Conţinutul numărului revistei |
Articolul precedent |
Articolul urmator |
697 1 |
Ultima descărcare din IBN: 2020-01-09 15:33 |
Căutarea după subiecte similare conform CZU |
517.9 (254) |
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (252) |
SM ISO690:2012 CALIN, Iurie, BALTAG, Valeriu. Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 127-136. ISSN 1024-7696. |
EXPORT metadate: Google Scholar Crossref CERIF DataCite Dublin Core |
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica | ||||||||
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322 | ||||||||
|
||||||||
CZU: 517.9 | ||||||||
MSC 2010: 34C05, 58F14. | ||||||||
Pag. 127-136 | ||||||||
|
||||||||
Descarcă PDF | ||||||||
Rezumat | ||||||||
The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 ≡ 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 ≡ 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6≡ 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established. |
||||||||
Cuvinte-cheie Polynomial differential systems, invariant, comitant, transvectant, center conditions, linear transformation, rotation transformation, symmetry axis |
||||||||
|
Cerif XML Export
<?xml version='1.0' encoding='utf-8'?> <CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'> <cfResPubl> <cfResPublId>ibn-ResPubl-91143</cfResPublId> <cfResPublDate>2019-12-27</cfResPublDate> <cfVol>90</cfVol> <cfIssue>2</cfIssue> <cfStartPage>127</cfStartPage> <cfISSN>1024-7696</cfISSN> <cfURI>https://ibn.idsi.md/ro/vizualizare_articol/91143</cfURI> <cfTitle cfLangCode='EN' cfTrans='o'>Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems</cfTitle> <cfKeyw cfLangCode='EN' cfTrans='o'>Polynomial differential systems; invariant; comitant; transvectant; center conditions; linear transformation; rotation transformation; symmetry axis</cfKeyw> <cfAbstr cfLangCode='EN' cfTrans='o'><p>The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 ≡ 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 ≡ 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6≡ 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established.</p></cfAbstr> <cfResPubl_Class> <cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId> <cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> </cfResPubl_Class> <cfResPubl_Class> <cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId> <cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> </cfResPubl_Class> <cfPers_ResPubl> <cfPersId>ibn-person-706</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> </cfPers_ResPubl> <cfPers_ResPubl> <cfPersId>ibn-person-690</cfPersId> <cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId> <cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> </cfPers_ResPubl> </cfResPubl> <cfPers> <cfPersId>ibn-Pers-706</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-706-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> <cfFamilyNames>Calin</cfFamilyNames> <cfFirstNames>Iurie</cfFirstNames> </cfPersName_Pers> </cfPers> <cfPers> <cfPersId>ibn-Pers-690</cfPersId> <cfPersName_Pers> <cfPersNameId>ibn-PersName-690-3</cfPersNameId> <cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId> <cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId> <cfStartDate>2019-12-27T24:00:00</cfStartDate> <cfFamilyNames>Baltag</cfFamilyNames> <cfFirstNames>Valeriu</cfFirstNames> </cfPersName_Pers> </cfPers> </CERIF>