the inequality, we obtain the solution (15) of the integral inequality
(14) □

The article [10] substantiates the averaging method for a system of equations of a more
general form than (5), (6) with initial conditions. The following condition is the condition
for exiting the (4) resonance small circumference.

Condition B. Let 𝜔 ∈ C𝑚𝑞 [0, 𝐿] and be constructed according to the 𝑚𝑞 system of
functions

{
𝜔(\1𝜏), . . . , 𝜔(\𝑞𝜏)

}
Wronskian

𝑊 (𝜑Θ) ≠ 0, 𝜏 ∈ [0, 𝐿] .

Theorem 3.1. Suppose that:
1) vector function 𝐹 (𝜏, 𝑎, 𝑎_, 𝑤Δ, 𝜑Θ) :=

(
𝑋,𝑌

)
is twice continuously differentiable over

all arguments in the area 𝐺 = 𝐺1 × R𝑚𝑞, 𝐺1 = [0, 𝐿] × D × D × Da , 2𝜋-periodic in the
components of the vectors 𝜑a , a = 1, 𝑞 and bounded together with the derivatives by the
constant 𝜎1;

2) conditions A and B are satisfied;
3) for the Fourier coefficients 𝐹𝑘 in the area 𝐺1 the evaluation is performed:∑︁

𝑘≠0

(
sup
𝐺1

∥𝐹𝑘 ∥ +
1

∥𝑘 ∥Θ
(
sup
𝐺1

𝜕𝐹𝑘

𝜕𝜏

 + sup
𝐺1

𝜕𝐹𝑘

𝜕𝑎

 + sup
𝐺1

𝜕𝐹𝑘

𝜕𝑎_


+(1 − Δa) sup

𝐺1

𝜕𝐹𝑘

𝜕𝑣_

𝜕𝑣_

𝜕𝜏

)) ≤ 𝜎2

where ∥𝑘 ∥Θ =
𝑞∑

a=1
\a ∥𝑘a ∥.

17



AVERAGING IN MULTIFREQUENCY SYSTEMS WITH MULTI-POINT
CONDITIONS AND A DELAY

Then for sufficiently small Y1 ∈ (0, Y0] there exists a unique solution
(
𝑎(𝜏; 𝑦, 𝜓, Y),

𝜑(𝜏; 𝑦, 𝜓, Y)
)

with initial conditions (𝑦, 𝜓) and the evaluation is performed

𝑢(𝜏; Y) := ∥𝑎 − 𝑎∥ + ∥𝑣 − 𝑣∥ ≤ 𝑐2Y
𝛼, (16)

for all (𝜏, Y) ∈ [0, 𝐿] × (0, Y1], 𝛼 = (𝑚𝑞)−1, 𝑐2 > 0 and does not depend on Y.

Remark 3.1. If the vector functions 𝑋 and 𝑌 are continuously differentiable 𝑚𝑞 once
over the variable 𝜏 and 𝑚𝑞 + 1 the other time over the other variables, then condition 3)
of Theorem 3.1 is satisfied and the estimate of the form (16) is correct for the derivatives
of the deviation of the solutions for the initial variables 𝑦 and 𝜓 with the constant 𝑐2.

4. Justification of the Averaging Method

Let

𝐴(Y) =
𝑟∑︁

a=1
𝐴a (Y)

𝜕𝑎(𝜏a; 𝑦, Y)
𝜕𝑦

.

Theorem 4.1. Suppose that:
1) condition 1) of Theorem 3.1 and conditions A and B are satisfied;
2) matrices 𝐴a (Y), 𝐵a (Y), a = 1, 𝑟 are continuous at Y ∈ (0, Y0], 𝐴(Y), 𝐵(Y) are non-
degenerate and ∥𝐴−1(Y)∥ ≤ 𝜎2, ∥𝐵−1(Y)∥ ≤ 𝜎3;

3) 𝑔 ∈ C[0, 𝐿].
Then there exists such Y∗ ∈ (0, Y0] that for each Y ∈ [0, Y∗] there is a unique solution

to the problem (5)–(8) in the class C1 [0, 𝐿] and for all (𝜏, Y) ∈ [0, 𝐿] × (0, Y∗] evaluation
is performed (13).

