Lotka-Volterra cubic sistems with (1:-2)-Singularity and six invariant straight lines of two directions
Închide
Articolul precedent
Articolul urmator
466 1
Ultima descărcare din IBN:
2023-06-18 20:51
SM ISO690:2012
TURUTA (PODERIOGHIN), Silvia. Lotka-Volterra cubic sistems with (1:-2)-Singularity and six invariant straight lines of two directions. In: Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători, Ed. 4, 10 martie 2015, Chișinău. Chișinău, Republica Moldova: Universitatea Academiei de Ştiinţe a Moldovei, 2015, Ediția 4, p. 26.
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători
Ediția 4, 2015
Conferința "Tendinţe contemporane ale dezvoltării ştiinţei: viziuni ale tinerilor cercetători"
4, Chișinău, Moldova, 10 martie 2015

Lotka-Volterra cubic sistems with (1:-2)-Singularity and six invariant straight lines of two directions


Pag. 26-26

Turuta (Poderioghin) Silvia
 
Institutul de Matematică şi Informatică al AŞM
 
 
Disponibil în IBN: 13 februarie 2019



Teza

We consider the real Lotka-Volterra cubic system of diferential equations ≡−++++=≡+++++=).,()2(),,()1(021120312221112021221230yxQybxbybxybxbyyyxPyaxayaxyaxaxx&& (1) For (1) the origin of coordinates )0,0( is a )2:1(−resonant singular point. A straight line ,,,,0Cyx∈=++γβαγβα)0,0(),(≠βα is invari-ant for (1) if there exists a polynomial ),(yxK such that the following identity ),()(),(),(yxKyxyxQyxPγβαβα++≡+ holds. We say that an invariant straight line l has algebraic multiplicity equal to m if m is the greatest natural number that ml divide()()yxyxPQPPQQQQPP′+′−′+′. In this paper we give a clasification of systems (1) with six invariant straight lines of two directions. Theorem. The system (1) has invariant straight lines of two directions of total algebraic multiplicity six if and only if it has one of the following eight forms: 1. +−=−−=),2)(1(),1)(1(byyyyaxxxx&& 2. +−=+−−=),2)(1(),1)(1(byyyyaxxxx&& 3. −−=−=,)1(2,)1(22yyyxxx&& 4. +−=−=),2)(1(,)1(2byyyyxxx&& 5. −+−=−−=),23)2((),1)(1(2xxayyaxxxx&& 6. +−−=+=),2)1)((1(),1(2ybyyybyxx&& 7. +−=++=),2)(1(),1(2byyyypxqxxx&& 8. −=−−=),2(),1)(1(2qyyyaxxxx&& where Rpqba∈,,,.