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We present specific new expressions for thermal stresses as Green’s functions for a
plane boundary value problem of steady-state thermoelasticity for a semi-layer. We also
obtain new integration formulas of Green’s type, which determine the thermal stresses
in the form of integrals of the products of the given distributed internal heat source,
boundary temperature, and heat flux and derived kernels. Elementary functions results
obtained are formulated in a theorem, which is proved using the harmonic integral
representations method to derive thermal stresses Green’s functions, which are written
in terms of Green’s functions for Poisson’s equation. A new solution to particular
two-dimensional boundary value problem for a semi-layer under a boundary constant
temperature gradient is obtained in explicit form. Graphical presentations for thermal
stresses Green’s functions created by a unit heat source (line load in out-of-plane
direction) and by a temperature gradient are also included.

Keywords: Green’s functions; Harmonic integral representations; Heat conduction; Temperature
gradient; Thermal stresses; Thermoelastic volume dilatation

INTRODUCTION

Green’s function method (GFM) gives solutions to boundary value problems
(BVPs), including those of thermoelasticity [1–8], in the form of integrals. The
major difficulty with this method is the construction of Green’s functions (GFs)
themselves. There are presently many classic methods of constructing GFs, but only
a few are suitable for BVPs of thermoelasticity. It is our opinion that this situation
arises because the governing equations of steady-state thermoelasticity have a
vector character, but the present practice is to apply the same classical methods
as used to solve scalar differential equations. The lead author has developed
a new approach [9, 10] for constructing main thermoelastic Green’s functions
(MTGFs). This approach is based on an effective unified method, called the
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harmonic integral representations method (HIRM) [11]. It involves new integral
representations for MTGFs via Green’s functions for Poisson’s equation (GFPE).
In the existing HIRM, classical methods are used for GFPE construction. For
MTGFs construction, the same mathematical procedure for both 2D- and 3D-BVPs
of thermoelasticity can be followed. We begin this article by discussing HIRM and
the G� convolution method.

Two Methods for Deriving MTGFs

Two methods are proposed for derivation of displacements MTGFs
Ui �x� �� � i = 1� 2� 3 in steady-state isotropic thermoelasticity: G�CM [12–18] and
HIRM [11]. The success of both these methods depends on the ability to derive
GFs for Poisson’s equation (GFPE) [19–23], and on the ability to derive volume
dilatation ��i� �x� �� of BVPs for Lamé’s equations in the theory of elasticity [24–26].
In particular, GOCM is based on the convolution formula [12–18]:

Ui �x� �� = �
∫

V
GT �x� z� ��i� �z� �� dV�z�� x� z� � ∈ V (1)

Integration is taken on the volume of the body V ; � = 	t �2
 + 3�� is the
thermoelastic constant; �� 
 are Lamé’s elastic constants; 	t is the coefficient of the
linear thermal expansion; GT is the GF for a BVP of steady-state heat conduction
corresponding to an unit internal point (line load in out-of-plane direction) heat
source, and ��i� are influence functions of unit concentrated body forces onto elastic
volume dilatation.

Then, HIRM is based on the harmonic integral representations (HIR) for
MTGFs [9–11]:

Ui �x� �� = ��i

2

GT �x� �� − � + 


2

�i� �x� �� − �

2 �� + 2
�
xiGi �x� ��

−
∫

�

[
Vi �x� y�





n�

− 
Vi �x� y�


n�

]
Gi �y� �� d� �y� (2)

where � is thermoelastic volume dilatation (TVD); 
/
n� is the derivative with
respect to external normal n� to surface � of the body V ; Gi and GT are GFPE,
which are linked with boundary conditions for Ui and temperature T respectively;
x ≡ �x1� x2� x3� is the point of application of heat source F ; � ≡ ��1� �2� �3� is the
point of finding Ui; x� � ∈ V� y ∈ � . Finally the functions Vi �x� y� are defined as
follows:

Vi �x� y� = Ui �x� y� + �i

2

��� + 
� � �x� y� − �GT �x� y�� � i = 1� 2� 3 (3)

In addition the integral representation for TVD � is written in the form [10, 11]:

� �x� �� = �

� + 2

G� �x� �� +

∫
�

[

� �x� y�


n�

− � �x� y�




n�

]
G� �y� �� d� �y� (4)
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where G� is the fundamental solution that is linked with the boundary conditions
for TVD. Finally, if MTGFs Ui are known, then thermoelastic displacements ui ���
within a thermoelastic body V are determined by the following integral formula
[9–18]:

ui ��� = a−1
∫

V
F �x� Ui �x� �� dV �x� −

∫
�D

T �y�

Ui �y� ��


ny

d�D �y�

+
∫

�N


T �y�


ny

Ui �y� �� d�N �y� + a−1
∫

�M

[
	T �y� + a


T �y�


ny

]

Ui �y� �� d�M �y� � i = 1� 2� 3 (5)

where a is thermal conductivity; 	 is the coefficient of heat conductivity; �D� �N and
�M are the surfaces on which the boundary conditions of Dirichlet’s, Neumann’s
and mixed types are given, respectively: temperature T �y�, heat flux a
T �y� /
ny

and a heat exchange between exterior medium and surface of the body described by
a convection law, 	T �y� + a
T �y� /
ny. Note that use of G�CM led to some new
thermoelastic GFs and Green-type integral formulas for semi-infinite thermoelastic
Cartesian bodies in terms of elementary functions: half-plane [18], quadrant [15, 16],
half-space [12, 14] and quarter-space [13, 17]. In similar fashion HIRM led to useful
formulas for MTGFs in semi-infinite thermoelastic Cartesian bodies, including
octants [9–11]. These results indicated that both methods were used for Cartesian
bodies that have no straight lines or planes parallel to the Cartesian ones.

RESTRICTIONS OF THE G�CM

Obtaining solutions for Cartesian bodies that have straight lines or planes
parallel to the Cartesian axes or planes by using G�CM is not possible. This
situation is explained by the fact that, for such kind of domains, the thermoelastic
potential functions are as yet unknown. This means that the solution of Poisson’s
equation �2U = f with respect to thermoelastic potential function U is yet unknown
(f is fundamental solution to Laplace operator for considered domain).

We remember that the function U must be known when we have to compute
integral (1) using Green’s formula∫

V

(
��2Q − ��2PdV

)
dV =

∫
�

��
Q/
n − �
P/
n� d� (6)

to transform the volume integral in a surface integral.
As examples, for half-space [12, 14], quarter-space [13, 17], and octant

the singular fundamental solution of the Laplace operator �2 and thermoelastic
potential function is:

f = �4��−1 R−1 = �1/4��

√
�x1 − �1�

2 + �x2 − �2�
2 + �x3 − �3�

2 U = �8��−1 R (7)

but for a half-plane [18] and quadrant [15, 16]

f = − �2��−1 ln r� r =
√

�x1 − �1�
2 + �x2 − �2�

2� U = − �8��−1 r2 �ln r − 1� (8)
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Finally, for a strip, semi-strip and rectangle

f = − �4��−1 ln E or f = − �4��−1 ln Ẽ

E = 1 − 2e��/a2��x1−�1� cos ��/a2� �x2 − �2� + e�2�/a2��x1−�1� or

Ẽ = 1 − 2e��/2a2��x1−�1� cos ��/2a2� �x2 − �2� + e��/a2��x1−�1� (9)

but the function U remains unknown.

Objectives

The main objective of this research was to formulate a theorem on the
derivation of two-dimensional (2D) MTGFs for displacements and stresses and
Green-type integral formula for a specific BVP for a half-strip with different types
of mixed homogeneous mechanical and thermal boundary conditions. Therefore,
it is necessary to first obtain from Eqs. (2)–(4) the integral representations for
MTGFs for a half-strip, and to elaborate a technique for computing of a new
special integral which appears on one parallel site of the half-strip [27]. The validity
of the derived MTGFs was checked with respect to points x ≡ �x1� x2� and � ≡
��1� �2�. Another important objective of this research was to solve a particular
BVP of thermoelasticity using derived MTGFs. To reach this objective we used the
following Green’s-type integral formula for thermal stresses that is proposed in [15]:

� ��� = a−1
∫

V
F �x� �∗ �x� �� dV �x� −

∫
�D

T �y�

�∗ �y� ��


ny

d�D �y�

+
∫

�N


T �y�


ny

�∗ �y� �� d�N �y� + a−1
∫

�M

[
	T �y� + a


T �y�


ny

]
�∗ �y� �� d�M �y�

(10)

where � ��� and �∗ �x� �� are the thermal stress tensors. The components of these
tensors: �ij ��� � i� j = 1� 2� 3 and �∗

il �x� �� are created by the prescribed thermal data
and by an internal unit point heat source, respectively. The thermal stresses �ij and
�∗

ij are determined by using the Duhamel–Neumann law [5, 6]:

�ij = 

(
ui�j + uj�i

)+ �ij ��� − �T� � � = uk�k� i� j� k = 1� 2� 3 (11)

�∗
ij = 


(
Ui�j + Uj�i

)+ �ij ��� − �GT � � � = Uk�k �x� �� (12)

It should be noted that the main advantage of the integral formula (5) is that
it allows us to determine directly (without pre-determining the thermoelastic
displacements and of the temperature field) the thermoelastic stresses in the form of
integrals, containing products of the known thermal data and kernels �∗

ij . Finally the
last objective is the computer evaluation and graphical presentation of the derived
TSGEs �∗

ij and thermal stresses �ij for one particular BVP of thermoelasticity (see
Appendix).
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DERIVATION AND CHECK OF THE 2D MTGFS Ui , TSGFS � ∗
ij AND

GREEN-TYPE INTEGRAL FORMULA FOR �ij

Here we consider the problem of static equilibrium of the thermoelastic semi-
layer, located in the plane strain problem conditions (plane strain problem for a
semi-strip). The half-strip is exposed by a unit point internal heat source (in this case
the TSGFs �∗

ij have to be constructed), and distributed thermal actions (in this case
we derive an appropriate Green-type integral formula for the solution �ij to a BVP
of thermoelasticity). Next we derive the TSGFs �∗

ij . Derivation of the Green-type
integral formula for thermal stresses �ij within a half-strip is presented next.

