Bi-Sb layers and wires for magneto- thermoelectric applications
Закрыть
Articolul precedent
Articolul urmator
916 4
Ultima descărcare din IBN:
2022-12-09 14:11
Căutarea după subiecte
similare conform CZU
537.32+621.315.5+621.38 (1)
Электричество. Электрический ток. Электрокинетика (90)
Электротехника (1153)
SM ISO690:2012
NIKOLAEVA, Albina, KONOPKO, Leonid, BODYUL, P., POPOV, Ivan, MOLOSHNIK, Eugen. Bi-Sb layers and wires for magneto- thermoelectric applications. In: Materials Science and Condensed Matter Physics, Ed. 9, 25-28 septembrie 2018, Chișinău. Chișinău, Republica Moldova: Institutul de Fizică Aplicată, 2018, Ediția 9, p. 309.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Materials Science and Condensed Matter Physics
Ediția 9, 2018
Conferința "International Conference on Materials Science and Condensed Matter Physics"
9, Chișinău, Moldova, 25-28 septembrie 2018

Bi-Sb layers and wires for magneto- thermoelectric applications

CZU: 537.32+621.315.5+621.38

Pag. 309-309

Nikolaeva Albina1, Konopko Leonid1, Bodyul P.12, Popov Ivan1, Moloshnik Eugen1
 
1 Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu",
2 Technical University of Moldova
 
Proiecte:
 
Disponibil în IBN: 14 februarie 2019


Rezumat

Thermoelectric energy conversion efficiency is defined as ZT = S2 σ /χT, where S is the Seebeck coefficient, = is the electrical conductivity, χ is the thermal conductivity, and T is the absolute temperature.  This study is aimed at increasing the thermoelectric figure of merit ZT to maximize the power factor and minimize the thermal conductivity.  Since undoped Bi–12at%Sb alloys are of n-type, the possibility of obtaining p-type Bi–Sb alloys (bulk samples and layers) with a high figure of merit by the addition of acceptor impurities and the application of a transverse magnetic field has been explored.  The mechanical exfoliation method was used to obtain Bi1-xSbx layers and the liquid-phase casting method (Ulitovsky–Tailor) was used to prepare wires [1].  In this paper, we present the results of measurements of transport effects in undoped and doped Bi–12at%Sb–0.001at%Pb alloy bulk samples, single-crystal layers, and glass-insulated wires. The measurements included the electrical resistivity, Seebeck coefficient S, and the Nernst coefficient as a function of crystallographic direction, temperature, and magnetic field direction.  The values and temperature dependence of power factor α2 σ, which were calculated from experimental data in a transverse magnetic field, showed a considerable increase in this parameter in the wires and layers compared with the bulk samples in a magnetic field of 0.3 T [2, 3]. A combination of the Peltier and magneto-Peltier effects in Bi–Sb layers and wires provides a stronger cooling both from room temperature and from 100 K than the cooling in bulk alloys of the same composition.  

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-72049</cfResPublId>
<cfResPublDate>2018</cfResPublDate>
<cfVol>Ediția 9</cfVol>
<cfStartPage>309</cfStartPage>
<cfISBN></cfISBN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/72049</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Bi-Sb layers and wires for magneto- thermoelectric applications</cfTitle>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>Thermoelectric energy conversion efficiency is defined as ZT = <em>S</em><sup>2</sup> &sigma; /&chi;<em>T</em>, where <em>S </em>is the Seebeck coefficient, = is the electrical conductivity, &chi; is the thermal conductivity, and <em>T </em>is the absolute temperature. &nbsp;This study is aimed at increasing the thermoelectric figure of merit ZT to maximize the power factor and minimize the thermal conductivity. &nbsp;Since undoped Bi&ndash;12at%Sb alloys are of <em>n</em>-type, the possibility of obtaining <em>p</em>-type Bi&ndash;Sb alloys (bulk samples and layers) with a high figure of merit by the addition of acceptor impurities and the application of a transverse magnetic field has been explored. &nbsp;The mechanical exfoliation method was used to obtain Bi1-xSbx layers and the liquid-phase casting method (Ulitovsky&ndash;Tailor) was used to prepare wires [1]. &nbsp;In this paper, we present the results of measurements of transport effects in undoped and doped Bi&ndash;12at%Sb&ndash;0.001at%Pb alloy bulk samples, single-crystal layers, and glass-insulated wires. The measurements included the electrical resistivity, Seebeck coefficient <em>S</em>, and the Nernst coefficient as a function of crystallographic direction, temperature, and magnetic field direction. &nbsp;The values and temperature dependence of power factor &alpha;<sup>2</sup> &sigma;, which were calculated from experimental data in a transverse magnetic field, showed a considerable increase in this parameter in the wires and layers compared with the bulk samples in a magnetic field of 0.3 T [2, 3]. A combination of the Peltier and magneto-Peltier effects in Bi&ndash;Sb layers and wires provides a stronger cooling both from room temperature and from 100 K than the cooling in bulk alloys of the same composition. &nbsp;</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-364</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-1033</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-14775</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-13134</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-13133</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-364</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-364-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
<cfFamilyNames>Николаева</cfFamilyNames>
<cfFirstNames>Альбина</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-1033</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-1033-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
<cfFamilyNames>Konopko</cfFamilyNames>
<cfFirstNames>Leonid</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-14775</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-14775-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
<cfFamilyNames>Bodyul</cfFamilyNames>
<cfFirstNames>P.</cfFirstNames>
<cfFamilyNames>Бодюл</cfFamilyNames>
<cfFirstNames>П.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-13134</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13134-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
<cfFamilyNames>Попов</cfFamilyNames>
<cfFirstNames>Иван</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-13133</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-13133-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2018T24:00:00</cfStartDate>
<cfFamilyNames>Moloshnik</cfFamilyNames>
<cfFirstNames>Eugen</cfFirstNames>
<cfFamilyNames>Молошник</cfFamilyNames>
<cfFirstNames>Евгений</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>