Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
161 0 |
Căutarea după subiecte similare conform CZU |
519.217.2 (1) |
Теория вероятностей и математическая статистика (81) |
SM ISO690:2012 LAZARI, Alexandru. Zero-Order Markov Processes with Multiple Final Sequences of States. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2023, nr. 2(102), pp. 110-115. ISSN 1024-7696. DOI: https://doi.org/10.56415/basm.y2023.i2.p110 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | |||||||||
Numărul 2(102) / 2023 / ISSN 1024-7696 /ISSNe 2587-4322 | |||||||||
|
|||||||||
DOI:https://doi.org/10.56415/basm.y2023.i2.p110 | |||||||||
CZU: 519.217.2 | |||||||||
Pag. 110-115 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
A zero-order Markov process with multiple final sequences of states represents a stochastic system with independent transitions that stops its evolution as soon as one of the given final sequences of states is reached. The transition time of the system is unitary and the transition probability depends only on the destination state. It is proved that the distribution of the evolution time is a homogeneous linear recurrent sequence and a polynomial algorithm to determine the initial state and the generating vector of this recurrence is developed. Using the generating function, the main probabilistic characteristics are determined. |
|||||||||
Cuvinte-cheie Zero-Order Markov Process, Final Sequence of States, Evolution Time, Homogeneous Linear Recurrence, Generating Function |
|||||||||
|
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'> <dc:creator>Lazari, A.A.</dc:creator> <dc:date>2023-11-22</dc:date> <dc:description xml:lang='en'><p>A zero-order Markov process with multiple final sequences of states represents a stochastic system with independent transitions that stops its evolution as soon as one of the given final sequences of states is reached. The transition time of the system is unitary and the transition probability depends only on the destination state. It is proved that the distribution of the evolution time is a homogeneous linear recurrent sequence and a polynomial algorithm to determine the initial state and the generating vector of this recurrence is developed. Using the generating function, the main probabilistic characteristics are determined.</p></dc:description> <dc:identifier>10.56415/basm.y2023.i2.p110</dc:identifier> <dc:source>Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 102 (2) 110-115</dc:source> <dc:subject>Zero-Order Markov Process</dc:subject> <dc:subject>Final Sequence of States</dc:subject> <dc:subject>Evolution Time</dc:subject> <dc:subject>Homogeneous Linear Recurrence</dc:subject> <dc:subject>Generating Function</dc:subject> <dc:title>Zero-Order Markov Processes with Multiple Final Sequences of States</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> </oai_dc:dc>