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By using the integral representations for main thermoelastic Green’s functions
(MTGFs) we prove a theorem about new structural formulas for MTGFs for a whole
class of boundary value problems (BVPs) of thermoelasticity for some semi-infinite
Cartesian domains. According to these new structural formulas many MTGFs for a
plane, a half-plane, a quadrant, a space, a quarter-space and an octant may be obtained
by changing the respective well-known GFPE and their regular parts. The crucial
moment of our investigation consists of elaboration of a new technique for calculating
some generalized integrals containing products of two different GFPEs. Also, the types
of boundary conditions for volume dilatation considered and GFPE for temperature
differ on a single boundary only. As example of application of the obtained new
structural formulas, the new MTGFs for a concrete BVP of thermoelaesticity for an
octant are derived in elementary functions. The MTGFs obtained are validated on a
known example for a BVP for half-space. Graphical computer evaluation of the derived
in elementary functions new MTGFs is included.

Keywords: Elasticity; Green’s functions; Heat conduction; Thermoelastic Green’s functions;
Thermoelasticity; Volume dilatation

INTRODUCTION

The main integral formulas of the traditional Green’s function method (GFM)
[1–9] have been extended onto uncoupled thermoelasticity [11–18] in the works
[19–23]. However, the most difficult point for their successful application remains
(as in traditional GFM) the problem of constructing the Green’s functions (GFs),
called the main thermoelastic Green’s functions (MTGFs) Ui�x� ��. To derive these
functions in the works [19–21] new general integral representations MTGFs and
thermoelastic volume dilatation TVD ��x� �� were proposed.
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Some applications of the general integral representations to constructing
MTGFs for three-dimensional (3D) BVPs for semi-infinite domains, which have
no straight lines or parts (plane or its parts) parallel to the Cartesian coordinate
axis (Cartesian coordinate planes) were presented in [19–21]. So, in the work [19],
for one class of BVPs of thermoelasticity were constructed MTGFs, expressed
in terms of Green’s functions for Poisson’s equation (GFPE), only. Mechanical
boundary conditions are locally mixed (normal stresses and tangential displacements
or normal displacements and tangential stresses on the boundary are given), but
thermal boundary conditions for GT are given in a such way that for TVD � and
Green’s function for heat conduction GT are given the similar types of boundary
conditions (Dirichlet’s or Neumann’s types). In these cases all integrals in integral
representations vanish and final structural formulas for MTGFs are expressed in
terms of GFPE, only.

In reference [20] are found structural formulas for one class of BVPs of
thermoelasticity, when on one site are given displacements, only, but the others’
sites are subjected to the previously mentioned locally mixed boundary conditions.
For the TVD � and Green’s function GT are given the above-mentioned similar
types of boundary conditions. In these cases the integrals in representations do not
vanish, and the final structural formulas for MTGFs are not expressed in the terms
of GFPE only. Finally, in the work [21] MTGFs for one BVP of thermoelasticity are
obtained for an octant only. Boundary conditions for displacements and stresses are
locally mixed, but types of boundary conditions for � and GT are different (� has
Neumann’s, but GT has Dirichlet’s conditions).

In this case some integrals in integral representations do not vanish. Despite
the fact that the general integral representations have been proposed their use
requires yet special study for each specific BVP in particular for groups of BVPs
when we want to derive a structural formula for MTGFs. Studies conducted in
previous works [19–21] show that even a change of the type of boundary conditions
for the temperature on the heat flux, or vice versa, at the same mechanical boundary
conditions, lead to significant mathematical complications. This suggests that the
construction of MTGFs for any new BVP or new class of BVPs needs to be
studied separately, because these studies require elaboration of new techniques and
mathematical procedures.

The main objective of this work is to overcome the new mathematical
difficulties and build a technique to derive new structural formulas for MTGFs
for new classes of two- and three-dimensional boundary value problems of
thermoelasticity. Also, in one example was shown how to apply the derived
structural formulas for the construction of new explicit expressions for a particular
BVP for a thermoelastic octant.

