Darboux integrability and rational reversibility in cubic systems with two invariant
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
271 0
SM ISO690:2012
LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Electronic Journal of Differential Equations
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150

Darboux integrability and rational reversibility in cubic systems with two invariant


Pag. 1-19

Lines Straight, Cozma Dumitru
 
Tiraspol State University
 
 
Proiecte:
 
Disponibil în IBN: 12 septembrie 2023


Rezumat

We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility

Cuvinte-cheie
center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility