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THE METHOD OF SYNTHESIS FUNCTIONS FOR SOLVING THE 

MULTI-CRITERIA LINEAR-FRACTIONAL TRANSPORTATION 

PROBLEM WITH "BOTTLENECK" CRITERION 

 

 

Abstract.  In the paper , it is developed an adapted version of Jose A. 

Diaz’s algorithm [2]  for solving the multi-criteria linear-fractional transportation 

problem with the same “bottleneck” denominators, additionally the same time 

“bottleneck” criterion is including separately. It generates for each (feasible) time 

value the best compromise multi criteria solution, which is situated closely of ideal 

solution. So, finally, we will obtain one finite set of function-distance optimal 

compromise solutions, each corresponding to one time level    solutions for solving 

the multi-criteria fractional transportation problem with the same “bottleneck” 

denominators, separately including the time “bottleneck” criterion. The proposed 

algorithm has been tested on several examples and proved to be quite effective.                   

          Keywords: Fractional multi-criteria transportation model,   “bottleneck”  

criterion, efficient solution, a best compromise solution, function-distance 

optimal compromise solutions. 

 

JEL Classification:  C44, C61 

 

1. Introduction 

            The interest of the multi- criteria optimization problem is on the rise, 

including the multi-criteria transportation model, which has numerous practical 

applications.  The efficient solutions of the multi-criteria transportation problem of 

liner type  can be achieved using various algorithms developed in [2], [5, [6], [8], 

[10]  and many others. A large variety of algorithms have been proposed for 

different kinds of multi-criteria transportation problems of “bottleneck” type [1], 

[3], [4]. In [1] for solving the three-criteria transportation problem, including the 

“bottleneck” Aneja and Nair developed an efficient algorithm,  Wild and Karwan 

in [11]  proposed an efficient algorithm for solving the generalized r-criteria 

transportation problem of the same type. The efficient algorithms for solving one-
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criterion fractional transportation model of “bottleneck” type are proposed by 

Sharma and Swarup in [7] and by Tkacenko in [9] for  multi-criteria fractional 

transportation model of the same type. Frequently, the decision maker proposes to 

find a single solution for the multicriterial issue, which would achieve the best 

compromise between criteria, on the grounds that he does not have time to analyse 

the entire set of efficient solutions. In this paper we propose an algorithm based on 

the method of synthesis functions, leading to an optimal compromise solution for 

multi-criteria fractional transport model of bottleneck type. 

                 

                 2. Problem formulation 

           The mathematical model of the multi-criteria fractional transportation 

problem of “bottleneck” with deterministic data is the following: 
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           We can observe, that in model (1)-(2) the first “r” criteria is of linear-

fractional type, moreover, with identical denominators. The denominator function 

appears again as a separate the (r+1)  criterion, being a time-constraining criterion, 

met in special literature as a bottleneck-type criterion. Particular cases of the model 

(1)-(2) were analysed in [9].  In 10, the author proposes an algorithm that records 

for each time value all the efficient solutions for model (1) - (2), so in the end, the 

decider has the set of all the efficient solutions of the model. 
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            3. Theoretical considerations  

 

            In order to investigate the model of multiple criteria, we should propose 

firstly the definition of efficient solution for the deterministic model (1)-(2).  

Let suppose that:   ,    is one basic solution for the model (1)-(2), 

where:    =
ji,

max  0/ ijij xt . 
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in the same conditions like in (2). 

  Analysing the model (1) – (2) and (3), it is evident, that both models have the same 

set of basic solutions, because of the same availability domains. 
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Definition 3.   itsforidelconsideredismodeltheofXsolutionbasicThe  3
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Theorem 1. [9]  The set of the basic efficient solutions of the model (1)-(2) and  (3) 

coincide. 

 Demonstration of the theorem is brought to [9]. 

Obviously, the set of the basic  best optimal compromise solutions of model (1) - 

(2) and (3) also coincide. 

 

 Theorem 2.  Any best compromise solution for model (3) is also efficient for this. 

Proof.  Let suppose, that in time matrix - T of model (3) the time value is ordered 

in ascending order, thus we will assign the matrix cells of the time (for identical 

values of t, we will consider different, increasing indices) the indices obtained in 

the result of its ordination. So, the total number of indices will be: nmk  . We 

will consider at first iteration at least 1 nm  cells used, and we will assign 

11  nmk ;  

We'll calculate 1  =
ji,

max  0/ ijij xt   of matrix T, for which DX  1  (D is 

the domain of admissible solutions for model (3), described by relations (2)), that is 

of the best compromise solution for the first r criteria of model (3). We will 

consider the cells for which we have true  the relationship ,1Ttij   as blocked. 

According the above definition, result immediately Solution 1X  register the next 

values of objective function (first r criteria): 

                              11211 ,..., XFXFXF r ;  

We assume that solution 1X  is not efficient for the corresponding 1 . In 

accordance with Definition 1 immediately apparent that, for the same time value 

1T , there is another basic solution, different from the first, 1XX   for which 

exists at least one index  rj ,...11  for which the relation    
11 jj FF  is 

true. In this case, obviously, the distance from point X  to the ideal point will be 

smaller than from 1X  to this, calculated for any metric.  In this case, obviously, 
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the distance from point X  to the ideal point will be smaller, calculated for any 

metric. This contradicts the assumption that 1X  achieves the best compromise for 

the first r criteria of the model (3). Therefore, the solution 1X  is also efficient for 

the model (3). The similar procedure is applied to the following unblocked T cells 

until all of cells have been unlocked, and for each unlocked time cell, we will 

highlight its corresponding solution, that achieves the best compromise for the first 

r criteria of the model (3). Finally, for model (3) we will have the set of solutions 

that make the best compromise of the first r criteria for any time value from the T 

matrix. 

 

Remark 1. The  set of basic efficient solutions and of basic  best optimal 

compromise solutions of model (1) - (2) and (3) coincide. 

 

Theorem 3.  The set of the best compromise solution of model (1)-(2) and (3) 

coincide. 

 

Proof. Let suppose that we have determined the set of the best compromise 

solutions, each solution being associated with the corresponding time of its 

realization, for the model (3), which is the next: 

      
pp TXTXTX ,,...,,,, 2211 ; We will consider for 

1T  the record vector of the 

first r criteria of model (3):  rFFF ,...,, 21
. These denote the closest placement of 

the basic solution 
1X  by the ideal solution for time 

1T  for any distance 

measurement metric. We will assume that 
1X  is not the solution of the best 

compromise for model (1) - (2), corresponding to time 
1T . In this case, there is 

another 1

~
X  solution  so that  11

~
XX   and will be placed closer to the ideal 

solution than the first. The record vector of the first r criteria of model (1)-(2) is the 
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. Since 1T  is the same for all r criteria of model (1) - 

(2), it can be considered as a constant, which does not influence the value of the 

distance. Obviously, the distance is only influenced by the record: 

 rFFF
~

,...,
~

,
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21 .Since 1X  is not efficient for the model (1)-(2), it results that the 

distance of the  rFFF ,...,, 21  records to the ideal point is less than the distance 

evaluated for the  rFFF
~
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21  records, which contradicts the assumption that 
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1X  is the best compromise solution for the model (3), corresponding to the time 

1T . Therefore, 
1X  is also the solution of the best compromise for model (1) - (2), 

corresponding to time 
1T . Analogously, the claim is made for the other values of 

time. Therefore, the multitude of the best compromise solutions of the model (3) is 

necessarily of the best compromise and for model (1) - (2). Similarly, it 

demonstrates that the set of the best compromise solutions for the model (1) - (2) is 

of the best compromise for the model (3). Therefore, the multitudes of the best 

compromise solutions for models (1) - (2) and (3) coincide, what had to be 

demonstrated 

  

