Bi-Sb layers and wires for magneto- thermoelectric applications
Închide
Articolul precedent
Articolul urmator
301 3
Ultima descărcare din IBN:
2019-09-10 16:14
Căutarea după subiecte
similare conform CZU
537.32+621.315.5+621.38 (1)
Electricitate curentă. Curent electric. Electrocinetică (71)
Electrotehnică (756)
SM ISO690:2012
NIKOLAEVA, Albina; KONOPKO, Leonid; BODYUL, P.; POPOV, Ivan; MOLOSHNIK, Eugen. Bi-Sb layers and wires for magneto- thermoelectric applications. In: Materials Science and Condensed Matter Physics. Ediția a 9-a, 25-28 septembrie 2018, Chișinău. Chișinău, Republica Moldova: Institutul de Fizică Aplicată, 2018, p. 309.
EXPORT metadate:
Google Scholar
Crossref
CERIF
BibTeX
DataCite
Dublin Core
Materials Science and Condensed Matter Physics
Ediția a 9-a, 2018
Conferința "International Conference on Materials Science and Condensed Matter Physics"
Chișinău, Moldova, 25-28 septembrie 2018

Bi-Sb layers and wires for magneto- thermoelectric applications


CZU: 537.32+621.315.5+621.38
Pag. 309-309

Nikolaeva Albina1, Konopko Leonid1, Bodyul P.12, Popov Ivan1, Moloshnik Eugen1
 
1 Institute of the Electronic Engineering and Nanotechnologies "D. Ghitu",
2 Technical University of Moldova
 
Proiect:
15.817.02.09A Micro şi nanostructuri funcţionale din semiconductori organici şi anorganici pentru microelectronică. Convertoare de energie.
 
Disponibil în IBN: 14 februarie 2019


Rezumat

Thermoelectric energy conversion efficiency is defined as ZT = S2 σ /χT, where S is the Seebeck coefficient, = is the electrical conductivity, χ is the thermal conductivity, and T is the absolute temperature.  This study is aimed at increasing the thermoelectric figure of merit ZT to maximize the power factor and minimize the thermal conductivity.  Since undoped Bi–12at%Sb alloys are of n-type, the possibility of obtaining p-type Bi–Sb alloys (bulk samples and layers) with a high figure of merit by the addition of acceptor impurities and the application of a transverse magnetic field has been explored.  The mechanical exfoliation method was used to obtain Bi1-xSbx layers and the liquid-phase casting method (Ulitovsky–Tailor) was used to prepare wires [1].  In this paper, we present the results of measurements of transport effects in undoped and doped Bi–12at%Sb–0.001at%Pb alloy bulk samples, single-crystal layers, and glass-insulated wires. The measurements included the electrical resistivity, Seebeck coefficient S, and the Nernst coefficient as a function of crystallographic direction, temperature, and magnetic field direction.  The values and temperature dependence of power factor α2 σ, which were calculated from experimental data in a transverse magnetic field, showed a considerable increase in this parameter in the wires and layers compared with the bulk samples in a magnetic field of 0.3 T [2, 3]. A combination of the Peltier and magneto-Peltier effects in Bi–Sb layers and wires provides a stronger cooling both from room temperature and from 100 K than the cooling in bulk alloys of the same composition.  

Google Scholar Export

<meta name="citation_title" content="<p>Bi-Sb layers and wires for magneto- thermoelectric applications</p>">
<meta name="citation_author" content="Nikolaeva Albina">
<meta name="citation_author" content="Konopko Leonid">
<meta name="citation_author" content="Bodyul P.">
<meta name="citation_author" content="Popov Ivan">
<meta name="citation_author" content="Moloshnik Eugen">
<meta name="citation_publication_date" content="2018">
<meta name="citation_collection_title" content="Materials Science and Condensed Matter Physics">
<meta name="citation_volume" content="Ediția a 9-a">
<meta name="citation_firstpage" content="309">
<meta name="citation_lastpage" content="309">
<meta name="citation_pdf_url" content="https://ibn.idsi.md/sites/default/files/imag_file/00309.pdf">