Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
271 0 |
SM ISO690:2012 LINES, Straight, COZMA, Dumitru. Darboux integrability and rational reversibility in cubic systems with two invariant. In: Electronic Journal of Differential Equations, 2013, vol. 2013, pp. 1-19. ISSN 1072-6691. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Electronic Journal of Differential Equations | |||||||||
Volumul 2013, i1, 2013 / ISSN 1072-6691 /ISSNe 1550-6150 | |||||||||
|
|||||||||
Pag. 1-19 | |||||||||
|
|||||||||
Descarcă PDF | |||||||||
Rezumat | |||||||||
We find conditions for a singular point O(0,0) of a center or a focus type to be a center, in a cubic differential system with two distinct invariant straight lines. The presence of a center at O(0, 0) is proved by using the method of Darboux integrability and the rational reversibility |
|||||||||
Cuvinte-cheie center problem, Cubic dierential systems, Darboux integrability, invariant straight lines, rational reversibility |
|||||||||
|