4.  Method of L-compromise [2] 

           We will consider a multi criteria transport model of the linear type 

represented by the first  r  criteria of model (3) and domain restrictions (2).  It is the 

next: 
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We will use a linear approximation to measure the distance between the 

permissible solution and the ideal one. We will define the new variables as follows: 
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          From formula (6) it follows that for any values   DX  ,  the 

corresponding values of  kY , are obviously  ≥ 1; and if 1kY , then the 

corresponding solution X  is optimal for criterion k; 

We will build the following function:  
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which is a function of measuring the degree of touch of optimality, obviously being 

of linear type. It is clear that  XFmin  possible  may be  equal to r and this is 

also achieved if the problem admits an ideal solution, i.e.  if we have: 

  rXF min .  

In other cases, we will have a true relationship:   rXF  . 

Thus, the mathematical model of the proposed problem is the following:          
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in condition  (5)-(6)                

 We can observe that the model (9) is a one criterion transportation model of linear 

type.     

 

).6()4(

 9.4Definition





modeltheforsolutioncompromiseL

aconsideredismodeltheofXsolutionbasicoptimalThe L       

 

           Theorem 4. Any L- compromise solution for model (4)-(6) is also efficient 

for this. 

            Proof.  The demonstration we will do it, assuming the contrary.  

Let: 


LX - L-compromise solution of the model (4)-(6), which is not efficient for it. 

From the definition of efficient solution it follows that there is  
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and at least for some indices the inequality (10) is strict, i.e. for them is true the 

relation:                        
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The relationship (12), however, contradicts that it is the optimal solution for the 

model (9). Therefore, our assumption is wrong, and 


LX  is an effective solution to 

model (4)-(6) what had to be demonstrated. 

 

5.  Method of Q-compromise 

  This method proposes an approximation of finding the optimal compromise 

solution for the model (4)-(6), measured by a square compromise distance function 

[2]. For the proposed model, we will build additional variables such as:                        
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Obviously for any admissible solution   DX  , we have the true relation: 

0kY , and only for the optimal solution of the k criterion we will have: 0kY . 
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Function from (14) represents, for   DX   the sum of the squares of the 

normalized distance from the recorded value of the function of the criterion k, i.e. 

 XFk  to the optimal value of this criterion, which is 


kF .  

We will analyse the following model: 
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Theorem 5. Any Q- compromise solution for model (4)-(6) is also efficient for this. 

Proof.  The demonstration we will do it, assuming the contrary.  

Let: 


QX - Q-compromise solution of the model (4)-(6), which is not efficient for it. 

Then, there is another feasible solution, according of  definition of efficient 

solution,   
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In this case we have true the next relationship: 
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The relationship (12), however, contradicts that it is the optimal solution for the 

model (15). Therefore, our assumption is wrong, and 


QX  is an efficient solution of 

model (4)-(6), what had to be demonstrated. 

 

Remark 2. In order to solve the transportation model (15) with quadratic 

compromise function we can use the quadratic programming method. 
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Stages of  L - compromise and Q compromise algorithm 

 

The L-compromise algorithm and the Q-compromise algorithm are accomplished 

by following two similar steps, which are the following: 

 

Phase I 

Step 1. Initially, we will solve r linear transportation models  of unicriterial type 

with the objective functions in (4) on the field of admissible solutions given by the 

relations (5)-(6); 

Step 2. Using the set of optimal solutions from Step 1, the following vector of the 

objective function recordings is constructed:    rFFFF ,...,, 21 ; 

Step 3. We will construct  the variables of the following type:  
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 for the  Q-compromise method; 

Phase II 

Step 1.   We will construct  the objective function:   



r

k

kYXF
1

 - for the  L-

compromise method  and   



r

k

kYXF
1

2
 - for the  Q-compromise method; 

Step 2. We'll solve the unicriterial transportation model (9), using the  L-

compromise method  and  model  (15), using the Q-compromise method. 

 

Remark 3. The L-compromise and Q-compromise methods, as a rule, record 

distinct solutions for the model (4)-(6), which leads to the determination of two 

efficient solutions for it. 