Theorem. Let the field of displacements ui ��� in inner points � ≡ ��1� �2� of the
thermoelastic half-strip V �0 ≤ x1 < �� 0 ≤ x2 ≤ a2� be determined by Lamé equations
[5, 6]


�2ui ��� + �� + 
� ��i ��� − �T� i ��� = 0� i = 1� 2 (13)

but in the points y ≡ �0� y2�, y ≡ �y1� 0�, and y ≡ �y1� a2� of boundary lines
�10 �y1 = 0� 0 ≤ y2 ≤ a2�, �20 �0 ≤ y1 < �� y2 = 0� and �21 �0 ≤ y1 < �� y2 = a2� the
following homogeneous locally mixed mechanical boundary conditions are given:

u1 = �12 = 0� �1 = 0� 0 ≤ �2 ≤ a2� �22 = u1 = 0� �2 = 0� 0 ≤ �1 ≤ ��

u2 = �21 = 0� �2 = a2� 0 ≤ �1 ≤ � (14)

where �22 and �12 = �21 are the normal and the tangential stresses which are determined
by the well-known Duhamel–Neumann law (11) at i� j = 1� 2.

In addition let the temperature field T ��� in Eq. (13), generated by the inner heat
source F ���, boundary temperature and heat fluxes satisfy the following BVP of steady-
state heat conduction

�2T ��� = −a−1F ��� � � ∈ V� (15a)

a
T/
ny1 = S10 �y� � y ≡ �0� y2� ∈ �10� T �y� = T20 �y� � y ≡ �y1� 0� ∈ �20�

a
T/
ny2 = S21 �y� � y ≡ �y1� a2� ∈ �21 (15b)

If the inner heat source and boundary thermal data satisfy the conditions:

∫ +�

0

∫ a2

0
�F �x�� dx1dx2 < ��

x ≡ �x1� x2� �
∫ a2

0
�T10 �0� y2�� dy2 < ��

∫ +�

0
�T20 �y1� 0�� dy1 < ��

∫ +�

−�
�S21 �y1� a2�� dy1 < � (16)

then the solution of BVP in Eqs. (13)–(16) of thermoelasticity for unknown thermal
stresses �ij ��� exists and it can be presented by the following Green-type integral
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formula,

�ij ��� = 1
a

[∫ +�

0

∫ a2

0
F �x� �∗

ij �x� �� dx1dx2 +
∫ a2

0
S10 �0� y2� Kij �0� y2� �� dy2

+
∫ +�

0
S21 �y1� a2� �ij �y1� a2� �� dy1

]
−
∫ +�

0
T20 �y1� 0� Qij �y1� 0� �� dy1

(17)

The kernels (TSGFs �∗
ij �x� ��) in Eq. (17) at i� j = 1� 2; Kij �0� y2� �� =

�∗
ij �y� �� � y ≡ �0� y2�; �ij �y1� a2� �� = �∗

ij �y� �� � y ≡ �y1� a2� and Qij �y1� 0� �� =
− �
/
y2� �∗

ij �y� ��, y≡�y1� 0� respectively: of an inner unit heat source F =a� �x − ��;
of unit heat fluxes S10 = a� �x − ��, S21 = a� �x − �� on the �10 , �21 and of a unit
temperature T20 = � �y − �� on the �20 onto unknown thermal stresses �ij �y� �� in
Eq.(18) are determined as follows:

�∗
11 �x� �� = − 
�

4� �� + 2
�

[(
1 − �1





�1

)
ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

+ x1




�1

ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]

(18a)

�∗
22 �x� �� = − 
�

4� �� + 2
�

[(
1 + �1





�1

)
ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

− x1




�1

ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]

(18b)

�∗
12 �x� �� = �


4� �� + 2
�





�2

[
�1 ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

− x1 ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]
(18c)

where the functions Ē� Ē2� Ẽ� Ẽ2� Ē1� Ē12� Ẽ1� Ẽ12 are defined by expressions:

Ē = Ē �x� �� = 1 + 2e��/2a2��x1−�1� cos ��/2a2� �x2 − �2� + e
��/a2��x1−�1�

�

Ē2 = Ē2 �x� �� = Ē �x� �1� −�2� (19a)

Ẽ = Ẽ �x� �� = 1 − 2e��/2a2��x1−�1� cos ��/2a2� �x2 − �2� + e��/a2��x1−�1��

Ẽ2 = Ẽ2 �x� �� = Ẽ �x� �1� −�2� (19b)

Ē1 = Ē1 �x� �� = 1 + 2e��/2a2��x1+�1� cos ��/2a2� �x2 − �2� + e��/2a2��x1+�1��

Ē12 = Ē12 �x� �� = Ē1 �x� −�1� �1� (19c)

Ẽ1 = Ẽ1 �x� �� = 1 − 2e��/2a2��x1+�1� cos ��/2a2� �x2 − �2� + e��/2a2��x1+�1��

Ẽ12 = Ẽ12 �x� �� = Ẽ1 �x� −�1� �1� (19d)

- for kernels �∗
ij �x� ��;

�11 �y1� a2� �� = �∗
11 �y1� a2� ��

= − �


2� �� + 2
�

[(
1 − �1





�1

)
ln

Ēa2
Ẽ1a2

Ẽa2
Ē1a2

+ y1




�1

ln
Ēa2

Ē1a2

Ẽa2
Ẽ1a2

]
(20a)
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�22 �y1� a2� �� = �∗
22 �y1� a2� ��

= − �


2� �� + 2
�

[(
1 + �1





�1

)
ln

Ēa2
Ẽ1a2

Ẽa2
Ē1a2

− y1




�1

ln
Ēa2

Ē1a2

Ẽa2
Ẽ1a2

]
(20b)

