CuInSe2 nanostructures prepared by chemical close-spaced vapor transport for hybrid photovoltaic devices
Închide
Conţinutul numărului revistei
Articolul precedent
Articolul urmator
1088 0
SM ISO690:2012
VATAVU, Sergiu, VON MORZE, Natascha, LUX-STEINER, Martha Ch. H., RUSU, Marin, ZAHN, Dietrich R.T.. CuInSe2 nanostructures prepared by chemical close-spaced vapor transport for hybrid photovoltaic devices. In: Thin Solid Films, 2017, nr. 633, pp. 185-192. ISSN -. DOI: https://doi.org/10.1016/j.tsf.2016.11.002
EXPORT metadate:
Google Scholar
Crossref
CERIF

DataCite
Dublin Core
Thin Solid Films
Numărul 633 / 2017 / ISSN - /ISSNe 0040-6090

CuInSe2 nanostructures prepared by chemical close-spaced vapor transport for hybrid photovoltaic devices

DOI: https://doi.org/10.1016/j.tsf.2016.11.002

Pag. 185-192

Vatavu Sergiu12, von Morze Natascha1, Lux-Steiner Martha Ch. H.1, Rusu Marin1, Zahn Dietrich R.T.3
 
1 Helmholtz-Centre Berlin for Materials and Energy,
2 Moldova State University,
3 Technische Universität Chemnitz
 
Disponibil în IBN: 17 februarie 2018


Rezumat

This work focuses on the fabrication of stoichiometric CuInSe2 nanostructures with controllable physical parameters of the nanocrystals suitable for hybrid organic/inorganic photovoltaics. CuInSe2 nanostructures were prepared by the chemical close-spaced vapor transport (CCSVT) method onto Mo/barrier/glass substrates by using an In2Se3 source material and Cu precursors. The In2Se3 source material was volatilized in H2 ambience with the addition of HCl vapors at 550 °C. Three different types of Cu precursors were used: (i) Cu thin films (6–250 nm thick) deposited by e-beam, (ii) Cu nanoparticles prepared by spray pyrolysis and (iii) Cu nanostructures formed by applying the nanosphere lithography (using a monolayer of 450 nm nanospheres). The CCSVT process parameters were varied to reveal the optimum conditions for the preparation of secondary phases free CuInSe2 nanostructures. The structural characterization by x-ray diffraction in both grazing incidence and Θ-2Θ configurations revealed the formation of CuInSe2 chalcopyrite phase independently on the applied precursor type. The elemental composition of the as-prepared CuInSe2 nanostructures was analyzed by laser ablation-inductively coupled plasma mass-spectrometry. In non-optimised processes, an excess of Se compared to stoichiometric composition was detected and attributed to the formation of molybdenum selenide and indium selenide phases. The formation of the latter secondary phases was suppressed by tuning the CCSVT deposition parameters.

