Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
![]() |
![]() ![]() |
Ultima descărcare din IBN: 2020-11-02 16:38 |
![]() ZABOLOTNÎI, Pavel. Grupuri finite de simetrie, generate de rotaţiile în jurul a două axe de ordin superior, aşezate sub unghi ascuţit
. In: Studia Universitatis Moldaviae (Seria Ştiinţe Exacte şi Economice), 2009, nr. 7(27), pp. 36-44. ISSN 1857-2073. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Studia Universitatis Moldaviae (Seria Ştiinţe Exacte şi Economice) | |||||
Numărul 7(27) / 2009 / ISSN 1857-2073 /ISSNe 2345-1033 | |||||
|
|||||
Pag. 36-44 | |||||
|
|||||
![]() |
|||||
Rezumat | |||||
This work contains the analysis, comparison and classification of the results gathered wile studying groups defined by elementary rotations around two symmetry axes which form an acute angle. After determination of the finitude of the
number of such groups it becomes clear that there exist a relatively small number of acute angles, which are formed by intersection of rotation axes in such groups. All these angles are described in details, and then we examine the problem
of defining every such group series with combinations of different axis pairs which intersects at different acute angles. |
|||||
|