On CM-groupoids with multiple identities and medial topological left loops
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
467 6
Ultima descărcare din IBN:
2024-01-31 20:04
Căutarea după subiecte
similare conform CZU
512.548 (81)
Алгебра (410)
SM ISO690:2012
CHIRIAC, Liubomir, BOBEICĂ, Natalia, LUPASHCO, Natalia, PAVEL, Dorin. On CM-groupoids with multiple identities and medial topological left loops. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2021, nr. 2(12), pp. 120-131. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v12i2.120-131
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Acta et commentationes (Ştiinţe Exacte și ale Naturii)
Numărul 2(12) / 2021 / ISSN 2537-6284 /ISSNe 2587-3644

On CM-groupoids with multiple identities and medial topological left loops

Despre CM-grupoizi cu unitatii multiple si bucle de stânga mediale topologice

DOI:https://doi.org/10.36120/2587-3644.v12i2.120-131
CZU: 512.548
MSC 2010: 97U99.

Pag. 120-131

Chiriac Liubomir, Bobeică Natalia, Lupashco Natalia, Pavel Dorin
 
Tiraspol State University
 
 
Disponibil în IBN: 10 februarie 2022


Rezumat

This paper studies some properties of CM-groupoids with multiple identities and medial topological left loops. The conditions for a CM-groupoid to become a CM-quasigroup were found. A new method of constructing non-associative medial topological quasigroups with left identy is given. Various examples of quasigroups with multiple identities have been constructed.

În aceasta lucrare sunt examinate proprietati ale CM-groupoizilor cu unitati multiple si a buclelor de stânga topologice mediale. Au fost determinate conditiile pentru care un CM-groupoid devineCM-quasigroup. Este propusa o metoda noua de constructie a quasigrupurilor mediale topologice cu unitate de stânga. Sunt construite diverse exemple de quasigrupuri cu unitati multiple.

Cuvinte-cheie
CM-groupoid, medial topological quasigroups, multiple identities, s3(1,3)homogeneous isotope,

CM-grupoid, qasigrupuri mediale topologice, unitat, i multiple, s3(1,3)izotop omogen.

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-150203</cfResPublId>
<cfResPublDate>2021-12-29</cfResPublDate>
<cfVol>12</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>120</cfStartPage>
<cfISSN>2537-6284</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/150203</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>On CM-groupoids with multiple identities and medial topological left loops</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>CM-groupoid; medial topological quasigroups; multiple identities; s3(1,3)homogeneous isotope; CM-grupoid; qasigrupuri mediale topologice; unitat; i multiple; s3(1,3)izotop omogen.</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>This paper studies some properties of CM-groupoids with multiple identities and medial topological left loops. The conditions for a CM-groupoid to become a CM-quasigroup were found. A new method of constructing non-associative medial topological quasigroups with left identy is given. Various examples of quasigroups with multiple identities have been constructed.</p></cfAbstr>
<cfAbstr cfLangCode='RO' cfTrans='o'><p>&Icirc;n aceasta lucrare sunt examinate proprietati ale CM-groupoizilor cu unitati multiple si a buclelor de st&acirc;nga topologice mediale. Au fost determinate conditiile pentru care un CM-groupoid devineCM-quasigroup. Este propusa o metoda noua de constructie a quasigrupurilor mediale topologice cu unitate de st&acirc;nga. Sunt construite diverse exemple de quasigrupuri cu unitati multiple.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-715</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-18407</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-55230</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-18915</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-150203</cfFedIdId>
<cfFedId>10.36120/2587-3644.v12i2.120-131</cfFedId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-715</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-715-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Chiriac</cfFamilyNames>
<cfFirstNames>Liubomir</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-18407</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-18407-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Bobeică</cfFamilyNames>
<cfFirstNames>Natalia</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-55230</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-55230-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Lupashco</cfFamilyNames>
<cfFirstNames>Natalia</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-18915</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-18915-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFamilyNames>Pavel</cfFamilyNames>
<cfFirstNames>Dorin</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>