Cuvinte-cheie
Chemical close-spaced vapor transport, Copper indium selenide,

nanostructures

Cerif XML Export

<?xml version='1.0' encoding='utf-8'?>
<CERIF xmlns='urn:xmlns:org:eurocris:cerif-1.5-1' xsi:schemaLocation='urn:xmlns:org:eurocris:cerif-1.5-1 http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.5/CERIF_1.5_1.xsd' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' release='1.5' date='2012-10-07' sourceDatabase='Output Profile'>
<cfResPubl>
<cfResPublId>ibn-ResPubl-59328</cfResPublId>
<cfResPublDate>2017-07-01</cfResPublDate>
<cfIssue>633</cfIssue>
<cfStartPage>185</cfStartPage>
<cfURI>https://ibn.idsi.md/ro/vizualizare_articol/59328</cfURI>
<cfTitle cfLangCode='EN' cfTrans='o'>CuInSe2 nanostructures prepared by chemical close-spaced vapor transport for hybrid photovoltaic devices</cfTitle>
<cfKeyw cfLangCode='EN' cfTrans='o'>Chemical close-spaced vapor transport; Copper indium selenide; nanostructures</cfKeyw>
<cfAbstr cfLangCode='EN' cfTrans='o'><p>This work focuses on the fabrication of stoichiometric CuInSe<sub>2</sub> nanostructures with controllable physical parameters of the nanocrystals suitable for hybrid organic/inorganic photovoltaics. CuInSe<sub>2</sub> nanostructures were prepared by the chemical close-spaced vapor transport (CCSVT) method onto Mo/barrier/glass substrates by using an In<sub>2</sub>Se<sub>3</sub> source material and Cu precursors. The In<sub>2</sub>Se<sub>3</sub> source material was volatilized in H<sub>2</sub> ambience with the addition of HCl vapors at 550&nbsp;&deg;C. Three different types of Cu precursors were used: (i) Cu thin films (6&ndash;250&nbsp;nm thick) deposited by e-beam, (ii) Cu nanoparticles prepared by spray pyrolysis and (iii) Cu nanostructures formed by applying the nanosphere lithography (using a monolayer of 450&nbsp;nm nanospheres). The CCSVT process parameters were varied to reveal the optimum conditions for the preparation of secondary phases free CuInSe<sub>2</sub> nanostructures. The structural characterization by x-ray diffraction in both grazing incidence and &Theta;-2&Theta; configurations revealed the formation of CuInSe<sub>2</sub> chalcopyrite phase independently on the applied precursor type. The elemental composition of the as-prepared CuInSe<sub>2</sub> nanostructures was analyzed by laser ablation-inductively coupled plasma mass-spectrometry. In non-optimised processes, an excess of Se compared to stoichiometric composition was detected and attributed to the formation of molybdenum selenide and indium selenide phases. The formation of the latter secondary phases was suppressed by tuning the CCSVT deposition parameters.</p></cfAbstr>
<cfResPubl_Class>
<cfClassId>eda2d9e9-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>759af938-34ae-11e1-b86c-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfResPubl_Class>
<cfClassId>e601872f-4b7e-4d88-929f-7df027b226c9</cfClassId>
<cfClassSchemeId>40e90e2f-446d-460a-98e5-5dce57550c48</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfResPubl_Class>
<cfPers_ResPubl>
<cfPersId>ibn-person-1082</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-65957</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-18322</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-1063</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfPers_ResPubl>
<cfPersId>ibn-person-22020</cfPersId>
<cfClassId>49815870-1cfe-11e1-8bc2-0800200c9a66</cfClassId>
<cfClassSchemeId>b7135ad0-1d00-11e1-8bc2-0800200c9a66</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
</cfPers_ResPubl>
<cfFedId>
<cfFedIdId>ibn-doi-59328</cfFedIdId>
<cfFedId>10.1016/j.tsf.2016.11.002</cfFedId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFedId_Class>
<cfClassId>31d222b4-11e0-434b-b5ae-088119c51189</cfClassId>
<cfClassSchemeId>bccb3266-689d-4740-a039-c96594b4d916</cfClassSchemeId>
</cfFedId_Class>
<cfFedId_Srv>
<cfSrvId>5123451</cfSrvId>
<cfClassId>eda2b2e2-34c5-11e1-b86c-0800200c9a66</cfClassId>
<cfClassSchemeId>5a270628-f593-4ff4-a44a-95660c76e182</cfClassSchemeId>
</cfFedId_Srv>
</cfFedId>
</cfResPubl>
<cfPers>
<cfPersId>ibn-Pers-1082</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-1082-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Ватаву</cfFamilyNames>
<cfFirstNames>Сергей</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-65957</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-65957-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFamilyNames>von Morze</cfFamilyNames>
<cfFirstNames>Natascha</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-18322</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-18322-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Lux-Steiner</cfFamilyNames>
<cfFirstNames>Martha Ch. H.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-1063</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-1063-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Rusu</cfFamilyNames>
<cfFirstNames>Marin</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfPers>
<cfPersId>ibn-Pers-22020</cfPersId>
<cfPersName_Pers>
<cfPersNameId>ibn-PersName-22020-3</cfPersNameId>
<cfClassId>55f90543-d631-42eb-8d47-d8d9266cbb26</cfClassId>
<cfClassSchemeId>7375609d-cfa6-45ce-a803-75de69abe21f</cfClassSchemeId>
<cfStartDate>2017-07-01T24:00:00</cfStartDate>
<cfFamilyNames>Zahn</cfFamilyNames>
<cfFirstNames>Dietrich R.T.</cfFirstNames>
</cfPersName_Pers>
</cfPers>
<cfSrv>
<cfSrvId>5123451</cfSrvId>
<cfName cfLangCode='en' cfTrans='o'>CrossRef DOI prefix service</cfName>
<cfDescr cfLangCode='en' cfTrans='o'>The service of issuing DOI prefixes to publishers</cfDescr>
<cfKeyw cfLangCode='en' cfTrans='o'>persistent identifier; Digital Object Identifier</cfKeyw>
</cfSrv>
</CERIF>