�12 �y1� a2� �� = �∗
12 �y1� a2� �� = �


2� �� + 2
�





�2

[
�1 ln

Ēa2
Ẽ1a2

Ẽa2
Ē1a2

− y1 ln
Ēa2

Ē1a2

Ẽa2
Ẽ1a2

]

(20c)

- for kernels �ij �y1� 0� ��, where functions Ēa2
, Ē1a2

, Ẽa2
and Ẽ1a2

are determined
from functions (19a)–(19d) by changing point x ≡ �x1� x2� ∈ V with point
y ≡ �y1� y2 = a2� ∈ �21;

K11 �0� y2� �� = �∗
11 �y� ��

∣∣
y1=0 = − 
�

2� �� + 2
�

(
1 − �1





�1

)
ln

Ẽ20Ē0

Ē20Ẽ0

(21a)

K22 �0� y2� �� = �∗
22 �y� ��

∣∣
y1=0 = 
�

2� �� + 2
�

(
1 + �1





�1

)
ln

Ẽ20Ē0

Ē20Ẽ0

(21b)

K12 �0� y2� �� = �∗
12 �y� ��

∣∣
y1=0 = �


2� �� + 2
�
�1





�2

ln
Ẽ20Ē0

Ē20Ẽ0

(21c)

- for kernels Kij �0� y2� ��, where functions Ē0, Ē20, Ẽ0and Ẽ20 are determined
from functions (19a)–(19d) by changing point x ≡ �x1� x2� ∈ V with point y ≡
�y1 = 0� y2�

⋃
�10, and

Q11 �y1� 0� �� = − 



y2

�∗
11 �y� ��

∣∣
y2=0

= �


2� �� + 2
�





�2

[(
1 − �1





�1

)
ln

Ẽ0Ẽ10

Ē0Ē10

+ y1




�1

ln
Ẽ0E10

Ē0Ẽ10

]
(22a)

Q22 �y1� 0� �� = − 



y2

�∗
22 �y� ��

∣∣
y2=0

= �


2� �� + 2
�





�2

[(
1 + �1





�1

)
ln

Ẽ0Ẽ10

Ē0Ē10

− y1




�1

ln
Ẽ0E10

Ē0Ẽ10

]
(22b)

Q12 �y1� 0� �� = − 



y2

�∗
12 �y� ��

∣∣
y2=0 = − �


2� �� + 2
�


2


�2
2

[
�1 ln

Ẽ0Ẽ10

Ē0Ē10

− y1 ln
Ẽ0E10

Ē0Ẽ10

]

(22c)

- for kernels Qij �y1� 0� ��, where functions Ē0, Ē20, Ẽ0 and Ẽ20 are determined from
Eqs. (19a)–(19d) by changing point x≡�x1� x2� ∈ V with point y≡�y1� y2 = 0� ∈ �20.
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Derivation of the MTGFs Ui

Derivation of MTGFs for a half-strip requires solution of the following Lamé
and Poisson-type equations:


�2
� Ui �x� �� + �� + 
� ���i

�x� �� − �GT��i
�x� �� � i = 1� 2 (23)

�2GT �x� �� = −� �x − �� � x� � ∈ V (24)

where � �x − �� is Dirac’s function. Equations (23) and (24) have to be solved
under the following homogeneous mechanical and thermal conditions on MTGFs
Ui, TSGFs �∗

ij and GFPE GT :

U1 �x� y� = �∗
12 �x� y� = 0� 
GT �x� y� /
n1 = 0� x� � ∈ V� y ≡ �0� y2� ∈ �10 (25a)

U1 �x� y� = �∗
22 �x� y� = 0� GT �x� y� = 0� x� � ∈ V� y ≡ �y1� a2� ∈ �20 (25b)

�∗
21 �x� y� = U2 �x� y� = 0� x� � ∈ V� 
GT �x� y�

/

ny2 = 0� y ≡ �y1� 0� ∈ �21 (25c)

The application of harmonic integral representations (2)–(4) and the technique
described in [27], for BVP (23)–(25c) leads to the following structural formulas:

U1 �x� �� = �

2 �� + 2
�
��1GT �x� �� − x1G1 �x� ��� (26a)

U2 �x� �� = − �

2 �� + 2
�

[
x1

∫ 
G2 �x� ��


x2

dx1 − �1

∫ 
GT �x� ��


�2

d�1

+
∫∫ 
GT �x� ��


�2

d2�1

]
� (26b)

- for MTGFs; and

� �x� �� = �

� + 2

GT �x� �� (27)

- for TVD.

In Eqs. (26a) and (27), Green’s functions G1 �x� ��, G2 �x� �� and GT �x� �� are linked
with the boundary conditions (25a)–(25c) as follows:

U1 = �∗
21 = 0� GT�1 = 0 ⇒ U1 = U1�2 = U2�1 ⇒ ��1 = G1

= G2�1 = G��1 = GT�1 = 0 (28a)

- on the boundary segment of straight line �10,

U1 = �∗
22 = 0� GT = 0 ⇒ U1 = U1�1 = U2�2 = 0 ⇒ � = G1 = G2�2 = G� = GT = 0

(28b)
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- on the boundary semi-straight line �20, and

�∗
21 = U2 = 0� GT�2 = 0 ⇒ U1�2 = 0� U2 = 0� U2�1 = 0 ⇒ ��2 = 0�

G1�2 = 0� G2 = 0� G��2 = 0� GT�2 = 0 (28c)

on the boundary semi-straight line �21.