So, in the present work we had found a new class of BVPs of thermoelasticity
for some semi-infinite domains, which do not have straight lines or parts (plane or
its parts) parallel to the Cartesian coordinate axis (Cartesian coordinate planes). On
one site of these domains are given normal displacements and tangential stresses, but
the types of the boundary conditions for � and GT are different (� has Neumann’s,
but GT has Dirichlet’s types of boundary conditions). On the remaining sites are
given any kind of mechanical locally mixed boundary conditions, but the types of
the boundary conditions for � and GT are the same. For the above-mentioned new
class of BVPs of thermoelasticity we obtained new structural formulas for MTGFs,
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which are expressed in terms of GFPE and its regular parts. To achieve this result
we elaborate a new technique to calculate some new integrals, which contain the
products of two different GFPEs. So, as a final result, using the obtained new
structural formulas we can easily write explicit expressions for MTGFs of 12 new
BVPs of thermoelasticity, by changing well-known GFPEs and its regular parts. We
think that these new results represent a considerable contribution to constructing
MTGFs for BVPs of thermoelasticity.

Thus, we will derive new structural formulas for MTGFs in terms of GFPE
and its regular parts. An application of the derived structural formulas to obtaining
new explicit MTGFS Ui�x� �� and solution in the form of integrals for a new
BVP for thermoelastic octant is presented, followed by validation of the derived
MTGFs for octant. Finally, the computer evaluation and graphical presentation of
the MTGFs for octant are included in the Appendix.

New Structural Formulas for MTGFs in Terms of GFPE and its Regular
Parts

Let us consider some canonical semi-infinite domains, whose surfaces represent
planes (straight lines) of Cartesian system of coordinates. Also, these domains
do not have parallel planes (parallel straight lines). For considered domains, if
on the boundary planes (straight lines) are given homogeneous locally mixed
boundary conditions for: (a) normal displacements, tangential stresses and Green’s
function GT - on one boundary plane (straight line); (b) normal stresses, tangential
displacements and GT ; or (c) normal displacements, tangential stresses and normal
to the surface (line) derivatives of Green’s function �GT /�n- on the remain
boundary planes (straight lines), then the following theorem is true.

Theorem. Let the field of MTGFs for displacements Ui�x� �� and temperature
GT �x� �� at inner points � ≡ ��1� �2� �3� of the thermoelastic generalized octant
V�0 ≤ x1� x2� x3 < �� be determined by non-homogeneous Lamé equations

�	2
� Ui�x� �� + �
 + ���� �i

�x� �� = �GT� �i
�x� �� = 0� i = 1� 2� 3� (1)

where 
, �- are Lamé’s elastic constants; � = 
t�3
 + 2��-is the thermoelastic constant;

t- is coefficient of linear thermal expansion; and GT �x� �� is Green’s function in heat
conduction, described by the Poisson-type equation

	2
x GT �x� �� = −��x − �� (2)

Also, for the points y ≡ �0� y2� y3�, y ≡ �y1� 0� y3� and y ≡ �y1y2� 0� of boundary
quadrants �10�y1 = 0� 0 ≤ y2� y3 < ��, �20�0 ≤ y1 < �� y2 = 0� 0 ≤ y3 < �� and
�30�0 ≤ y1� y2 < �� y3 = 0� the following homogeneous locally mixed mechanical and
thermal conditions are given:

U1�x� 0� �2� �3� = �12�x� 0� �2� �3� = �13�x� 0� �2� �3� = 0� GT �x� 0� �2� �3� = 0 (3)

– on the boundary quadrant �10;

�21�x� �1� 0� �3� = U2�x� �1� 0� �3� = �23�x� �1� 0� �3� = 0�

�GT �x� �1� 0� �3�/�n�2
= 0 (4a)
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or

U1�x� �1� 0� �3� = �22�x� �1� 0� �3� = U3�x� �1� 0� �3� = 0� GT �x� �1� 0� �3� = 0
(4b)

– on the boundary quadrant �20, and

�31�x� �1� �2� 0� = �32�x� �1� �2� 0� = U3�x� �1� �2� 0� = 0�

�GT �x� �1� �2� 0�/�n�3
= 0 (5a)

or

U1�x� �1� �2� 0� = U2�x� �1� �2� 0� = �33�x� �1� �2� 0� = 0� GT �x� �1� �2� 0� = 0
(5b)

– on the boundary quadrant �30, where �33 and �21 �31 �23 are the normal and the
tangential stresses which are determined by the well-known Duhamel–Neumann law

�ij = �
(
Ui�j + Uj�i

)+ �ij

(

Uk�k − �GT

)
� i� j = 1� 2� 3� (6)

Then the structural formulae for MTGFs Ui�x� �� and TVD ��x� �� for this class of BVPs
of thermoelasticity in Eqs. (4) and (3)–(14) are the following:

Ui�x� �� = � �2�
 + 2���−1
[
�iGT �x� �� − xiGi�x� ��

+ 2
(

xiWi�x� �� − x1
�

�xi

∫
Wi�x� ��dx1

)]
(7)

