Miniaturized Heat-Flux Sensor Based on a Glass-Insulated Bi–Sn Microwire
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
856 2
Ultima descărcare din IBN:
2024-02-15 14:01
SM ISO690:2012
KONOPKO, Leonid, NIKOLAEVA, Albina, HUBER, Tito, KOBYLIANSKAYA, A.K.. Miniaturized Heat-Flux Sensor Based on a Glass-Insulated Bi–Sn Microwire. In: Semiconductors, 2019, vol. 53, pp. 662-666. ISSN 1063-7826. DOI: https://doi.org/10.1134/S1063782619050117
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Semiconductors
Volumul 53 / 2019 / ISSN 1063-7826

Miniaturized Heat-Flux Sensor Based on a Glass-Insulated Bi–Sn Microwire

DOI:https://doi.org/10.1134/S1063782619050117

Pag. 662-666

Konopko Leonid1, Nikolaeva Albina1, Huber Tito2, Kobylianskaya A.K.1
 
1 Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu",
2 Howard University
 
 
Disponibil în IBN: 10 iunie 2019


Rezumat

Abstract: Thermoelectric-energy conversion based on a single element made of an anisotropic material is considered. In such materials, the heat flux generates a transverse electric field. We fabricate an experimental heat-flux sensor (HFS) sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (outer diameter D = 18 μm, microwire diameter d = 4 μm). The microwire is wound into a flat spiral after recrystallization in a strong electric field, during which the main crystallographic axis C3 is oriented at the optimum angle with respect to the microwire axis. The sensor sensitivity reaches 10–2 V/W with the time constant τ ≈ 0.2 s. The sensor fabrication technology is rather simple and reliable for industrial applications.