Check of the MTGFs Ui with Respect to Point x ≡ �x1� x2�

Here we check the MTGFs Ui �x� �� in Eqs. (26a) and (26b) for the half-strip
derived earlier. So, according to results [9–11] the MTGFs Ui �x� �� determined by
Eqs. (26a) and (26b) must satisfy, over the coordinates of the point x ≡ �x1� x2� of
application of the heat source, the equation

�2
x Ui �x� �� = −���i� �x� �� (29)

with boundary conditions, similar to those for GFPE GT in Eqs. (25a)–(25c). In
Eq. (29) ��i� �x� �� = U

�i�
j�j �x� �� are the influence functions of a unit point body

force onto volume dilatation and with the homogeneous boundary conditions (14),
rewritten with respect to point x ≡ �x1� x2� for displacements U

�i�
j �x� �� (components

of Green’s tensor). According to handbook [26] (the problem 12.L.8 and the
corresponding answer) the volume dilatation

��i� �x� �� = − 1
� + 2



G�


�i

= − 1
� + 2



GT


�i

(30)

Also, Laplace operator from MTGFs in Eqs. (26a) and (26b) gives us the
expressions:

�2
x U1 �x� �� = �2

x

�

2 �� + 2
�
��1GT �x� �� − x1G1 �x� ���

= − �

2 �� + 2
�
2


G1


x1

= �

� + 2



GT


�1

(31a)

�2
x U2 �x� �� = �2

x

�

2 �� + 2
�

[
−x1

∫ 
G2 �x� ��


x2

dx1 + �1

∫ 
GT �x� ��


�2

d�1

−
∫∫ 
GT �x� ��


�2

d2�1

]

= − �

2 �� + 2
�
2





x1

∫ 
G2 �x� ��


x2

d�1

= �

2 �� + 2
�
2





�1

∫ 
GT �x� ��


�2

d�1 = �

� + 2



GT


�2

(31b)

So, taking into account the last results (30)–(31b) we see that Eq. (29) is satisfied.
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Next substituting in the expressions Ui �x� ��, determined by Eqs. (26a) and
(26b), x → y ≡ �y1 = 0� y2�, x → y ≡ �y1� y2 = 0� and x → y ≡ �y1� y2 = a2� we can
see that boundary conditions similar to those in Eqs. (25a)–(25c) for GFPE GT :


U1 �y� �� /
n10 = − 



x1

U1 �x� ��
∣∣
x1=0

= − �

2 �� + 2
�

[
�1GT�x1

�x� �� − x1G1�x1
�x� �� − G1 �x� ��

] ∣∣
x1=0 = 0 (32a)

U1 �x� ��
∣∣
x2=0 = �

2 �� + 2
�
��1GT �x� �� − x1G1 �x� ���

∣∣
x2=0 = 0 (32b)

U1�2 �x� ��
∣∣
x2=a2

= �

2 �� + 2
�

[
�1GT�2 �x� �� − x1G1�2 �x� ��

] ∣∣∣
x2=a2

= 0 (32c)


U2 �y� �� /
n10 = − 



x1

U2 �x� ��
∣∣
x1=0 = − �

2 �� + 2
�

×
[
−x1


G2 �x� ��


x2

−
∫ 
G2 �x� ��


x2

dx1 + �1

∫ 
2GT �x� ��


�2
x1

d�1

−
∫∫ 
2GT �x� ��


�2
x1

d2�1

] ∣∣
x1=0 = 0 (32d)

U2 �x� ��
∣∣
x2=0 = �

2 �� + 2
�

[
−x1

∫ 
G2 �x� ��


x2

dx1 + �1

∫ 
GT �x� ��


�2

d�1

−
∫∫ 
GT �x� ��


�2

d2�1

] ∣∣
x2=0 = 0 (32e)

U2�2 �x� ��
∣∣
x2=a2

= �

2 �� + 2
�

[
−x1

∫ 
2G2 �x� ��

�
x2�
2 dx1 + �1

∫ 
2GT �x� ��


�2
x2

d�1

−
∫∫ 
2GT �x� ��


�2
x2

�d�1�
2
] ∣∣

x2=a2
= 0 (32f)

because in the last equality we have the relation
∫


2G2�x���

�
x2�2 dx1

∣∣
x2=a2

=
− ∫ 
2G2�x���

�
x1�2 dx1

∣∣
x2=a2

= 0.

The boundary conditions (32a)–(32f) are satisfied due to the boundary
conditions (28a)–(28c) for Green’s functions GT � G1 and G2.

Check of the MTGFs Ui with Respect to Point � ≡ ��1� �2�

In terms of the coordinates of the point of observation � ≡ ��1� �2�, the
MTGFs Ui �x� ��, must satisfy Eq. (23) and boundary conditions in Eqs. (26a)
and (26b). Indeed, application of the Laplace operator from MTGFs in Eqs. (26a)
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and (26b) gives the expressions:


�2
� U1 �x� �� + �� + 
� ���1

�x� �� − �GT��1
�x� ��

= 

�

2 �� + 2
�
�2

� ��1GT �x� �� − x1G1 �x� ��� + �� + 
�
�

� + 2

GT� �1

�x� ��

− �GT��1
�x� �� = 
�

2 �� + 2
�
2GT� �1

�x� ��

+ �� + 
� �

�� + 2
�
GT� �1

�x� �� − �GT��1
�x� �� = 0� (33a)