��x� �� = �


 + 2�
GT �x� ��� i = 1� 2� 3� k = 2� 3

where GT �x� ��, Gi�x� �� are GFPE and Wi�x� �� are those regular parts of the
Green’s functions Gi�x� �� that contain inferior index 1 (those parts of the Gi�x� ��
that are reflected via boundary �10). For functions GT �x� ��, Gi�x� �� on the boundary
planes (straight lines) are given homogeneous conditions that are similar to boundary
conditions for temperature and thermoelastic displacements Ui�x� �� respectively. So, as
example, under boundary conditions for Gi�x� �� it means that, if Ui = 0, then Gi = 0
and if Ui�n = 0, then Gi�n = 0.

Proof. First, we use the general integral representations [19–21] that in the case of
the octant V ≡ �0 ≤ x1� x2� x3 ≤ �� can be rewritten in the following form:

��x� �� = �


 + 2�
G��x� �� +

3∑
j=1

∫
�j0

(
���y� x�

�nyj

− ��y� x�
�

�nyj

)
G��y� ��d�j0�y� (8)

– for thermoelastic TVD ��x� ��, and

Ui�x� �� = −
 + �

2�
�i��x� �� − �

2�
 + 2��
xiGi�x� �� + ��i

2�
GT �x� ��

−
3∑

j=1

∫
�j0

(
Vi�x� y�

�

�ny1

− �Vi�x� y�

�ny1

)
Gi�y� ��d�j0�y� (9)
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– for MTGFs Ui�x� ��, where y ≡ �0� y2� y3� ∈ �10� d�10�y� ≡ dy2dy3�
�

�ny1
= − �

�y1
;

y ≡ �y1� 0� y3� ∈ �20,

d�20�y� ≡ dy1dy3�
�

�ny2

= − �

�y2

� y ≡ �y1� y2� 0� ∈ �30�

d�30�y� ≡ dy1dy2�
�

�ny3

= − �

�y3

�

Second, we use the following hypotheses presented in works [19–21]:

1) Let the surfaces of some domains represent planes or their parts (straight lines
or their parts) of Cartesian system of coordinates. If on the boundary planes or
their parts (straight lines or their parts) are given zero normal displacements, zero
tangential stresses and zero Green’s function for temperature (see Eq. (3)), then
the normal derivative of TVD is ��n = ��/�
 + 2�����GT �y� ��/�n�.

2) Respectively, if on the boundary planes or their parts (straight lines or their
parts) are given zero normal displacements, zero tangential stresses and zero
normal derivative of Green’s function for temperature (see Eqs. (4a) and (5a)),
then the normal derivative of TVD is equal to zero, ��n = 0.

3) If on the boundary planes or their parts (straight lines or their parts) are given
zero normal stresses, zero tangential displacements and zero Green’s function for
temperature (see Eqs. (4b) and (5b)), then TVD � = 0.

Next, let in the integral representations (8)–(9) the functions Gi, G� and GT are
the GFPE those homogeneous boundary conditions are the similar to the boundary
conditions for Ui, � and GT , respectively. So, it means that, if on a boundary
quadrant are known Ui and �, T , then Gi = 0 and G� = GT = 0; and if on a
boundary quadrant are known Ui�n and ��n, T�n, then Gi�n = 0 and G��n = GT�n = 0.
In these cases, using hypothesis 1) in the work [20] is proved that the boundary
conditions (3) lead to following equivalent locally mixed boundary conditions:

U1 = �12 = �13 = 0� GT = 0� ⇒ U1 = 0� U1�2 = U1�3 = 0� U2�1 = U3�1 = 0
(10)

⇒ ��1 = ��
 + 2��−1GT�1� G1 = G2�1 = G3�1 = G��1 = GT = 0

– on the boundary quadrant �10.

Also, in the cases presented earlier, using the hypotheses 2 and 3 in the work [19]
is proved that the boundary conditions (4a), (4b) and (5a), (5b) lead to following
equivalent locally mixed boundary conditions:

�21 = U2 = �23 = 0� GT�2 = 0 ⇒ U1�2 = 0� U2 = 0� U2�1 = U2�3 = U3�2 = 0
(11a)

⇒ ��2 = 0� G1�2 = 0� G2 = 0� G3�2 = 0� G��2 = 0� GT�2 = 0

or

U1 = �22 = U3 = 0� GT = 0� ⇒ U1 = U1�1 = U1�3 = U3 = U3�1 = U3�3 = U2�2 = 0
(11b)

