Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions
Закрыть
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
526 2
Ultima descărcare din IBN:
2020-12-03 13:18
Căutarea după subiecte
similare conform CZU
517.5+517.98 (2)
Анализ (306)
Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (246)
SM ISO690:2012
DRAGOMIR, Silvestru Sever. Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 2(93), pp. 11-23. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(93) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322

Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions

CZU: 517.5+517.98
MSC 2010: 26D15, 26D10, 30A10, 30A86.

Pag. 11-23

Autori:
Dragomir Silvestru Sever
 
College of Engineering and Science Victoria University
 
 
 
Disponibil în IBN: 18 septembrie 2020


Rezumat

Let D ⊂ C be a convex domain of complex numbers and K > 0. We say that the function f : D ⊂ C → C is called K-bounded modulus convex, for the given K > 0, if it satisfies the condition |(1 − ) f (x) + f (y) − f ((1 − ) x + y)| ≤ 1 2 K (1 − ) |x − y|2 for any x, y ∈ D and  ∈ [0, 1] . In this paper we establish some new HermiteHadamard type inequalities for the complex integral on , a smooth path from C, and K-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.

Cuvinte-cheie
complex integral, Continuous functions, Holomorphic functions, Hermite-Hadamard inequality, Midpoint inequality, Trapezoid inequality

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xmlns='http://datacite.org/schema/kernel-3' xsi:schemaLocation='http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd'>
<creators>
<creator>
<creatorName>Dragomir, S.</creatorName>
<affiliation>College of Engineering and Science Victoria University, Australia</affiliation>
</creator>
</creators>
<titles>
<title xml:lang='en'>Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions</title>
</titles>
<publisher>Instrumentul Bibliometric National</publisher>
<publicationYear>2020</publicationYear>
<relatedIdentifier relatedIdentifierType='ISSN' relationType='IsPartOf'>1024-7696</relatedIdentifier>
<subjects>
<subject>complex integral</subject>
<subject>Continuous functions</subject>
<subject>Holomorphic
functions</subject>
<subject>Hermite-Hadamard inequality</subject>
<subject>Midpoint inequality</subject>
<subject>Trapezoid inequality</subject>
<subject schemeURI='http://udcdata.info/' subjectScheme='UDC'>517.5+517.98</subject>
</subjects>
<dates>
<date dateType='Issued'>2020-09-18</date>
</dates>
<resourceType resourceTypeGeneral='Text'>Journal article</resourceType>
<descriptions>
<description xml:lang='en' descriptionType='Abstract'><p>Let D &sub; C be a convex domain of complex numbers and K &gt; 0. We say that the function f : D &sub; C &rarr; C is called K-bounded modulus convex, for the given K &gt; 0, if it satisfies the condition |(1 &minus; ) f (x) + f (y) &minus; f ((1 &minus; ) x + y)| &le; 1 2 K (1 &minus; ) |x &minus; y|2 for any x, y &isin; D and  &isin; [0, 1] . In this paper we establish some new HermiteHadamard type inequalities for the complex integral on , a smooth path from C, and K-bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.</p></description>
</descriptions>
<formats>
<format>application/pdf</format>
</formats>
</resource>