Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
716 3 |
Ultima descărcare din IBN: 2020-03-26 17:46 |
Căutarea după subiecte similare conform CZU |
517.5+517.9 (7) |
Анализ (306) |
Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (246) |
SM ISO690:2012 MOLOŞNIC, Petru, NEAGU, Vasile. On compactness of some integral operators with Cauchy kernels. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2018, nr. 2(6), pp. 117-123. ISSN 2537-6284. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Acta et commentationes (Ştiinţe Exacte și ale Naturii) | ||||||||
Numărul 2(6) / 2018 / ISSN 2537-6284 /ISSNe 2587-3644 | ||||||||
|
||||||||
CZU: 517.5+517.9 | ||||||||
MSC 2010: 34G10 | ||||||||
Pag. 117-123 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this paper, it is proved that the integral operator S* - S is compact if the contour of integration is of the Lyapunov type. An example is brought to show that this property of the operator S* - S becomes false if the contour of integration has angular points. |
||||||||
Cuvinte-cheie singular integral operator, compact operator, piecewise Lyapunov contour, operator integral singular, operator compact, contur Lyapunov pe porțiuni |
||||||||
|
DataCite XML Export
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'> <creators> <creator> <creatorName>Moloşnic, P.</creatorName> <affiliation>Universitatea Agrară de Stat din Moldova, Moldova, Republica</affiliation> </creator> <creator> <creatorName>Neagu, V.</creatorName> <affiliation>Universitatea de Stat din Moldova, Moldova, Republica</affiliation> </creator> </creators> <titles> <title xml:lang='en'>On compactness of some integral operators with Cauchy kernels</title> </titles> <publisher>Instrumentul Bibliometric National</publisher> <publicationYear>2018</publicationYear> <relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>2537-6284</relatedIdentifier> <subjects> <subject>singular integral operator</subject> <subject>compact operator</subject> <subject>piecewise Lyapunov contour</subject> <subject>operator integral singular</subject> <subject>operator compact</subject> <subject>contur Lyapunov pe porțiuni</subject> <subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.5+517.9</subject> </subjects> <dates> <date dateType='Issued'>2018-12-27</date> </dates> <resourceType resourceTypeGeneral='Text'>Journal article</resourceType> <descriptions> <description xml:lang='en' descriptionType='Abstract'><p>In this paper, it is proved that the integral operator S* - S is compact if the contour of integration is of the Lyapunov type. An example is brought to show that this property of the operator S* - S becomes false if the contour of integration has angular points.</p></description> <description xml:lang='ro' descriptionType='Abstract'><p>În lucrare se demonstrează că operatorul integral singular S* - S este compact în cazul în care conturul de integrare este de tip Lyapunov. Se construiește un exemplu care arată că această proprietate a operatorului S* - S devine falsă dacă conturul are puncte unghiulare</p></description> </descriptions> <formats> <format>application/pdf</format> </formats> </resource>