⇒ � = 0� G1 = G2�2 = G3 = G� = GT = 0
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– on the boundary quadrant �20, and

�31 = �32 = U3 = 0� �GT /�n�3
= 0� ⇒ U1�3 = U2�3 = U3 = U3�1 = U3�2

(12a)
⇒ ��3 = 0� G1�3 = 0� G3 = 0� G2�3 = 0� G��3 = 0� GT�3 = 0�

or

U1 = U2 = �33 = 0� GT = 0� ⇒ U1 = U1�1 = U1�2 = U2 = U2�2 = U2�1 = U3�3
(12b)

⇒ � = G1 = G2 = G3�3 = G� = GT = 0

– on the boundary quadrant �30.

Substituting the boundary values of the TVD � and respective GFPE G�

from Eqs. (10)–(12b) into representation (8) we can see that integrals on boundary
quadrants �20 and �30 are zero, so that we obtain:

��x� �� = ��
 + 2��−1

[
G��x� �� +

∫
�10

(
�GT �y� x�

/
�ny1

)
G��y� ��d�10�y�

]
(13)

As boundary conditions for G��x� �� and GT �x� �� on the boundary quadrants �20

and �30 are the same, but on boundary quadrant �10, G��1 = 0, GT = 0, from (14)
follows:

��x� �� = ��
 + 2��−1GT �x� �� (14)

Next, if we use boundary conditions (11a)–(12b) and expression (22) in
representations (9) we can see:

1. In integral representation (9) rewritten for thermoelastic displacements U1�x� ��
all surfaces integrals are zero, and

U1�x� �� = � �2�
 + 2���−1 ��1GT �x� �� − x1G1�x� ��� (15)

that coincides with the structural formula for MTGFs (7) at i = 1.
2. In integral representation (9) rewritten for thermoelastic displacements

Uk�x� ��� k = 2� 3 the integrals on boundary quadrants �20 and �30 are zero, and

Uk�x� �� = −
 + �

2�

�

�
 + 2��
�kGT �x� �� − �

2�
 + 2��
xkGk�x� �� + ��k

2�
GT �x� ��

+
∫

�10

�

�ny1

[
Uk�x� y� + �2��−1 yk ��
 + ����x� y� − �GT �x� y��

]
× Gk�y� ��d�10�y� (16a)

Taking into account (10) and

2Wk�y� �� = Gk�y� �� (16b)
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from (16a) we obtain

Uk�x� �� = � �2�
 + 2���−1
[

��kGT �x� �� − xkGk�x� ���

+ 2
∫

�10

ykGT�1�x� y�Wk�y� ��d�10�y�

]
� k = 2� 3 (16c)

The last integral can be taken as follows:

Ik�x� �� =
∫

�10

ykGT�1�y� x� Wk�y� ��d�10�y�

=
∫

�10

ykWk�y� ��GT�1�y� x�d�10�y� = xkWk�x� �� − x1
�

�xk

∫
Wk�x� ��dx1

(16d)

where Wk�x� �� are those regular parts of the Green’s functions Gk�x� ��
that contain inferior index 1 (those parts of Gk�x� �� that are reflected via
boundary �10).

So, substituting (16d) into (16c) we obtain the final structural formulas for
Uk�x� ��:

Uk�x� �� = � �2�
 + 2���−1
[

��kGT �x� �� − xkGk�x� ���

+ 2
(

xkWk�x� �� − x1
�

�xk

∫
Wk�x� ��dx1

)]
� k = 2� 3

(16e)

that coincide with the structural formulas (7) at i = k = 2� 3.

Note that one of the most difficult moments of our investigations was the
evaluation of the integral (16d). But this moment was avoided successfully, when we
established the following properties of integral Ik:

1. The integral Ik is a harmonic function with respect to coordinates of both points:
� ≡ ��1� �2� �3� and x ≡ �x1� x2� x3�;

2. The values of integral Ik on boundary quadrants are determined by the boundary
conditions of his integrands: the integrand Gk�y� �� (with respect to coordinates
of the point � ≡ ��1� �2� �3�) and of the integrand GT�1�y� x� (with respect to
coordinates of the point x ≡ �x1� x2� x3�.

