THE SOLUTIONS OF SOME DIOPHANTINE EQUATIONS

Boris Taralungă
Universitatea Pedagogică de Stat "Ion Creangă" din Chişinău, Chişinău, Republica Moldova
taralunga.boris@upsc.md

In the theory of Diophantine equations, is well known the equation $a^{x}+b^{y}=z^{2}$. The literature contains a very large number of articles on such equations [1-6].

In this paper, we solve the equations:

$$
3^{x}+b^{y}=z^{2}, b \in\{40,360,3240,29160\}
$$

where x, y, z are non-negative integer numbers.

Theorem 1. The Diophantine equation $32^{x}+40^{y}=z^{2}$ has exactly five integer non-negative solutions $(x, y, z) \in\{(1,0,2),(2,1,7),(2,3,253),(4,1,11)$, (4,2,41)\}.

Theorem 2. The Diophantine equation $3^{x}+360^{y}=z^{2}$ has exactly five integer non-negative solutions $(x, y, z) \in\{(1,0,2),(4,1,21),(6,1,33),(8,2,369)$, $(8,3,6831)\}$.

Theorem 3. The Diophantine equation $3^{x}+3240^{y}=z^{2}$ has exactly sixinteger non-negative solutions $(x, y, z) \in\{(1,0,2),(2,1,57),(6,1,63),(8,1,99)$, (12,2,3321), (14,3,184437)\}.

Theorem 4. The Diophantine equation $3^{x}+21960^{y}=z^{2}$ has exactly six integer non-negative solutions $(x, y, z) \in\{(1,0,2),(4,1,171),(8,1,189),(10,1,297)$, (16,2,29889), (20,3,4979799)\}.

References:

1. S. Chotchaisthit. On the Diophantine equation of $2^{x}+11^{y}=z^{2}$. Maejo Int. J. Sci. Technol., Vol.7, No. 2 (2013), 291-293.
2. P. Mihailescu. Primarycyclotomic units and a proof of Catalan's conjecture. Journal ReineAngew.Math 572 (2004), 167-195.
3. J. Rabago. On two Diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$. International Jurnal of Mathematics and Scientific Computing, Vol. 3, Nr. 1 (2013), 28-29.
4. R. Saranya, G. Janaki. On the Exponential Diophantine Equation $36^{x}+3^{y}=z^{2}$. International Research Journalof Engineering and Tehnology(IRJET), Vol. 04, Nr. 11 (2013), 1042-1044.
5. A. Shivangi, M.M. Singh. On the Diophantine equation $3^{x}+13^{y}=z^{2}$. International Jurnal of Pure and Applied Mathematics Vol. 114, Nr. 2 (2017), 301-304.
6. B. Sroysang. On the Diophantine equation $3^{x}+5^{y}=z^{2}$. International Jurnal of Pure and Applied Mathematics, Vol. 81, Nr. 4 (2012), 605-608.
