Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
385 2 |
Ultima descărcare din IBN: 2024-04-08 19:12 |
Căutarea după subiecte similare conform CZU |
621.3.076.52:519.7 (1) |
Электротехника (1184) |
Математическая кибернетика (96) |
SM ISO690:2012 ANDRIEVSCHI-BAGRIN, Veronica, LEAHU, Alexei. Reliability of serial-parallel networks vs reliability of parallel-serial networks with constant numbers of sub-networks and units. In: Journal of Engineering Sciences, 2022, vol. 29, nr. 4, pp. 17-26. ISSN 2587-3474. DOI: https://doi.org/10.52326/jes.utm.2022.29(4).02 |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Journal of Engineering Sciences | ||||||||
Volumul 29, Numărul 4 / 2022 / ISSN 2587-3474 /ISSNe 2587-3482 | ||||||||
|
||||||||
DOI:https://doi.org/10.52326/jes.utm.2022.29(4).02 | ||||||||
CZU: 621.3.076.52:519.7 | ||||||||
Pag. 17-26 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
In this paper it is performed, based on dynamic models, a comparative analysis of the reliability of two types of networks: serial-parallel and parallel-serial networks when the numbers of subnets and units in each subnet are predefined, constant numbers, but also when the lifetimes of the units are independent random variables. The equations for calculating the reliability of the related networks have been deduced. These functions are deduced for the dynamic model which is less studied and it is prooved to be relevant to the static model too. All equations are demonstrated and graphically illustrated in some examples. A few examples are analyzed graphically for different values of the number of units in the subnet and the number of subnets. This paper contains four different network topology models which are also analyzed by equations and graphically. The mathematical model described and the deduced equations will serve as a basis for the subsequent analysis of the dynamic networks of various topologies and various types of random variables that describe the lifetimes of the units of the analyzed system. |
||||||||
Cuvinte-cheie cumulative distribution function, distributions, global maximum, lifetime, survival functions, funcție de distribuție cumulativă, distribuții, maxim global, durată de viaţă, funcții de supraviețuire |
||||||||
|
Dublin Core Export
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'> <dc:creator>Andrievschi-Bagrin, V.</dc:creator> <dc:creator>Leahu, A.</dc:creator> <dc:date>2022-12-29</dc:date> <dc:description xml:lang='en'><p>In this paper it is performed, based on dynamic models, a comparative analysis of the reliability of two types of networks: serial-parallel and parallel-serial networks when the numbers of subnets and units in each subnet are predefined, constant numbers, but also when the lifetimes of the units are independent random variables. The equations for calculating the reliability of the related networks have been deduced. These functions are deduced for the dynamic model which is less studied and it is prooved to be relevant to the static model too. All equations are demonstrated and graphically illustrated in some examples. A few examples are analyzed graphically for different values of the number of units in the subnet and the number of subnets. This paper contains four different network topology models which are also analyzed by equations and graphically. The mathematical model described and the deduced equations will serve as a basis for the subsequent analysis of the dynamic networks of various topologies and various types of random variables that describe the lifetimes of the units of the analyzed system.</p></dc:description> <dc:description xml:lang='ro'><p>Pe baza modelelor dinamice în lucrare se realizează o analiză comparativă a fiabilității a două tipuri de rețele: rețele serial-paralele și paralel-seriale, când sunt predefinite numerele de subrețele și unități din fiecare subrețea, numere constante, dar și când duratele de viață ale unităților sunt variabile aleatorii independente. Au fost deduse ecuațiile pentru calcularea fiabilității rețelelor aferente. Aceste funcții sunt deduse pentru modelul dinamic, care este mai puțin studiat și care a fost demonstrat anterior drept relevant pentru modelul static. Toate ecuațiile sunt demonstrate și ilustrate grafic în câteva exemple. Unele exemple sunt analizate grafic pentru diferite valori ale numărului de unități din subrețea și ale numărului de subrețele. Această lucrare conține patru modele diferite de topologie de rețea care sunt, de asemenea, analizate prin ecuații și grafic. Modelul matematic descris și ecuațiile deduse vor servi ca bază pentru analiza ulterioară a rețelelor dinamice de diverse topologii și diferite tipuri de variabile aleatorii, care descriu durata de viață ale unităților sistemului analizat.</p></dc:description> <dc:identifier>10.52326/jes.utm.2022.29(4).02</dc:identifier> <dc:source>Journal of Engineering Sciences (4) 17-26</dc:source> <dc:subject>cumulative distribution function</dc:subject> <dc:subject>distributions</dc:subject> <dc:subject>global maximum</dc:subject> <dc:subject>lifetime</dc:subject> <dc:subject>survival functions</dc:subject> <dc:subject>funcție de distribuție cumulativă</dc:subject> <dc:subject>distribuții</dc:subject> <dc:subject>maxim global</dc:subject> <dc:subject>durată de viaţă</dc:subject> <dc:subject>funcții de supraviețuire</dc:subject> <dc:title>Reliability of serial-parallel networks vs reliability of parallel-serial networks with constant numbers of sub-networks and units</dc:title> <dc:type>info:eu-repo/semantics/article</dc:type> </oai_dc:dc>