These boundary conditions are given in Eqs. (11a)–(12b).
So, these two properties of the left part of integral Ik help us to write its

right part as is shown in Eq. (16d). Note that structural formulas for MTGFs (7)
at i = 1� 2 are applicable also for 2D BVPs of thermoelasticity. Thus the proposed
technique permits to derive many MTGFs in thermoelasticity, including 2D. Indeed,
on the base of structural formula (7) we can easy (by changing the respective
well-known analytical expressions for GFPEs GT �x� ��, Gi�x� �� and calculating
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some simplest integrals) to write MTGFs Ui�x� �� and TVD ��x� �� in elementary
functions for many BVPs of thermoelasticity: eight for 3D BVPs (one for space, one
for half-space, two for quarter-space and four for octant) and four for 2D BVPs
(one for plane, one for half-plane and two for quadrant). However, in this study
we give only one example for constructing new explicit MTGFs Ui�x� �� and TVD
��x� ��in elementary functions for a BVP of thermoelasticity for an octant.

New Explicit MTGFS Ui�x� �� and Solution in the Form of Integrals for
a New BVP for Thermoelastic Octant

Let the field of displacements Ui�x� �� and temperature GT �x� ��at inner points
� ≡ ��1� �2� �3� of the thermoelastic octant V�0 ≤ x1� x2� x3 < �� be determined
by non-homogeneous Lamé equations (4) and Poisson’s equation 	2

x GT �x� �� =
−��x − ��, but in the points y ≡ �0� y2� y3�, y ≡ �y1� 0� y3� and y ≡ �y1y2� 0� of
boundary quadrants �10�y1 = 0� 0 ≤ y2� y3 < ��, �20�0 ≤ y1 < �� y2 = 0� 0 ≤ y3 <
�� and �30�0 ≤ y1� y2 < �� y3 = 0� the following homogeneous mechanical and
thermal conditions are given:

U1 = �12 = �13 = 0� GT = 0 (17)

– on the boundary quadrant �10

�21 = U2 = �23 = 0� �GT /�n�2
= 0 (18)

– on the boundary quadrant �20 and

U1 = U2 = �33 = 0� GT = 0 (19)

– on the boundary quadrant �30.

Then, according to the boundary conditions (3), the boundary conditions (4a) and
the boundary conditions (5b) the respective boundary conditions for GFPE Gi�x� ��
are:

G1 = G2�1 = G3�1 = GT = 0� (20)

on the boundary quadrant �10,

G1�2 = G2 = G3�2 = GT�2 = 0� (21)

on the boundary quadrant �20, and

G1 = G2 = G3�3 = GT = 0 (22)

on the boundary quadrant �30.
So, the expressions of GFPEs with boundary conditions (20)–(22) for octant

V are [10]:

G1�x� �� = GT �x� �� = �4��−1
(
R−1 − R−1

1 + R−1
2 − R−1

12 − R−1
3 + R−1

13 − R−1
23 + R−1

123

)
(23a)
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G2�x� �� = �4��−1
(
R−1 + R−1

1 − R−1
2 − R−1

12 − R−1
3 − R−1

13 + R−1
23 + R−1

123

)
(23b)

G3�x� �� = �4��−1
(
R−1 + R−1

1 + R−1
2 + R−1

12 + R−1
3 + R−1

13 + R−1
23 + R−1

123

)
(23c)

where

R =
√

�x1 − �1�
2 + �x2 − �2�

2 + �x3 − �3�
2�

R1 =
√

�x1 + �1�
2 + �x2 − �2�

2 + �x3 − �3�
2

R2 =
√

�x1 − �1�
2 + �x2 + �2�

2 + �x3 − �3�
2�

R12 =
√

�x1 + �1�
2 + �x2 + �2�

2 + �x3 − �3�
2

(23d)
R3 =

√
�x1 − �1�

2 + �x2 − �2�
2 + �x3 + �3�

2�

R13 =
√

�x1 + �1�
2 + �x2 − �2�

2 + �x3 + �3�
2

R23 =
√

�x1 − �1�
2 + �x2 + �2�

2 + �x3 + �3�
2�

R123 =
√

�x1 + �1�
2 + �x2 + �2�

2 + �x3 + �3�
2

On the basis of GFPE G2�x� ��, G3�x� �� from Eqs. (23b), (23c) and the proved
theorem, we can rewrite their regular parts W2�x� �� and W3�x� �� that contains
inferior index 1 (those parts of the G2�x� �� and G3�x� �� that are reflected via
boundary �10) and their integrals:

W2�x� �� = �2��−1 (R−1
1 − R−1

12 − R−1
13 + R−1

123

)
�∫

W2�x� ��dx1 = �2��−1 ln
( �x1 + �1 + R1� · �x1 + �1 + R123�

�x1 + �1 + R12� · �x1 + �1 + R13�
)

(24)

– for W2�x� ��,
∫

W2�x� ��dx1 and

W3�x� �� = �2��−1 (R−1
1 + R−1

12 + R−1
13 + R−1

123

)
∫

W3�x� ��dx1 = �2��−1 ln
(

�x1 + �1 + R1� · �x1 + �1 + R13� · �x1 + �1 + R12�

· �x1 + �1 + R123�
)

(25)

– for W3�x� ��,
∫

W3�x� ��dx1.

Substituting expressions (23a)-(25) in the structural formula (7) we obtain the final
explicit expressions for MTGFs Ui�x� ��:

U1�x� ��

= � �8��
 + 2���−1 ��1 − x1�
[
R−1 − R−1

1 + R−1
2 − R−1

12 − R−1
3 + R−1

13 − R−1
23 + R−1

123

]
(26a)
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U2�x� �� = � �8��
 + 2���−1
{

�2

(
R−1 − R−1

1 + R−1
2 − R−1

12 − R−1
3 + R−1

13 − R−1
23 + R−1

123

)
− x2

(
R−1 + R−1

1 − R−1
2 − R−1

12 − R−1
3 − R−1

13 + R−1
23 + R−1

123

)
+ 2

[
x2

(
R−1

1 − R−1
12 − R−1

13 + R−1
123

)

− x1
�

�x2

ln
( �x1 + �1 + R1�x� ��� · �x1 + �1 + R123�x� ���

�x1 + �1 + R12�x� ��� · �x1 + �1 + R13�x� ���
)]}

(26b)

U3�x� �� = � �8��
 + 2���−1
{

− �3

(
R−1 − R−1

1 + R−1
2 − R−1

12 − R−1
3 + R−1

13 − R−1
23 + R−1

123

)
− x3

(
R−1 + R−1

1 + R−1
2 + R−1

12 + R−1
3 + R−1

13 + R−1
23 + R−1

123

)
+ 2

[
− x3

(
R−1

1 + R−1
12 + R−1

13 + R−1
123

)− x1
�

�x3

ln
(

�x1 + �1 + R1�x� ���

· �x1 + �1 + R12�x� ��� · �x1 + �1 + R13�x� ��� · �x1 + �1 + R123�x� ���
)]}

(26c)

and for TVD

��x� �� = �

4��
 + 2��

(
R−1 − R−1

1 + R−1
2 − R−1

12 − R−1
3 + R−1

13 − R−1
23 + R−1

123

)
(27)

Also, the final explicit expressions for MTGFs Ui�x� �� may be presented in the
compact form:

Ui�x� �� = � �8��
 + 2���−1 �

��i

[
�R − R1 + R2 − R12 − R3 + R13 − R23 + R123�

− 2x1 ln
( �x1 + �1 + R13� · �x1 + �1 + R123�

�x1 + �1 + R1� · �x1 + �1 + R12�
)]

(28)

Indeed, taking derivatives in (28) we see that they coincide with expressions
(26a)–(26c). As example of validation of the obtained MTGFs (26a)–(26c) or (28)
in the Appendix we present their graphics, constructed using Maple 15 computer
software.

Finally, calculating on the basis of the functions (28) the other influence
functions (�Ui�y� ��/�n10 = − �Ui �0� y2� y3� �� /�y1 on boundary quadrant �10,
Ui�y� �� = Ui �y1� 0� y3� �� on boundary quadrant �20 and �Ui�y� ��/�n30 =
−�Ui �y1� y2� 0� �� /�y3 on boundary quadrant �30) and substituting these functions
in the general integral formula [19–21], we obtain the following solution in the
form of integrals of the above-mentioned BVP for the thermoelastic octant in the
author’s form:

ui��� = a−1
∫ �

0

∫ �

0

∫ �

0
F �z� Ui �z� �� dz1dz2dz3

+
∫ +�

0

∫ +�

0
T �0� y2� y3�

�Ui �0� y2� y3� ��

�y1

dy2dy3
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−
∫ +�

0

∫ +�

0

�T �y1� 0� y3�

�y2

Ui �y1� 0� y3� �� dy1dy3

+
∫ �

0

∫ �

0
T �y1� y2� 0�

�Ui �y1� y2� 0� ��

�y3

dy1dy2�

z ≡ �z1� z2� z3� � � ≡ ��1� �2� �3� � (29)

where Ui�z� �� are determined by Eq. (28); the other kernels are:

�Ui �0� y2� y3� ��

�y1

= −�Ui �0� y2� y3� ��

�n10

= 2�

8��
 + 2��

�

��i

[
�1

(−R−1 − R−1
2 + R−1

3 + R−1
23

)

− ln
( ��1 + R3� · ��1 + R23�

��1 + R1� · ��1 + R2�
)]

(30a)

Ui �y1� 0� y3� ��

= 2� �8��
 + 2���−1 �

��i

[
�R − R1 − R3 + R13� − 2y1 ln

( �y1 + �1 + R13�
�y1 + �1 + R1�

)]
(30b)

and

�Ui �y1� y2� 0� ��

�y3

= −�Ui �y1� y2� 0� ��

�n30

= 2� �8��
 + 2���−1

× �

��i

[
�3

(−R−1 + R−1
1 − R−1

2 + R−1
12

)
− 2y1�3

(
R−1

1 �y1 + �1 + R1�
−1 + R−1

12 �y1 + �1 + R12�
−1
) ]

(30c)

Note, that from formulas (26a)–(26c) or (28) for the thermoelastic octant, we can
obtain respective new MTGFs for quarter-space V�0 ≤ x1� x2 < +�� −� < x3 <
��. To achieve these results is sufficient to omit in the formulas (26a)–(26c) or (28)
for the thermoelastic octant the terms that contain inferior index 3.

Validation of the New MTGFs Obtained for Octant

Validation of MTGFs Ui�x� �� obtained before for thermoelastic octant is
confirmed by respective already known MTGFs for particular case of half-space
V�0 ≤ x1 < +�� −� < x2� x3 < +�� derived before [23]. To confirm MTGFs for
half-space V�0 ≤ x1 < +�� −� < x2� x3 < +�� [23] is enough to omit in the
formulas (26a)–(26c) or (28) for thermoelastic octant V�0 ≤ x1� x2� x3 ≤ +�� the
terms that contain inferior indexes 2 and 3. Also the correctitude of obtained
MTGFs Ui�x� �� for octant is checked by using given below Eqs. (31) and (32).
Finally in the Appendix is presented MTGFs Ui�x� �� and GFPE GT �x� �� for
octant, which were evaluated numerically and graphically using Maple 15 computer
software.

We checked to confirm that MTGFs (26a)–(26c) or (28) for the thermoelastic
octant derived previously with respect of point x ≡ �x1� x2� x3� satisfy Eqs. [19–21]

	2
x Ui�x� �� = −���i��x� �� (31)
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where according to handbook [10] (see answer to problem 16.L.3) the volume
dilatation is determined by the expression:

��i��x� �� = − �4��
 + 2���−1 �

��i

(
R−1 + R−1

1
+ R−1

2
+ R−1

12
− R−1

3 − R−1
13 − R−1

23 − R−1
123

)
(32)

Also, MTGFs (26a)–(26c) or (28) satisfy the homogeneous boundary conditions for
Ui = Ui�x� �� that are identical to whose of GT :

Ui �0� y2� y3� �� = 0� y ≡ �0� y2� y3� ∈ �10 (33a)

�Ui �y1� 0� y3� �� /�n20 = 0� y ≡ �y1� 0� y3� �� ∈ �20 (33b)

Ui �y1� y2� 0� �� = 0� y ≡ �0� y2� y3� ∈ �30 (33c)

Also, we checked and confirm that with respect to point � ≡ ��1� �2� �3� the derived
MTGFs (26a)–(26c) or (28) satisfy Lamé’s equations in thermoelasticity

�	2
� Ui�x� �� + �
 + ���� �i

�x� �� − �GT� �i
�x� �� = 0� i = 1� 2� 3 (34)

and the homogeneous mechanical boundary conditions (17)–(19).

CONCLUSIONS

A new approach for derivation of MTGFs Ui�x� �� directly from respective
Lamé’s equations (1) is proposed. To achieve this aim some special general integral
representations for functions Ui�x� �� presented in Eqs. (8)–(9), are used. A new
theorem on structural formulas (7) for functions Ui�x� �� in terms of GFPE is
proved. According to the structural formulas obtained, the derivation of MTGFs
for about 12 BVPs for a plane, a half-plane, a quadrant, a space, a quarter-space,
and an octant may be obtained by changing the respective well-known GFPEs and
its regular parts. New MTGFs for octant and quarter-space are derived.

All results are obtained in terms of elementary functions with an example of
their validation and checking. The derived MTGFs Ui�x� �� and GFPE GT �x� �� for
an octant are evaluated numerically and graphically using Maple 15 software. Using
the proposed technique, it is possible to extend all results obtained here to many
BVPs for canonical Cartesian domains that do not have parallel straight lines or
their parts (planes or their parts) to the respective coordinates axes (coordinates
planes).