Also


�2
� U2 �x� �� + �� + 
� ���2

�x� �� − �GT��2
�x� ��

= 

�

2 �� + 2
�
�2

�

[
�

2 �� + 2
�

(
−x1

∫ 
G2 �x� ��


x2

dx1 + �1

∫ 
GT �x� ��


�2

d�1

−
∫∫ 
GT �x� ��


�2

d2�1

)]

+ �� + 
�
�

� + 2

GT� �2

�x� �� − �GT��2
�x� ��

= 
�

2 �� + 2
�
2GT� �2

�x� �� + �� + 
� �

�� + 2
�
GT� �2

�x� �� − �GT��1
�x� �� = 0� (33b)

where the volume dilatation � was calculated by using MTGFs in Eqs. (26a) and
(26b) as follows:

� �x� �� = U1��1
�x� �� + U2��2

�x� �� = �

� + 2

GT �x� �� (34)

So, from (33a) and (33b), we conclude that Eq. (23) is satisfied. Also we can see that
the MTGFs Ui �x� �� determined by Eqs. (26a) and (26b), with respect to points � ≡
��1� �2�, satisfy the boundary conditions (25a)–(25b). Indeed, from the expressions
in Eqs. (26a) and (26b) and boundary conditions (28a)–(28c) for Green’s functions
G1� G2� GT , it follows that the boundary conditions (25a)–(25b) are satisfied. So, we
obtain:

U1 �x� ��
∣∣
�1=0 = �

2 �� + 2
�
��1GT �x� �� − x1G1 �x� ���

∣∣
�1=0 = 0 (35a)

U1 �x� ��
∣∣
�2=0 = �

2 �� + 2
�
��1GT �x� �� − x1G1 �x� ���

∣∣
�2=0 = 0 (35b)

U1�2 �x� ��
∣∣
�2=a2

= �

2 �� + 2
�

[
�1GT�2 �x� �� − x1G1�2 �x� ��

] ∣∣
�2=a2

= 0 (35c)
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U2�1 �x� ��
∣∣
�1=0 = �

2 �� + 2
�

×
[
−x1

∫ 
2G2 �x� ��


x2
�1

dx1 +
∫ 
GT �x� ��


�2

d�1 + �1

∫ 
2GT �x� ��


�2
�1

d�1

−
∫∫ 
2GT �x� ��


�2
�1

d2�1

] ∣∣
�1=0 = 0 (35d)

U2�2 �x� ��
∣∣
�2=0 = �

2 �� + 2
�

[
−x1

∫ 
2G2 �x� ��


x2
�2

dx1 + �1

∫ 
2GT �x� ��

�
�2�
2 d�1

−
∫∫ 
2GT �x� ��

�
�2�
2 �d�1�

2
] ∣∣

�2=0 = 0 (35e)

U2 �x� ��
∣∣
�2=a2

= �

2 �� + 2
�

[
−x1

∫ 
G2 �x� ��


x2

dx1 + �1

∫ 
GT �x� ��


�2

d�1

−
∫∫ 
GT �x� ��


�2

d2�1

] ∣∣
�2=a2

= 0 (35f)

Thus, we have proved that derived MTGFs Ui �x� �� within a half-strip in Eqs. (26a)
and (26b) satisfy the respective BVPs of thermoelasticity described by Eq. (23) and
boundary conditions (25a)–(25c).

Derivation of the TSGFs � ∗
ij

To derive TSGFs �∗
ij first we need to know the expressions for GFPE. So,

in Eqs. (26a) and (26b) the expressions for GFPE for half-strip with boundary
conditions (28a)–(28c) can be rewritten from references [23, 26]:

G1 = 1
4�

ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

� G2 �x� �� = 1
4�

ln
ĒĒ1Ē2E12

ẼẼ1Ẽ2Ẽ12

�

G� �x� �� = GT �x� �� = 1
4�

ln
EE1Ẽ2Ẽ12

ẼẼ1E2E12

(36)

Next, by using the Duhamel–Neumann law (12), constructive formulas (26a) and
(26b) for MTGFs Ui and the expressions (36) for G1 �x� �� and GT �x� �� we obtain
the following expressions for TSGFs �∗

ij :

�∗
11 �x� �� = − 
�

�� + 2
�

[(
1 − �1





�1

)
GT + x1





�1

G1

]

= − 
�

4� �� + 2
�

[(
1 − �1





�1

)
ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

+ x1




�1

ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]
(37a)
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�∗
22 �x� �� = − �


�� + 2
�

[(
1 + �1





�1

)
GT − x1





�1

G1

]

= − 
�

4� �� + 2
�

[(
1 + �1





�1

)
ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

− x1




�1

ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]
(37b)

�∗
12 �x� �� = �


�� + 2
�





�2

��1GT �x� �� − x1G1 �x� ���

= �


4� �� + 2
�





�2

[
�1 ln

EE1Ẽ2Ẽ12

ẼẼ1E2E12

− x1 ln
EẼ1Ẽ2E12

ẼE1E2Ẽ12

]
(37c)

Finally, omitting the functions Ẽ1 Ẽ12 E1 E12, which contain the inferior index “1,”
we obtain the expressions for thermal stresses to respective BVP of thermoelasticity
for the strip V �−� < x1 < �� 0 ≤ x2 ≤ a2�.

Note that graphics of the TSGFs �∗
ij in Eqs. (37a)–(37c) plotted by using

computer software Maple 15 are presented in Figures 1a–3a, found in the Appendix.

Derivation of the Green-type Integral Formula for �ij

The Green-type integral formula (17) can be obtained by using, the rewritten
for half-strip, the general integral formula (10) taking into account boundary
conditions (14), (15b) and expressions (37a)–(37c) for �∗

ij . Finally, calculating
by using expressions (37a)–(37c) the other influence functions: Kij �0� y2� �� =
�∗

11 �0� y2� �� (on marginal segment �10), �ij �y1� a2� �� = �∗
ij �y1� a2� �� (on marginal

line �21), Qij �y1� 0� �� = 
�∗
ij �y1� 0� �� /
ny2 (on marginal line �20) and substituting

them in the rewritten formula (10), we obtain the integral solution (18)–(22c) to
respective non-homogeneous BVPs (13)–(15b) for a thermoelastic half-strip.

EXPLICIT THERMAL STRESS TO A PARTICULAR BVP FOR HALF-STRIP

Here we present an example of application of Green’s-type integral formula
for thermal stresses in Eqs. (17)–(22c) to the solution of particular BVPs of
thermoelasticity for the half-strip V .

Example

To determine thermal stresses �ij ��� � i� j = 1� 2 in the half-strip V ≡
�0 ≤ x1 < �� 0 ≤ x2 ≤ a2� caused by the following thermal boundary conditions
given on the marginal segment �10 and on the semi-straight lines �20, �21:

T �y� =
{

T20 �y� = T0 = const� y ≡ �y1� 0� ∈ �a1 ≤ y1 ≤ b1� ∈ �20� T0 > 0

T20 �y� = 0� y ≡ �y1� 0� ∈ �0 ≤ y1 < a1�
⋃

�b1 < y1 < �� ∈ �20�


T �0� y2� /
ny1
= −
T �0� y2� /
ny1

== S10 �0� y2� = 0� y ≡ �0� y2� ∈ �10� (38)


T �y1� a2� /
ny2
= 
T �y1� a2� /
ny2

== S21 �y1� a2� = 0� y ≡ �y1� a2� ∈ �21�
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Thus on the boundaries we define homogeneous mechanical boundary conditions
in Eq. (14). According to the above formulated theorem, the solution of the above-
mentioned BVP of thermoelasticity can be obtained using the Green-type integral
formula in Eq. (17) in the absence of inner heat source, heat fluxes on �10, �21 and
at a temperature T20 �y1� on �20:

�ij ��� = −
∫ b1

a1

T20 �y1� 0� Qij �y1� 0� �� dy1 (39)

where kernels Qij �y1� 0� �� are defined by (22a)–(22c). Thus, substituting (22a)–(22c)
and (38) in Eq. (39) we obtain the following integral formula for thermal stresses:

�11 ��� = −
∫ b1

a1

T20 �y1� 0� Q11 �y1� 0� �� dy1

= − �
T0

2� �� + 2
�





�2

∫ b1

a1

[(
1 − �1





�1

)
ln

Ẽ0Ẽ10

Ē0Ē10

+ y1




�1

ln
Ẽ0E10

Ē0Ẽ10

]
dy1 (40a)

�22 ��� = −
∫ b1

a1

T20 �y1� 0� Q22 �y1� 0� �� dy1

= − �
T0

2� �� + 2
�





�2

∫ b1

a1

[(
1 + �1





�1

)
ln

Ẽ0Ẽ10

Ē0Ē10

− y1




�1

ln
Ẽ0E10

Ē0Ẽ10

]
dy1 (40b)

�12 ��� = −
∫ b1

a1

T20 �y1� 0� Q12 �y1� 0� �� dy1

= �
T0

2� �� + 2
�

∫ b1

a1


2


�2
2

[
�1 ln

Ẽ0Ẽ10

Ē0Ē10

− y1 ln
Ẽ0E10

Ē0Ẽ10

]
dy1 (40c)

where

Ē0 = 1 + 2e��/2a2��y1−�1� cos ��/2a2� ��2� + e
��/a2��y1−�1�

(41a)

Ẽ0 = Ẽ �x� �� = 1 − 2e��/2a2��y1−�1� cos ��/2a2� ��2� + e��/a2��y1−�1� (41b)

Ē10 = 1 + 2e−��/2a2��y1+�1� cos ��/2a2� ��2� + e−��/2a2��y1+�1� (41c)

Ẽ10 = 1 − 2e−��/2a2��y1+�1� cos ��/2a2� ��2� + e−��/2a2��y1+�1� (41d)

After computing the integrals in (40a)–(40c) we obtain the following final analytical
expressions for thermoelastic stresses:

�11 ��� = − �
T0

2� �� + 2
�

[
4
(
f̄1 + f̃1 − f̄ − f̃

)

− 



�2

(
y1 ln

Ẽ0Ẽ10

Ē0Ē10

+ �1 ln
Ē0Ẽ10

Ẽ0Ē10

)]y1=b1

y1=a1

(42a)
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�22 ��� = − �
T0

2� �� + 2
�

⎡
⎣ 



�2

(
y1 ln

Ẽ0Ẽ10

Ē0Ē10

+ �1 ln
Ē0Ẽ10

Ẽ0Ē10

)]y1=b1

y1=a1

(42b)

