Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
697 1
Ultima descărcare din IBN:
2020-01-09 15:33
Căutarea după subiecte
similare conform CZU
517.9 (254)
Ecuații diferențiale. Ecuații integrale. Alte ecuații funcționale. Diferențe finite. Calculul variațional. Analiză funcțională (252)
SM ISO690:2012
CALIN, Iurie, BALTAG, Valeriu. Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2019, nr. 2(90), pp. 127-136. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(90) / 2019 / ISSN 1024-7696 /ISSNe 2587-4322

Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems

CZU: 517.9
MSC 2010: 34C05, 58F14.

Pag. 127-136

Calin Iurie, Baltag Valeriu
 
Vladimir Andrunachievici Institute of Mathematics and Computer Science
 
 
 
Disponibil în IBN: 4 ianuarie 2020


Rezumat

The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 ≡ 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 ≡ 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6≡ 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established.

Cuvinte-cheie
Polynomial differential systems, invariant, comitant, transvectant, center conditions, linear transformation, rotation transformation, symmetry axis

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-91143</cfResPublId>
<cfResPublDate>2019-12-27</cfResPublDate>
<cfVol>90</cfVol>
<cfIssue>2</cfIssue>
<cfStartPage>127</cfStartPage>
<cfISSN>1024-7696</cfISSN>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/91143</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>Sufficient GL(2,R)-invariant center conditions for some classes of two-dimensional cubic differential systems</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Polynomial differential systems; invariant; comitant; transvectant; center conditions; linear transformation; rotation transformation; symmetry axis</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>The autonomous two-dimensional polynomial cubic systems of differential equations with pure imaginary eigenvalues of the Jacobian matrix at the singular point (0, 0) are considered in this paper. The center problem was studied for three classes of such systems: the class of cubic systems with zero divergence of the cubic homogeneities (S3 &equiv; 0), the class of cubic systems with zero divergence of the quadratic homogeneities (S2 &equiv; 0) and the class of cubic systems with nonzero divergence of the quadratic homogeneities (S2 6&equiv; 0). For these systems, sufficient GL(2,R)-invariant center conditions for the origin of coordinates of the phase plane were established.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-706</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-690</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
</cfPers_ResPubl>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-706</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-706-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
<cfFamilyNames>Calin</cfFamilyNames>
<cfFirstNames>Iurie</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-690</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-690-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2019-12-27T24:00:00</cfStartDate>
<cfFamilyNames>Baltag</cfFamilyNames>
<cfFirstNames>Valeriu</cfFirstNames>
</cfPersName_Pers>
</cfPers>
</CERIF>