Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
455 0
SM ISO690:2012
KRUGER, Mandy; TRONCIU, Vasile; BAWAMIA, Ahmad Ibrahim; KURBIS, Christian; RADZIUNAS, M; WENZEL, Hans; WICHT, A.; PETERS, Achim; TRANKLE, Guenther. Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips. In: Applied Physics B: Lasers and Optics. 2019, nr. 4(125), p. 0. ISSN 0946-2171.
10.1007/s00340-019-7178-z
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Applied Physics B: Lasers and Optics
Numărul 4(125) / 2019 / ISSN 0946-2171

Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips


DOI: 10.1007/s00340-019-7178-z
Pag. 0-0

Kruger Mandy1, Tronciu Vasile2, Bawamia Ahmad Ibrahim1, Kurbis Christian1, Radziunas M3, Wenzel Hans1, Wicht A.14, Peters Achim1, Trankle Guenther1
 
1 Leibniz-Insitut für Höchstfrequenztechnik, Berlin,
2 Technical University of Moldova,
3 Weierstrass Institute for Applied Analysis and Stochastics, Berlin,
4 Humboldt University in Berlin
 
Disponibil în IBN: 13 aprilie 2019


Rezumat

We present and compare theoretical and experimental results on the electro-optical performance of extended cavity diode lasers (ECDLs) that employ two ridge waveguide designs for the single-transverse mode GaAs laser diode chip. One facet of the laser diode chips serves as a partially reflective output coupler for the laser cavity. The other facet constitutes an intra-cavity interface which introduces spurious optical feedback to the laser diode chip. The waveguide designs differ with respect to the suppression of this spurious feedback. The first design employs a straight ridge waveguide intersecting both facets at normal incidence. The intra-cavity facet is anti-reflection coated and features a residual intensity reflectivity of the order 10 - 4 . The second design employs a bent ridge waveguide intersecting the anti-reflection-coated intra-cavity facet at an appropriate angle. This provides an additional suppression of the spurious intensity reflection to a value estimated to be less than 10 - 6 . We compare the electro-optical performance of both designs theoretically and experimentally. The utilization of a bent waveguide results in an improved spectral stability and purity, specifically a higher side mode suppression and a small intrinsic spectral linewidth over the whole investigated current range, of the external cavity diode laser without sacrificing other parameters such as the output power. The external cavity diode lasers under study exhibit no degradation of the measured frequency noise power spectra and intrinsic linewidths even if there is a drop of the side mode suppression ratio provided that it is not reduced to a very small value. Thus, the usage of a more readily accessible straight waveguide chip in an ECDL could be sufficient if only a limited tuning range and a particularly compact assembly are needed. For spectroscopic applications requiring a small intrinsic spectral linewidth over a large frequency range a bent waveguide chip could be the better choice.

Cuvinte-cheie
Diodes, feedback, gallium arsenide, I, I, I-, V semiconductors, Laser resonators, Linewidth, Photodegradation, Semiconductor lasers, Spectroscopic analysis

Google Scholar Export

<meta name="citation_title" content="<p>Improving the spectral performance of extended cavity diode lasers using angled-facet laser diode chips</p>">
<meta name="citation_author" content="Kruger Mandy">
<meta name="citation_author" content="Tronciu Vasile">
<meta name="citation_author" content="Bawamia Ahmad Ibrahim">
<meta name="citation_author" content="Kurbis Christian">
<meta name="citation_author" content="Radziunas M">
<meta name="citation_author" content="Wenzel Hans">
<meta name="citation_author" content="Wicht A.">
<meta name="citation_author" content="Peters Achim">
<meta name="citation_author" content="Trankle Guenther">
<meta name="citation_publication_date" content="2019/04/01">
<meta name="citation_journal_title" content="Applied Physics B: Lasers and Optics">
<meta name="citation_volume" content="125">
<meta name="citation_issue" content="4">
<meta name="citation_pdf_url" content="https://link.springer.com/article/10.1007%2Fs00340-019-7178-z">