Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
694 1
Ultima descărcare din IBN:
2020-01-09 15:33
Căutarea după subiecte
similare conform CZU
517.9 (254)
Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (252)
SM ISO690:2012
CALIN, Iurie, BALTAG, Valeriu. Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 127-136. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322

Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems

CZU: 517.9
MSC 2010: 34C05, 58F14.

Pag. 127-136

Calin Iurie, Baltag Valeriu
 
Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
 
 
Disponibil în IBN: 4 ianuarie 2020


Rezumat

The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 ≡ 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 ≡ 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6≡ 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established.

Cuvinte-cheie
Polynomial differential systems, invariant, comitant, transvectant, center conditions, linear transformation, rotation transformation, symmetry axis

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Calin, I.T.</creatorName>
<affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation>
</creator>
<creator>
<creatorName>Baltag, V.A.</creatorName>
<affiliation>Institutul de Matematică şi Informatică "Vladimir Andrunachievici", Moldova, Republica</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2019</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier>
<subjects>
<subject>Polynomial differential systems</subject>
<subject>invariant</subject>
<subject>comitant</subject>
<subject>transvectant</subject>
<subject>center conditions</subject>
<subject>linear transformation</subject>
<subject>rotation transformation</subject>
<subject>symmetry axis</subject>
<subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.9</subject>
</subjects>
<dates>
<date dateType='Issued'>2019-12-27</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 &equiv; 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 &equiv; 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6&equiv; 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>