�12 ��� = − �
T0

2� �� + 2
�

[(
�1





�1

− 1
)

ln
Ē0Ẽ10

Ẽ0Ē10

− y1




�1

ln
Ē0E10

Ẽ0Ẽ10

]y1=b1

y1=a1

(42c)

where

f̄ = arctg
e��/2a2��y1−�1� + cos ��/2a2� ��2�

sin ��/2a2� ��2�

f̃ = arctg
e��/2a2��y1−�1� − cos ��/2a2� ��2�

sin ��/2a2� ��2�
(43a)

f̄1 = arctg
e−��/2a2��y1+�1� + cos ��/2a2� ��2�

sin ��/2a2� ��2�

f̃1 = arctg
e−��/2a2��y1+�1� − cos ��/2a2� ��2�

sin ��/2a2� ��2�
(43b)

Note that graphics of thermal stresses in Eqs. (42a)–(43b) are plotted (using
computer software Maple 15) and presented in Figures 1b, 2b and 3b.

CONCLUSIONS

An extension of the HIRM for derivation of MTGFs Ui �x� �� [9–11] on
Cartesian domains, which contains parallel lines or its parts (planes or its parts)
to the coordinate axes (coordinate planes) is proposed. A theorem about the
constructing and checking MTGFs Ui �x� ��, TSGFs �∗

ij �x� �� and new Green-type
integral formulas (17)–(22c) is formulated to a specific BVP for half-strip in terms
of GFPE. All results are obtained in terms of elementary functions. The explicit
solution for a particular BVP of thermoelasticity for half-strip is included. Both,
the derived TSGFs �∗

ij �x� �� and thermal stresses �ij ��� to this particular BVP for
thermoelastic half-strip were evaluated numerically and graphically by using Maple
15 computer software. The proposed technique of constructing TSGFs for a half-
strip could be applied to many other 2D- and 3D-canonical domains, that have
straight lines or its parts (planes or its parts) parallel to coordinate axes (coordinate
planes) of Cartesian system of coordinates.

NOMENCLATURE

TSGFs Thermal stresses Green’s functions
2D Two-dimensional
3D Three-dimensional
BVP Boundary values problem
GFM Green’s function method
G�CM GO convolution method
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TVD Thermoelastic volume dilatation
HIR Harmonic integral representations
HIRM Harmonic integral representations method
MTGFs Main thermoelastic Green’s functions
GFPE Green’s functions for Poisson equation
GFs Green’s functions
MPa Mega Pascal
K Degrees Kelvin

APPENDIX

Graphs of Normal and Tangential Thermal Stresses within Half-Strip
caused by the Unit Point Heat Source and by a Constant Boundary
Temperature Gradient

Graphs of thermal stresses �∗
11, �∗

22, �∗
12 , caused by the unit point heat source

and of thermal stresses �11, �22, �12, caused by a constant boundary temperature
gradient are constructed at the following values of elastic and thermal constants:
the Poisson ratio � = 0�3, modulus of elasticity E = 2�1 · 105 MPa, and coefficient of
linear thermal expansion 	 = 1�2 · 10−5 �K�−1. The behavior of the normal thermal
stresses �∗

11 caused by the inner unit point heat source and of the thermal stresses
�11 caused by the boundary temperature gradient, calculated by the formulas in Eqs.
(37a) and (42a) are shown in Figure 1a and Figure 1b, respectively.

The behaviors of the normal thermal stresses �∗
22 caused by the inner unit

point heat source and of thermal stresses �22 caused by the boundary temperature
gradient, calculated by the formulas (37b) and (42b) are shown in Figure 2a and in
Figure 2b, respectively.

The behavior of the tangential thermal stresses �∗
12 caused by the inner unit

point heat source and of the tangential thermal stresses �12, caused by the boundary

Figure 1 Graphs of normal thermal stresses �∗
11 and �11 in the half-strip V at 0 ≤ �1 ≤ 15m, 0 ≤ �2 ≤

10m, caused by a unit heat source applied at inner point x1 = 10m � x2 = 5m - a; and by the constant
temperature gradient T0 = 50 K, acting on the segment 4 ≤ y1 ≤ 8m of the boundary line �20 - b.
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Figure 2 Graphs of normal thermal stresses �∗
22 and �22 in the half-strip V for 0 ≤ �1 ≤ 15m, 0 ≤ �2 ≤

10m, caused by a unit heat source applied at inner point x1 = 10m � x2 = 5m - a; and by the constant
temperature gradient T0 = 50 K, acting on the segment 4 ≤ y1 ≤ 8m of the boundary semi-straight line
�20 - b.

temperature gradient, calculated by the formulas in (37c) and (42c) are shown in
Figure 3a and in Figure 3b, respectively.

One of the major features that can be seen in Figures 1–3 is the boundary
conditions for thermal stresses �11 �12, �22, created by constant temperature gradient
T0 = 350 K; and for thermal stresses �∗

11, �∗
12, �∗

22, created by a unit source applied
at x1 = 2m � x2 = 5m are satisfied.

Figure 3 Graphs of tangential stresses �∗
12 and �12 in the half-strip V for 0 ≤ �1 ≤ 15m, 0 ≤ �2 ≤ 10m,

caused by a unit heat source applied at inner point x1 = 10m � x2 = 5m - a; and by the constant
temperature gradient T0 = 50 K, acting on the segment 4 ≤ y1 ≤ 8m of the boundary semi-straight line
�20 - b.
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