Besides
∥`∥ ≤ 𝑐3Y

𝛼, ∥b∥ ≤ 𝑐4Y
𝛼, 𝛼 = 1/(𝑚𝑞). (17)

Proof. Let
2𝑐1Y

𝛼 ≤ 𝜌, ∥`∥ ≤ 𝑐3Y
𝛼 ≤ 𝜌/2, (18)

where the constant 𝑐3 > 0 and will be determined further. Then based on the estimate
(16) for all 𝜓 ∈ R𝑚, (𝜏, Y) ∈ (0, Y2], Y2 = 𝑚𝑖𝑛

(
Y1,

( 𝜌

2𝑐2

)𝑚𝑝
,
( 𝜌

2𝑐3

)𝑚𝑝
)

∥𝑎(𝜏; 𝑦 + `, 𝜓) − 𝑎(𝜏; 𝑦 + `, Y)∥ ≤ 𝑐2Y
𝛼. (19)

From equation (9) we have

𝑣(𝜏, `, Y) := ∥𝑎(𝜏; 𝑦 + `, Y) − 𝑎(𝜏; 𝑦, Y)∥ ≤

≤ ∥`∥ + 𝜎1

𝜏∫
0

𝑣(𝑠, `, Y)𝑑𝑠 + 𝜎1

𝜏∫
0

𝑣(_𝑠, `, Y)𝑑𝑠 + 𝜎1

𝜏∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑣(𝑧, `, Y)𝑑𝑧𝑑𝑠.
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Applying the estimate (15) gives

𝑣(𝜏, `, Y) ≤ ∥`∥ exp
(
2𝜎1 +

𝜏∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑑𝑧𝑑𝑠
)
𝜏.

So for 𝜏 ∈ [0, 𝐿]
𝑣(𝜏, `, Y) ≤ 𝑐5Y

𝛼,

where 𝑐5 = 𝑐3 exp
(
2𝜎1 +

𝐿∫
0

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑑𝑧𝑑𝑠
)
𝐿.

The solution 𝑎(𝜏; 𝑦 + `, 𝜓, Y) under the conditions (18) lies in the 𝜌 circumference of
the solution 𝑎(𝜏; 𝑦, Y) and the evaluation is performed

𝑤(𝜏; `, 𝜓, Y) := ∥𝑎(𝜏; 𝑦 + `, 𝜓, Y) − 𝑎(𝜏; 𝑦, Y)∥ ≤

≤ ∥𝑎(𝜏; 𝑦 + `, 𝜓, Y) − 𝑎(𝜏; 𝑦 + `, Y)∥ + 𝑣(𝜏, `, Y) ≤ 𝑐6Y
𝛼,

where 𝑐6 = 𝑐2 + 𝑐5.
We will show that there is ` that satisfies the condition (18) such that the solution 𝑎 of

the equation (5) satisfies the condition (7).
From the conditions (7) and (11) we have

𝑟∑︁
a=1

𝐴a (Y)
(
𝑎(𝜏a; 𝑦 + `, Y) − 𝑎(𝜏a; 𝑦, Y)

)
=

−
𝑟∑︁

a=1
𝐴a (Y)

( (
𝑎(𝜏a; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏a; 𝑦 + `, Y)

)
+ 𝑅1,a (`, Y)

)
,

(20)

where
𝑅1,a (`, Y) = 𝑎(𝜏a; 𝑦 + `, Y) − 𝑎(𝜏a; 𝑦, Y) − 𝜕𝑎(𝜏a; 𝑦, Y)

𝜕𝑦
`.

