Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2023-06-28 15:04 |
![]() EMELICHEV, Vladimir, KOROTKOV, Vladimir. On stability radius of the multicriteria variant of Markowitz's investment portfolio problem. In: Buletinul Academiei de Ştiinţe a Moldovei. Matematica, 2011, nr. 1(65), pp. 83-94. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Moldovei. Matematica | |||||
Numărul 1(65) / 2011 / ISSN 1024-7696 | |||||
|
|||||
Pag. 83-94 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
Basing on Markowitz's classical theory we formulate a multicriteria Boolean portfolio optimization problem with Savage's minimax (bottleneck) risk crite-
ria. We obtain lower and upper attainable bounds for stability radius of the problem
of ¯nding the Pareto set, consisting of e±cient portfolios in the case of Chebyshev
metric l1 in the risk and state spaces, and linear metric l1 in the portfolios space. |
|||||
Cuvinte-cheie multicriteria optimization, Pareto set, investment portfolio, Marko- witz's problem, eficient portfolio |
|||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-9128</cfResPublId> <cfResPublDate>2011-04-01</cfResPublDate> <cfVol>65</cfVol> <cfIssue>1</cfIssue> <cfStartPage>83</cfStartPage> <cfISSN>1024-7696</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/9128</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>On stability radius of the multicriteria variant of Markowitz's investment portfolio problem</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>multicriteria optimization; investment portfolio; Marko- witz's problem; Pareto set; eficient portfolio</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'>Basing on Markowitz's classical theory we formulate a multicriteria Boolean portfolio optimization problem with Savage's minimax (bottleneck) risk crite- ria. We obtain lower and upper attainable bounds for stability radius of the problem of ¯nding the Pareto set, consisting of e±cient portfolios in the case of Chebyshev metric l1 in the risk and state spaces, and linear metric l1 in the portfolios space.</cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-29436</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-33418</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> </cfPers_ResPubl> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-29436</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-29436-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> <cfFamilyNames>Emelichev</cfFamilyNames> <cfFirstNames>Vladimir</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-33418</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-33418-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2011-04-01T24:00:00</cfStartDate> <cfFamilyNames>Korotkov</cfFamilyNames> <cfFirstNames>Vladimir</cfFirstNames> </cfPersName_Pers> </cfPers> </CERIF>