﻿﻿ ﻿ ﻿﻿ Boolean asynchronous systems vs. Daizhan Cheng’s theory
 Conţinutul numărului revistei Articolul precedent Articolul urmator 381 0 Căutarea după subiecte similare conform CZU 519.714.71 (1) Математическая кибернетика (93) SM ISO690:2012VLAD, Serban. Boolean asynchronous systems vs. Daizhan Cheng’s theory. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2021, nr. 2(12), pp. 132-142. ISSN 2537-6284. DOI: https://doi.org/10.36120/2587-3644.v12i2.132-142 EXPORT metadate: Google Scholar Crossref CERIF DataCiteDublin Core
Acta et commentationes (Ştiinţe Exacte și ale Naturii)
Numărul 2(12) / 2021 / ISSN 2537-6284 /ISSNe 2587-3644

 Boolean asynchronous systems vs. Daizhan Cheng’s theory Sisteme booleene asincrone din perspectiva teoriei lui Daizhan Cheng
DOI:https://doi.org/10.36120/2587-3644.v12i2.132-142
CZU: 519.714.71
MSC 2010: 94C10, 06E30, 95C05.

Pag. 132-142

Rezumat

The theory of Daizhan Cheng [1] replacesB = f0 1g withD = f   1 0 !    0 1 ! g and Boolean functions with logical matrices. Interesting and very important algebraical opportunities result, which can be used in systems theory. Our purpose is to give a hint on the theory of Cheng and its application to asynchronicity.

Teoria lui Daizhan Cheng [1] înlocuieste B = f0 1g cu D = f   1 0 !    0 1 ! g si functiile booleene cu matrici logice. Rezulta de aici oportunitati algebrice importante, care pot fi folosite în teoria sistemelor. Scopul nostru este acela de a schita teoria lui Cheng si aplicatiile sale în asincronism.

Cuvinte-cheie
Boolean function, Boolean asynchronous system, structure matrix, semitensor product, theory of Daizhan Cheng,

functie booleana, sistem asincron boolean, matrice de structura, produs semi-tensorial, teoria lui Daizhan Cheng

### Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-150201</cfResPublId>
<cfResPublDate>2021-12-29</cfResPublDate>
<cfVol>12</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>132</cfStartPage>
<cfISSN>2537-6284</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/150201</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Boolean asynchronous systems vs. Daizhan Cheng&rsquo;s theory</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Boolean function; Boolean asynchronous system; structure matrix; semitensor
product; theory of Daizhan Cheng; functie booleana; sistem asincron boolean; matrice de structura; produs
semi-tensorial; teoria lui Daizhan Cheng</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>The theory of Daizhan Cheng [1] replacesB = f0 1g withD = f &nbsp; 1 0 !  &nbsp; 0 1 ! g and Boolean functions with logical matrices. Interesting and very important algebraical opportunities result, which can be used in systems theory. Our purpose is to give a hint on the theory of Cheng and its application to asynchronicity.</p></cfAbstr>
<cfAbstr cfLangCode='RO' cfTrans='o'><p>Teoria lui Daizhan Cheng [1] &icirc;nlocuieste B = f0 1g cu D = f &nbsp; 1 0 !  &nbsp; 0 1 ! g si functiile booleene cu matrici logice. Rezulta de aici oportunitati algebrice importante, care pot fi folosite &icirc;n teoria sistemelor. Scopul nostru este acela de a schita teoria lui Cheng si aplicatiile sale &icirc;n asincronism.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-33353</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-150201</cfFedIdId>
<cfFedId>10.36120/2587-3644.v12i2.132-142</cfFedId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-33353</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-33353-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2021-12-29T24:00:00</cfStartDate>
</CERIF>