APPENDIX

Graphics of MTGFS Ui and GFPE GT within an Octant

Here we present Figures 1–6, showing the MTGFs Ui�x� ��, determined by
Eqs. (26a)–(26c) or (28) for 3D BVP of thermoelasticity (1) and (17)–(19) for the
octant V�0 ≤ x1� x2� x3 < ��. Also we present Figure 7 showing the GFPE GT �x� ��
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Figure 1 Graphics of changing MTGFs U1 in dependence of �2� �3 constructed at �1 = 1m; x1 =
2m; x2 = 3m; x3 = 4m–Figure 1a; and in dependence of x2� x3 constructed at x1 = 1m� �1 = 2m;
�2 = 3m� �3 = 4m–Figure 1b.

Figure 2 Graphics of changing MTGFs U1 in dependence of �1� �3, constructed at �2 = 1m; x1 = 2m;
x2 = 3m; x3 = 4m–Fig. 2a; and in dependence of x1� x3, constructed at x2 = 1m; �1 = 2m; �2 = 3m;
�3 = 4m–Figure 2b.

Figure 3 Graphics of changing MTGFs U2 in dependence of �2� �3 constructed at �1 = 1m� x1 = 2m;
x2 = 3m; x3 = 4m–Figure 3a; and in dependence of x2� x3 constructed at x1 = 1m; �1 = 2m; �2 = 3m;
�3 = 4m–Figure 3b.
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for 3D BVP that consist from Poisson equation (2) and boundary conditions
(20)–(22) of heat conduction theory within the octant V , plotted using Maple
15 software. The MTGFs Ui�x� �� are generated by the unitary inner point heat
source F = ��x − ��. All 12 graphics for the MTGFs Ui�x� �� were constructed at
the following values of the constants: Poisson’s ratio � = 0�3; elasticity modulus
E = 2� 1 · 105 MPa and coefficient of linear thermal expansion 
i = 1�2 × 10−5.
Graphics of changing MTGFs U1�x� �� are shown in Figures 1 and 2.

Graphics of changing MTGFs U2�x� �� are shown in Figures 3 and 4.
Graphics of changing MTGFs are shown in Figures 5 and 6.
The main conclusions that follow from Figures 1–6 are: (1) the derived

new MTGFs Ui�x� �� satisfy all boundary conditions with respect to both points:
x ≡ �x1� x2� x3� and � ≡ ��1� �2� �3�; and, (2) In the point x = � the most MTGFs
Ui�x� �� have jumps.

Finally, the graphics of changing GFPE GT are shown in Figure 7.

Figure 4 Graphics of changing MTGFs U2 in dependence of �1� �2 constructed at �3 = 1m; x1 = 2m;
x2 = 3m; x3 = 4m–Fig. 4a; and in dependence of x1� x2, constructed at x3 = 1m; �1 = 2m; �2 = 3m;
�3 = 4m–Figure 4b.

Figure 5 Graphics of changing MTGFs U3 in dependence of �2� �3 constructed at �1 = 1m; x1 = 2m;
x2 = 3m; x3 = 4m–Figure 5a; and in dependence ofx2� x3, constructed at x1 = 1m; �1 = 2m; �2 = 3m;
�3 = 4m–Figure 5b.
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Figure 6 Graphics of changing MTGFs U3 in dependence of �1� �3 constructed at �2 = 1m; x1 = 2m;
x2 = 3m; x3 = 4m–Figure 6a; and in dependence of x1� x3, constructed at x2 = 1m; �1 = 2m; �2 = 3m;
�3 = 4m–Figure 6b.

Figure 7 Graphics of changing GFPE GT in dependence of �2� �3, constructed at �1 = 1m; x1 = 2m;
x2 = 3m; x3 = 4m–Figure 7a; and in dependence of �1� �3, constructed at �2 = 1m; x1 = 2m; x2 = 3m;
x3 = 4m–Figure 7b.

The main conclusions that follows from Figure 7 are: (1) The GFPE GT

satisfy all boundary conditions; and, (2) In the point x = � the function GT has a
singularity of the R−1 type.

NOMENCLATURE

GFs – Green’s functions
GFM – Green’s function method
MTGFs – main thermoelastic Green’s functions
GFPEs – Green’s functions for Poisson equation
BVP – boundary values problem
BVPs – boundary values problems
TVD – thermoelastic volume dilatation
2D – two-dimensional
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3D – three-dimensional
MPa – mega Pascal
K– degrees Kelvin
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