 

The Combinatorial  Algorithm 

 

The algorithm is done in two stages: 

 

Stage 1.  

Step 1. In the time matrix - T of model (3) the time value is ordered in ascending 

order, thus we will assign to  time cells (for identical values of t, we will consider 
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different, increasing indices) the indices obtained in  result of its ordination. So, the 

total number of indices will be: nmk  . 

Step 2. We will use a required number of cells to place a basic admissible solution, 

taken in the ascending order of the indices, the other cells will be considered 

blocked. At a first iteration the number of these cells is at least 11  nmk ; 

We'll calculate 1  =
ji,

max  ;0/ ijij xt  

Stage 2. Using the compromise function algorithm we will find the solution of the 

best compromise for the model (4)-(6), which corresponds to time determined in 

the first stage. We will go to Step 2 of Stage 1. for unlocking next, the larger cell 

and higher time respectively. 

The algorithm stops when all time cells are unlocked. 

 

Conclusions 

 In this paper is developed an integrate multistage procedure to solve the multi-

criteria  fractional transportation problem with "bottleneck" criterion.  Applying 

this algorithm, the decision maker for each possible time value would have 

determined the best compromise solution for all other criteria From the 

consideration that selecting the best compromise on a set of efficient solutions 

takes time, the proposed algorithm is welcome because it saves us from the choice 

procedure, but it can be used when all criteria are of the same importance. The 

proposed algorithm is quite necessary and useful, especially when the decision 

models are of large size and the time for decision making is rather limited. 

Example:   

Let be  the following 3-criteria problem with 3 supplies and 4 demands. 

Supposing that we know the data of unit costs for the first two criteria, which 

are of course of minimum type, which are the follow: 

 

 

                           

     Cost 1, 2 = 
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The supply and demand  are the next:    .16,14,3,11;17,19,8  BA  

   

Solution procedure:                                                                   

 

 

 

   Time=  

 

 

 

           By using the efficient  Combinatorial  Algorithm  we have found the 

following 11 efficient basic solutions:  

 16,1,14,2,3,8 343323222111

1  xxxxxxX , ;68,
68

207
,

68

1761








S  

 ,3,14,13,3,3,8 343324222111

2  xxxxxxX ;68,
68

276
,

68

1642








S

 14,3,14,5,2,6 343223211411

3  xxxxxxX , ;68,
68

203
,

68

1783








S  

 14,3,2,14,3,8 343224232111

4  xxxxxxX , ;68,
68

213
,

68

1724








S  

 14,3,16,3,8 3332242111

5  xxxxxX , ;68,
68

283
,

68

1585








S  

 16,1,6,2,11,8 343223222113

6  xxxxxxX , ;73,
73

167
,

73

2086








S  

 14,3,8,11,2,6 343223211413

7  xxxxxxX , ;73,
73

173
,

73

2027








S  

 16,1,8,11,6,2 343223211312

8  xxxxxxX , ;95,
95

171
,

95

1868








S  

 16,1,8,11,5,3 343323211312

9  xxxxxxX , ;95,
95

175
,

95

1769








S  

10 95 73 52 8 

68 66 30 21 19 

37 63 19 23 17 

  11 3 14 16 bj\ai 
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 3,14,13,6,3,5 343324211211

10  xxxxxxX , ;95,
95

265
,

95

14310








S  

 16,1,13,6,3,5 343323211211

11  xxxxxxX , .95,
95

200
,

95

15611








S  

From the list of solutions using the best compromise algorithm we highlight 

the solutions:  

 14,3,2,14,3,8 343224232111

4  xxxxxxX , ;68,
68

213
,

68

1724








S  

 16,1,6,2,11,8 343223222113

6  xxxxxxX , ;73,
73

167
,

73

2086








S  

 14,3,8,11,2,6 343223211413

7  xxxxxxX , ;73,
73

173
,

73

2027








S  

 16,1,13,6,3,5 343323211211

11  xxxxxxX , .95,
95

200
,

95

15611








S  
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