Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
151 0
SM ISO690:2012
BRANIŞTE, Tudor; COBZAC, Vitalie; ABABII, Polina; PLEŞCO, Irina; RAEVSCHI, Simion; DIDENCU, Alexandru; MANYUK, Mihail; NACU, Viorel; ABABIY, Ivan; TIGINYANU, Ion. Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles. In: Biotechnology Reports. 2020, nr. 25, p. 0. ISSN 2215-017X.
10.1016/j.btre.2020.e00435
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Biotechnology Reports
Numărul 25 / 2020 / ISSN 2215-017X /ISSNe 2215-017X

Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles


DOI: 10.1016/j.btre.2020.e00435
Pag. 0-0

Branişte Tudor1, Cobzac Vitalie2, Ababii Polina2, Pleşco Irina1, Raevschi Simion3, Didencu Alexandru2, Manyuk Mihail2, Nacu Viorel2, Ababiy Ivan2, Tiginyanu Ion14
 
1 Technical University of Moldova,
2 ”Nicolae Testemițanu” State University of Medicine and Pharmacy,
3 State University of Moldova,
4 Academy of Sciences of Moldova
 
Disponibil în IBN: 6 martie 2020


Rezumat

In this paper, we report on spatial redistribution of bone marrow mesenchymal stem cells loaded with magnetic nanoparticles under the influence of continuously applied magnetic field. Semiconductor nanoparticles were synthesized by epitaxial growth of a GaN thin layer on magnetic sacrificial core consisting of ZnFe2O4 nanoparticles. Different quantities of nanoparticles were incubated in vitro with mesenchymal stem cells. High density of nanoparticles (50 μg/ml) leads to a decrease in the number of cells during incubation, while the density of nanoparticles as low as 10 μg/ml is enough to drag cells in culture and rearrange them according to the spatial distribution of the magnetic field intensity.

Cuvinte-cheie
Cells guiding, Gallium nitride, mesenchymal stem cells, nanoparticles