Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Căutarea după subiecte similare conform CZU |
517.9 (224) |
Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (222) |
![]() ZHANG, Binbin, MARTYNOV, I., PRONKO, V., SOBOLEVSKY, S.. Rational solutions of certain classes of non-linear differential equations. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2019, nr. 2(8), pp. 92-102. ISSN 2537-6284. DOI: 10.36120/2587-3644.v8i2.92-102 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Acta et commentationes (Ştiinţe Exacte și ale Naturii) | |||||
Numărul 2(8) / 2019 / ISSN 2537-6284 /ISSNe 2587-3644 | |||||
|
|||||
DOI: https://doi.org/10.36120/2587-3644.v8i2.92-102 | |||||
CZU: 517.9 | |||||
Pag. 92-102 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
Resonance method commonly used for Painlevé classification of ordinary differential equations often detects negative resonances, other than a trivial one of –1 (which should always be present). However, it is asserted by some researchers that the nature of these negative resonances is not fully understood. The problem arises as how to use negative nontrivial resonances to obtain information about the analytical properties of solutions of non-linear differential equations, in particular, to construct rational solutions. In the present paper, the method for constructing rational solutions of certain classes of autonomous non-linear ordinary differential equations is presented. |
|||||
Cuvinte-cheie non-linear differential equations, resonances, rational solutions, ecuații diferențiale neliniare, rezonanțe, soluții raționale |
|||||
|