Commutative Weakly Tripotent Group Rings
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
593 9
Ultima descărcare din IBN:
2023-10-02 10:03
Căutarea după subiecte
similare conform CZU
512.552 (14)
Алгебра (416)
SM ISO690:2012
DANCHEV, Peter. Commutative Weakly Tripotent Group Rings. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 24-29. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322

Commutative Weakly Tripotent Group Rings

CZU: 512.552
MSC 2010: 16S34, 16U99, 20C07.

Pag. 24-29

Danchev Peter
 
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
 
 
 
Disponibil în IBN: 18 septembrie 2020


Rezumat

Very recently, Breaz and Cˆımpean introduced and examined in Bull. Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings R whose elements satisfy at leat one of the equations x3 = x or (1 − x)3 = 1 − x. These rings are generally non-commutative. We here obtain a criterion when the commutative group ring RG is weakly tripotent in terms only of a ring R and of a group G plus their sections. Actually, we also show that these weakly tripotent rings are strongly invo-clean rings in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our established criterion somewhat strengthens previous results on commutative strongly invo-clean group rings, proved by the present author in Univ. J. Math. & Math. Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly invo-clean ring of characteristic 2 which is not weakly tripotent, thus showing that these two ring classes are different.

Cuvinte-cheie
Tripotent rings, weakly tripotent rings, strongly invo-clean rings, Group rings

Crossref XML Export

<?xml version='1.0' encoding='utf-8'?>
<doi_batch version='4.3.7' xmlns='http://www.crossref.org/schema/4.3.7' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://www.crossref.org/schema/4.3.7 http://www.crossref.org/schema/deposit/crossref4.3.7.xsd'>
<head>
<doi_batch_id>ibn-110202</doi_batch_id>
<timestamp>1728068515</timestamp>
<depositor>
<depositor_name>Information Society Development Instiute, Republic of Moldova</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>Institutul de Matematică şi Informatică al AŞM</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica</full_title>
<issn media_type='print'>10247696</issn>
</journal_metadata>
<journal_issue>
<publication_date media_type='print'>
<year>2020</year>
</publication_date>
<issue>2(93)</issue>
</journal_issue>
<journal_article publication_type='full_text'><titles>
<title>Commutative Weakly Tripotent Group Rings</title>
</titles>
<contributors>
<person_name sequence='first' contributor_role='author'>
<given_name>Peter</given_name>
<surname>Danchev</surname>
</person_name>
</contributors>
<publication_date media_type='print'>
<year>2020</year>
</publication_date>
<pages>
<first_page>24</first_page>
<last_page>29</last_page>
</pages>
</journal_article>
</journal>
</body>
</doi_batch>