From (19) we obtain the equation for `:

` =𝛷1(`, b, Y), (21)

where 𝛷1(`, b, Y) =

= −𝐴−1(Y)
( 𝑟∑︁
a=1

(
𝐴a (Y)

(
𝑎(𝜏a; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏a; 𝑦 + `, Y)

)
+ 𝑅1,a (`, Y)

))
It follows from the differentiability of the solution 𝑎(𝜏; `, Y) over the variable 𝑦 that

∥𝑅1,a (`, Y)∥ ≤ 𝑐7,a ∥`∥2,
𝜕𝑅1,a

𝜕`

 ≤ 𝑐8,a ∥`∥. (22)

Considering the estimates (16) and (19), when (𝜏, Y) ∈ [0, 𝐿] × (0, Y0] we obtain𝛷1(`, b, Y)
 ≤ 𝜎2

𝑟∑︁
a=1

max
[0, Y0 ]

𝐴a (Y)
(𝑐2Y

𝛼 + 𝑐7,a ∥`∥2
)
= 𝑐9Y

𝛼 + 𝑐10∥`∥2.
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Let in condition (18) be

𝑐3 = 2𝑐9, 𝑐2
3𝑐10Y

𝛼
3 ≤ 𝑐9.

Then 𝛷1(`, b, Y)
 ≤ 2𝑐9Y

𝛼

for ` ≤ 2𝑐9Y
𝛼, b ∈ R𝑚 and Y ∈ (0, Y3].

So, 𝛷1 : 𝑆1 → 𝑆1, 𝑆1 = {` : ∥`∥ ≤ 𝑐3Y
𝛼}.

Then we have

𝜕𝛷1
𝜕`

= −𝐴−1(Y)
𝑟∑︁

a=1
𝐴a (Y)

𝜕

𝜕`

(
𝑎(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏; 𝑦 + `, Y)

)
−

−𝐴−1(Y)
𝑟∑︁

a=1
𝐴a (Y)

𝜕𝑅1,a (`, Y)
𝜕`

.

From Theorem 3.1, condition 2) of Theorem 4.1 and estimates (22), we obtain𝜕𝛷1
𝜕`

 ≤ 𝜎2𝑐2

𝑟∑︁
a=1

max
[0, Y0 ]

𝐴a (Y)
Y𝛼 + 𝜎2𝑐3

𝑟∑︁
a=1

max
[0, Y0 ]

𝐴a (Y)
 = 𝑐11Y

𝛼 <
1
4
, (23)

if Y ≤ Y4 = (4𝑐11)𝑚𝑞.
Similarly, we have𝜕𝛷1

𝜕𝜓

 = 𝐴−1(Y)
𝑟∑︁

a=1
𝐴a (Y)

𝜕

𝜕𝜓

(
𝑎(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏; 𝑦 + `, Y)

) ≤
≤ 𝜎2𝑐2

𝑟∑︁
a=1

max
[0, Y0 ]

𝐴a (Y)
Y𝛼 = 𝑐12Y

𝛼 <
1
4
,

if Y ≤ Y5 = (4𝑐12)𝑚𝑞.
Now from the conditions (8) and (12) we find

b =𝛷2(`, b, Y),

where

𝛷2(`, b, Y) = −𝐵−1(Y)
𝑟∑︁

a=1
𝐵a (Y)

( (
𝜑(𝜏a; 𝑦 + `, 𝜓 + b, Y) − 𝜑(𝜏a; 𝑦 + `, Y)

)
+

+
(
𝜑(𝜏a; 𝑦 + `, Y) − 𝜑(𝜏a; 𝑦, Y)

) )
.
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Based on the estimates (15) and (19) and condition 2) of Theorem 4.1, we obtain𝛷2(`, b, Y)
 ≤ (

𝜎3𝑐2

𝑟∑︁
a=1

max
[0, Y0 ]

𝐵a (Y)
 + 𝜎3𝑐5

𝑟∑︁
a=1

max
[0, Y0 ]

𝐵a (Y)
)Y𝛼 ≤

≤ 𝜎3(𝑐2 + 𝑐5)
( 𝑟∑︁
a=1

max
[0, Y0 ]

𝐵a (Y)
)Y𝛼 = 𝑐13Y

𝛼.

