﻿﻿ ﻿ ﻿﻿ On self-adjoint and invertible linear relations generated by integral equations
 Conţinutul numărului revistei Articolul precedent Articolul urmator 459 2 Ultima descărcare din IBN: 2020-10-05 15:42 Căutarea după subiecte similare conform CZU 517.968.2+517.983 (1) Дифференциальные, интегральные и другие функциональные уравнения. Конечные разности. Вариационное исчисление. Функциональный анализ (243) SM ISO690:2012BRUK, Vladislav. On self-adjoint and invertible linear relations generated by integral equations. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2020, nr. 1(92), pp. 106-121. ISSN 1024-7696. EXPORT metadate: Google Scholar Crossref CERIF DataCiteDublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 1(92) / 2020 / ISSN 1024-7696 /ISSNe 2587-4322

 On self-adjoint and invertible linear relations generated by integral equations
CZU: 517.968.2+517.983
MSC 2010: 46G12, 45N05, 47A10.

Pag. 106-121

 Bruk Vladislav Yuri Gagarin State Technical University of Saratov Disponibil în IBN: 5 septembrie 2020

Rezumat

We define a minimal operator L0 generated by an integral equation with an operator measure and prove necessary and sufficient conditions for the operator L0 to be densely defined. In general, L 0 is a linear relation. We give a description of L 0 and establish that there exists a one-to-one correspondence between relations bL with the property L0 ⊂ bL⊂L 0 and relations  entering in boundary conditions. In this case we denote bL = L. We establish conditions under which linear relations L and  together have the following properties: a linear relation (l.r) is self-adjoint; l.r is closed; l.r is invertible, i.e., the inverse relation is an operator; l.r has the finitedimensional kernel; l.r is well-defined; the range of l.r is closed; the range of l.r is a closed subspace of the finite codimension; the range of l.r coincides with the space wholly; l.r is continuously invertible. We describe the spectrum of L and prove that families of linear relations L() and () are holomorphic together.

Cuvinte-cheie
integral equation, Hilbert space, boundary value problem, operator measure, linear relation, spectrum

### Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-109798</cfResPublId>
<cfResPublDate>2020-08-20</cfResPublDate>
<cfVol>92</cfVol>
<cfIssue>1</cfIssue>
<cfStartPage>106</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/109798</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>On self-adjoint and invertible linear relations generated by integral equations</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>integral equation; Hilbert space; boundary value problem; operator measure; linear relation; spectrum</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>We define a minimal operator L0 generated by an integral equation with an operator measure and prove necessary and sufficient conditions for the operator L0 to be densely defined. In general, L 0 is a linear relation. We give a description of L 0 and establish that there exists a one-to-one correspondence between relations bL with the property L0 &sub; bL&sub;L 0 and relations  entering in boundary conditions. In this case we denote bL = L. We establish conditions under which linear relations L and  together have the following properties: a linear relation (l.r) is self-adjoint; l.r is closed; l.r is invertible, i.e., the inverse relation is an operator; l.r has the finitedimensional kernel; l.r is well-defined; the range of l.r is closed; the range of l.r is a closed subspace of the finite codimension; the range of l.r coincides with the space wholly; l.r is continuously invertible. We describe the spectrum of L and prove that families of linear relations L() and () are holomorphic together.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2020-08-20T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2020-08-20T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-80661</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfStartDate>2020-08-20T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-80661</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-80661-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2020-08-20T24:00:00</cfStartDate>
<cfFamilyNames>Bruk</cfFamilyNames>
</CERIF>