Numere complexe. Planul complex. Mulțimea lui Mandelbrot
Закрыть
Articolul precedent
Articolul urmator
689 10
Ultima descărcare din IBN:
2024-08-18 13:55
Căutarea după subiecte
similare conform CZU
511.11 (5)
Теория чисел (39)
SM ISO690:2012
GUȘAN, Veronica, GAŞIŢOI, Natalia. Numere complexe. Planul complex. Mulțimea lui Mandelbrot. In: Interuniversitaria, 8 octombrie 2020, Bălți. Bălți, Republica Moldova: Universitatea de Stat „Alecu Russo" din Bălţi, 2020, Ediția 16, pp. 328-332. ISBN 978-9975-50-248-1.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Interuniversitaria
Ediția 16, 2020
Colocviul "Interuniversitaria"
Bălți, Moldova, 8 octombrie 2020

Numere complexe. Planul complex. Mulțimea lui Mandelbrot

CZU: 511.11

Pag. 328-332

Gușan Veronica, Gaşiţoi Natalia
 
Universitatea de Stat „Alecu Russo” din Bălţi
 
 
 
Disponibil în IBN: 7 decembrie 2020


Rezumat

In this article we try to answer a few questions. Where did the complex numbers start from? How are complex numbers defined? Where and how do we represent complex numbers? What is the Mandelbrot set? We know that the multitude of complex numbers is fantastic, but it is even more interesting that with the help of these numbers, ama-zing images can appear on the complex plane. Thanks to Gaston Julia and Benoît Man-delbrot, today it is possible to visualize a fractal set, which being colored according to an algorithm, we enjoy the eyes with extremely beautiful images. Mandelbrot's set, in addition to the interesting features it possesses, also has an aesthetic value, which cannot be denied.

Cuvinte-cheie
complex numbers, complex plane, Mandelbrot set, fractal

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:oai_dc='http://www.openarchives.org/OAI/2.0/oai_dc/' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd'>
<dc:creator>Gușan, V.</dc:creator>
<dc:creator>Gaşiţoi, N.</dc:creator>
<dc:date>2020</dc:date>
<dc:description xml:lang='en'><p>In this article we try to answer a few questions. Where did the complex numbers start from? How are complex numbers defined? Where and how do we represent complex numbers? What is the Mandelbrot set? We know that the multitude of complex numbers is fantastic, but it is even more interesting that with the help of these numbers, ama-zing images can appear on the complex plane. Thanks to Gaston Julia and Beno&icirc;t Man-delbrot, today it is possible to visualize a fractal set, which being colored according to an algorithm, we enjoy the eyes with extremely beautiful images. Mandelbrot&#39;s set, in addition to the interesting features it possesses, also has an aesthetic value, which cannot be denied.</p></dc:description>
<dc:source>Interuniversitaria (Ediția 16) 328-332</dc:source>
<dc:subject>complex numbers</dc:subject>
<dc:subject>complex plane</dc:subject>
<dc:subject>Mandelbrot set</dc:subject>
<dc:subject>fractal</dc:subject>
<dc:title>Numere complexe. Planul complex. Mulțimea lui Mandelbrot</dc:title>
<dc:type>info:eu-repo/semantics/article</dc:type>
</oai_dc:dc>