So 𝛷2 : 𝑆2 → 𝑆2, 𝑆2 = {𝜑 : ∥𝜑 − 𝜑∥ ≤ 𝑐13Y
𝛼}, if

∥b∥ ≤ 𝑐13Y
𝛼. (24)

Then we have

𝜕𝛷2
𝜕`

= −𝐵−1(Y)
𝑟∑︁

a=1
𝐵a (Y)

( 𝜕

𝜕`

(
𝜑(𝜏a; 𝑦 + `, 𝜓 + b, Y) − 𝜑(𝜏a; 𝑦 + `, 𝜓 + b, Y)

)
+

+ 𝜕

𝜕`
𝜑(𝜏a; 𝑦 + `, 𝜓 + b, Y)

)
,

𝜕𝛷2
𝜕`

 ≤ 𝜎3

𝑟∑︁
a=1

max
[0, Y0 ]

𝐵a (Y)
(𝑐2Y

𝛼 + 𝑐13Y
𝛽
)
≤ 𝑐14Y

𝛾 <
1
4
,

if Y ≤ Y6 = (4𝑐14)−𝛾 , 𝛾 = min(𝛼, 𝛽).
Let 𝛷 = 𝑐𝑜𝑙 (𝛷1,𝛷2), [ = 𝑐𝑜𝑙 (`, 𝜓). Then𝜕𝛷

𝜕[

 < 1,

from which, according to the fixed point theorem [13], it follows that there is a single
fixed point (`∗, 𝜓∗) if Y < Y∗ = mina=1,6 Ya . Therefore, there exists a unique solution(
𝑎(𝜏; 𝑦 + `∗, 𝜓 + b∗, Y), 𝜑(𝜏; 𝑦 + `∗, 𝜓 + b∗, Y)

)
of the system (5), (6), which satisfies the

conditions (7), (8).
From the equation (9), estimates (16), (24) we obtain

𝑤(𝜏; `, b, Y) = ∥𝜑(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝜑(𝜏; 𝑦, 𝜓, Y)∥ ≤

≤ ∥b∥ + 𝜎1

𝜏∫
0

(
𝑤(𝑠, `, b, Y) + 𝑤(_𝑠, `, b, Y) +

𝑠∫
Δ𝑠

|𝑔(𝑧) |𝑤(𝑧, `, b, Y)𝑑𝑧
)
𝑑𝑠.

So,

𝑤(𝜏; `, b, Y) =
(
𝑐12 + 𝜎1𝑐6

𝐿∫
0

(
2 + (1 − Δ) |𝑔(𝑠) |

)
𝑑𝑠

)
Y𝛼 = 𝑐14Y

𝛼. (25)
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Based on evaluations (18) we get

𝑢(𝜏, Y) ≤ 𝑤(𝜏; `, b, Y) + 𝑤(𝜏; `, b, Y)+

+∥𝑎(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝑎(𝜏; 𝑦, 𝜓, Y)∥ + ∥𝜑(𝜏; 𝑦 + `, 𝜓 + b, Y) − 𝜑(𝜏; 𝑦, 𝜓, Y)∥ ≤

≤ (𝑐5 + 𝑐15)Y𝛼 + 𝑐2Y
𝛼 = 𝑐1Y

𝛼, (𝜏, Y) ∈ [0, 𝐿] × (0, Y∗),

where 𝑐1 = 𝑐2 + 𝑐5 + 𝑐15. □

Remark 4.1. If 𝛽 = 0 and no other conditions are imposed on the system (5), (6) or the
conditions (7), (8), then it is possible to prove only the existence of a solution based on
the Brouwer’s theorem [13].

5. Model Example

Consider a single-frequency system

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑎(_𝜏) +
𝜏∫

_𝜏

𝑎(𝑠)𝑑𝑠 + cos(𝑘𝜑(𝜏) + 𝑙𝜑(\𝜏)),

𝑑𝜑(𝜏)
𝑑𝜏

=
1 + 2𝜏

Y
, 0 ≤ 𝜏 ≤ 1,

where 0 < _ < 1, 0 < \ < 1; 𝑘, 𝑙 ∈ Z \ {0}, 𝑘 + 𝑙\ = 0.
If 𝜑(0) = 0, then 𝜑(𝜏) = 𝜏(1 + 𝜏)/Y, 𝑘𝜑(𝜏) + 𝑙𝜑(\𝜏) = ^𝜏2/Y, ^ = 𝑘 + 𝑙\2 ≠ 0.
At the point 𝜏 = 0, the resonance condition is satisfied, since 𝛾𝑘𝑙 = 2𝜏^.
Let us set the boundary condition

𝛼0𝑎 |𝜏=0 + 𝛼1𝑎 |𝜏=1 = 𝑑, |𝛼0 | + |𝛼1 | ≠ 0. (26)

The averaged equation for the slow variable

𝑑𝑎(𝜏)
𝑑𝜏

= 𝑎(_𝜏) +
𝜏∫

_𝜏

𝑎(𝑠)𝑑𝑠 (27)

with a boundary condition of the form (26) has a solution

𝑎(𝜏; 𝑦) = 𝑦𝑒𝜏 , 𝑦 = 𝑑/(𝛼0 + 𝛼1𝑒).

Let 𝑣(𝜏; `, Y) = 𝑎(𝜏; 𝑦 + `, Y) − 𝑎(𝜏; 𝑦 + `). Then

𝑣(𝜏; `, Y) =
𝜏∫

0

𝑣(_𝜏; `, Y)𝑑𝑠 +
𝜏∫

0

𝑠∫
_𝑠

𝑣(𝑧; `, Y)𝑑𝑧𝑑𝑠 +
𝜏∫

0

cos
^𝑠2

Y
𝑑𝑠.
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Applying the estimate of the Fresnel integral [12] we obtain
𝜏∫

0

cos
^𝑠2

Y
𝑑𝑠 =

√
Y

√
^

√
𝜋𝜏/

√
Y∫

0

cos 𝑥2𝑑𝑥 =

√
𝜋

2
√

2^
√
Y +𝑂 ( 4

√︁
Y3) ≤ 𝑐16

√
Y,

where 𝑐16 =
√
𝜋/

√
2^, Y ≤ 4^/𝜋2.

From the estimate for 𝑣(𝜏; `, Y) and 𝜏 ∈ [0, 1] it follows

|𝑣(𝜏; `, Y) | ≤
√
Y𝑐16 exp

(
1 + (1 − _)𝜏/2

)
𝜏 ≤ 𝑐17

√
Y,

where 𝑐17 = 𝑐16 exp(3 − _)/2.
From the boundary conditions for the solutions 𝑎(𝜏; 𝑦 + `, Y) and 𝑎(𝜏; 𝑦) we find

` = −
(
𝛼1/(𝛼0 + 𝛼1𝑒)

) (
𝑎(1; 𝑦 + `, Y) − 𝑎(1; 𝑦 + `, Y)

)
,

hence it follows
|` | ≤

(
𝛼1𝑐17/(𝛼0 + 𝛼1𝑒)

)√
Y.

Based on the estimates for 𝑣(𝜏; `, Y) and `, we obtain

|𝑎(𝜏; 𝑦 + `, Y) − 𝑎(𝜏; 𝑦) | ≤ |𝑣(𝜏; `, Y) | + |𝑎(𝜏; 𝑦 + `) − 𝑎(𝜏; 𝑦) | ≤ 𝑐18
√
Y,

where 𝑐18 = 𝑐17
(
1 + 𝛼1/(𝛼0 + 𝛼1𝑒)

)
.

6. Conclusions

In the article the existence and uniqueness of the solution in C1 [0, 𝐿] is proved for the
system of equations (5), (6) with linear multipoint conditions (7), (8) and an estimate of
the error of the method of averaging and deviation of the initial conditions for slow and
fast variables of order Y𝛼, 𝛼 = 1/(𝑚𝑞) was obtained. The same result can be obtained
by more complex technical transformations for an arbitrary finite number of arguments
𝑎_1 , . . . , 𝑎_𝑝

and 𝑣Δ1 , . . . , 𝑣Δ𝑟
in vector functions 𝑋 and 𝑌 .
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