About group topologies of the primary Abelian group of finite period which coincide on a subgroup and on the factor group
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
860 0
SM ISO690:2012
ARNAUTOV, Vladimir. About group topologies of the primary Abelian group of finite period which coincide on a subgroup and on the factor group. In: Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 2009, nr. 2(60), pp. 19-28. ISSN 1024-7696.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
Numărul 2(60) / 2009 / ISSN 1024-7696 /ISSNe 2587-4322

About group topologies of the primary Abelian group of finite period which coincide on a subgroup and on the factor group

Pag. 19-28

Arnautov Vladimir
 
Institute of Mathematics and Computer Science ASM
 
 
 
Disponibil în IBN: 13 decembrie 2013


Rezumat

Let G be any Abelian group of the period pnand G1 = {g ∈ G|pg =0}, G2 = {g ∈ G|pn−1g = 0}. If τ and τ′are a metrizable, linear group topologies such that G2 is a closed subgroup in each of topological groups (G, τ) and (G, τ′),then τ|G2 = τ′|G2 and (G, τ)/G1 = (G, τ′ )/G1 if and only if there exists a group isomorphism ϕ : G → G such that the following conditions are true:1. ϕ(G2) = G2;2. g −ϕ(g) ∈ G1 for any g ∈ G;3. ϕ : (G, τ) → (G, τ′) is a topological isomorphism.

Cuvinte-cheie
Topological group,

natural homomorphism, topological isomorphism, subgroup of topological group, factor group of topological group