Effect of the Substitution Pattern (Peripheral vs Non-Peripheral) on the Spectroscopic, Electrochemical, and Magnetic Properties of Octahexylsulfanyl Copper Phthalocyanines
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
765 0
SM ISO690:2012
ATEŞ TURKMEN, Tulin, ZENG, Lihan, CUI, Yan, FIDAN, Ismail, DUMOULIN, Fabienne, HIREL, Catherine, ZORLU, Yunus, AHSEN, Vefa, CHERNONOSOV, Alexander A., CHUMAKOV, Yurii, KADISH, Karl M., GÜREK, Ayşe Gül, TOKDEMIR OZTURK, Sibe. Effect of the Substitution Pattern (Peripheral vs Non-Peripheral) on the Spectroscopic, Electrochemical, and Magnetic Properties of Octahexylsulfanyl Copper Phthalocyanines. In: Inorganic Chemistry, 2018, vol. 57, pp. 6456-6465. ISSN 0020-1669. DOI: https://doi.org/10.1021/acs.inorgchem.8b00528
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Inorganic Chemistry
Volumul 57 / 2018 / ISSN 0020-1669

Effect of the Substitution Pattern (Peripheral vs Non-Peripheral) on the Spectroscopic, Electrochemical, and Magnetic Properties of Octahexylsulfanyl Copper Phthalocyanines

DOI:https://doi.org/10.1021/acs.inorgchem.8b00528

Pag. 6456-6465

Ateş Turkmen Tulin1, Zeng Lihan2, Cui Yan2, Fidan Ismail1, Dumoulin Fabienne1, Hirel Catherine1, Zorlu Yunus1, Ahsen Vefa1, Chernonosov Alexander A.3, Chumakov Yurii41, Kadish Karl M.2, Gürek Ayşe Gül1, Tokdemir Ozturk Sibe1
 
1 Gebze Technical University,
2 University of Houston, Houston,
3 Institute of Chemical Biology and Fundamental Medicine,
4 Institute of Applied Physics, Academy of Sciences of Moldova
 
 
Disponibil în IBN: 9 august 2018


Rezumat

In order to investigate the substitution position effect on the spectroscopic, electrochemical, and magnetic properties of copper phthalocyanines, a detailed structure-property analysis has been performed by examining two copper phthalocyanines that are octasubstituted by hexylsulfanyl chains respectively in the peripheral (Cu-P) and non-peripheral (Cu-NP) positions. Cu-NP showed a marked near-IR maximum absorption compared to Cu-P and, accordingly, a smaller HOMO-LUMO energy gap, calculated via the electrochemical results and simulations in the gas phase, as well as for Cu-NP from its crystallographic data. An electron-spin resonance (ESR) technique is used to extract the g values from the powder spectra that are taken at room temperature. The g values were determined to be g|| = 2.160 and gτ = 2.045 for Cu-P and g|| = 2.150 and gτ = 2.050 for Cu-NP. These values indicate that the paramagnetic copper center in both phthalocyanines has axial symmetry with a planar anisotropy (g|| > gτ). The ESR spectra in solution could be obtained only for Cu-P. Curie law is used to fit the experimental data of the magnetic susceptibility versus temperature graphs, and the Curie constant (C) and diamagnetic/temperature-independent paramagnetic (α) contributions are deduced as 0.37598 (0.39576) cm3·K/mol and -23 × 10-5 (25 × 10-5) cm3/mol respectively for Cu-P and Cu-NP. The room temperature magnetic moment value (1.70 μB) is close to the spin-only value (1.73 μB) for the peripheral complex, showing that there is no orbital contribution to μeff. In contrast, at room temperature, the value of the magnetic moment (1.77 μB) is above the spin-only value, showing an orbital contribution to the magnetic moment. Cu-NP's room temperature magnetic moment value is larger than the value for Cu-P, demonstrating that the orbital contribution to the magnetic moment depends upon the substituent position. The magnitudes of the effective magnetic moment values also support that both Cu-P and Cu-NP complexes have square-planar coordination. This result is consistent with the determined g values. The spin densities were determined experimentally, and the results suggest that the positions of the substituents affect these values (0.469 for Cu-P and 0.490 for Cu-NP).